
On Construction and Performance Evaluation of
Multiple Linux PC Clusters Using NAT Mechanism

Chao-Tung Yang* Chun-Sheng Liao

Department of Computer Science and Information Engineering

Tunghai University

Taichung City 40704, Taiwan, ROC

ctyang@thu.edu.tw

Received 15 January2008; Revised 30 April 2008; Accepted 1 May 2008

Abstract. Multi-cluster with NAT (Network Address Translation) mechanism is a kind of building cluster of
clusters (CoCs) in parallel processing, we can easily combine two or more PC clusters which had setting on
difference place to form a big one parallel system to reach the acceptable performance and resolving the issue
of insufficient public IP address. In this paper, it includes three parts: First, we construct a CoCs with four
Linux PC clusters which connected with NAT on difference places in a LAN environment. Second, we build
a monitor system in our system to monitor and observe this system in a convenient way; this monitor system
also has a client with mobile availability for users by using mobile devices. Third, we evaluate the system
performance with different MPI parallel programs for the analysis of different parallel models.

Keywords: Linux PC Clusters, Cluster Computing, Multiple PC Clusters, Message Passing, NAT.

1 Introduction

Extraordinary technological improvements over the past few years in areas such as microprocessors, memory,
networks, and software have made it possible to assemble groups of inexpensive personal computers and/or
workstations into a cost effective system that functions in concert and possesses tremendous processing power.
Cluster computing is not new, but in company with other technical capabilities, particularly in the area of
networking, this class of machines is becoming a high-performance platform for parallel and distributed
applications [1-9].

Inexpensive systems such as Beowulf clusters have become increasingly popular in both commercial and
academic sectors of bioinformatics community. Clusters typically consist of a master node that distributes the
bioinformatics application amongst the other nodes (slave nodes).

In our laboratory, we have several Linux PC clusters. Their configurations usually consisted of one master
node and three, seven or more slave nodes with dual-processor SMP for reaching maximal performance.
Unfortunately, the public IP addresses are not enough for setting used on all slave nodes. It means that the
virtual IP address is used for slave nodes in a PC cluster. If we want to use a cluster with 64 CPUs or more for
some experimentation like gene sequence analysis or large computing job.

Multi-cluster with NAT (Network Address Translation) is a kind of building cluster of clusters (CoCs) [10] in
parallel processing, we can easily combine two or more PC clusters which had setting on difference place to
form a big one parallel system to reach the acceptable performance and resolving the issue of insufficient public
IP address. Performance is one of the important concerns of both cluster users and system developers. In this
paper, we built a multi-cluster with four PC clusters which connected with NAT on difference place in LAN
environment. We use many parallel applications like the matrix multiplication application to measure the MPI
message passing library in our testing environment and finding out the performance issue and some
characteristics of building it.

Monitoring the status of a Beowulf-style cluster can be a daunting task for any system administrator,
especially if the cluster consists of more than a dozen nodes. While Linux is extremely stable, hardware
problems can cause nodes to crash or become inaccessible, and chasing down problem nodes in a 500-node
cluster is cumbersome. Managing and monitoring a cluster is both a tedious and challenge task, since each node
is designed as a stand alone system rather than a part of a parallel architecture. Beowulf systems will need a
richer set of software tools to improve usability and re-configurability.

* Correspondence author

Journal of Computers Vol.19, No.2, July 2008

26

We present our effort to resolve this problem by developing a PC cluster monitoring system. This system also
provides web service and application to monitor for large scale clusters or grid environment. We conduct our
multi-cluster system that with NAT mechanism that shows in our testing parallel application it has good
performance and in the additional evaluation we could find that the machine availability could reflect the
performance on multi-cluster environment. We also conduct our effort on the monitor system of cluster, we use
the master-slave architecture to implement our monitor and make a special client for mobile equipments based
on Java. We can easily monitor in everywhere even if we don’t have computer, we could also receive the cluster
status on our mobile devices.

The rest of this paper is organized as follows. In section 2, we review the Cluster Computing, introduction of
Linux OS, the two major implementations of Message Passing Interface, and related work. In section 3 we
introduce our multi-cluster system and discuss details of technologies used in the construction of such platform
and present our cluster monitor system, while our experimental results are discussed in section 4. Finally, in
section 5, we list some conclusion and feature work.

2 BACKGROUND

2.1 Beowulf Cluster

A Beowulf cluster uses multi-computer architecture, as depicted in Fig. 1. It features a parallel computing
system that consists of one or more master nodes and available compute nodes, or cluster nodes, interconnected
via widely available network interconnects. All of the nodes in a typical Beowulf cluster are commodity
systems-PCs, workstations, or servers-running commodity software such as Linux.

The master node acts as a server for Network File System (NFS) and as a gateway to the outside world. As an
NFS server, the master node provides user file space and other common system software to the compute nodes
via NFS. As a gateway, the master node allows users to gain access through it to the compute nodes. Usually,
the master node is the only machine that is also connected to the outside world using a second network interface
card (NIC). The sole task of the compute nodes is to execute parallel jobs. In most cases, therefore, the compute
nodes do not have keyboards, mice, video cards, or monitors. All access to the client nodes is provided via
remote connections from the master node. Since compute nodes do not need to access machines outside the
cluster, nor do machines outside the cluster need to access compute nodes directly, compute nodes commonly
use private IP addresses, such as the 10.0.0.0/8 or 192.168.0.0/16 address ranges.

From a user’s perspective, a Beowulf cluster appears as a Massively Parallel Processor (MPP) system [11].
The most common methods of using the system are to access the master node either directly or through Telnet or
remote login from personal workstations [5]. Once on the master node, users can prepare and compile their
parallel applications, and also spawn jobs on a desired number of compute nodes in the cluster. Applications
must be written in parallel and use the message-passing programming model. Jobs of a parallel application are
spawned on compute nodes, which work collaboratively until finishing the application. During the execution,
compute nodes use standard message-passing middleware, such as Message Passing Interface (MPI) [12, 13]
and Parallel Virtual Machine (PVM) [14], to exchange information.

 Cluster computing focuses on platforms consisting of often homogeneous interconnected nodes in a
single administrative domain:

 Clusters often consist of PCs or workstations and relatively fast networks,
 Cluster components can be shared or dedicated,

Application focus is on cycle-stealing computations, high-throughput computations, and distributed
computations.

2.2 Linux

Linux is a robust, free and reliable POSIX compliant operating system. Several companies have built businesses
from packaging Linux software into organized distributions; RedHat is an example of such a company. Linux
provides the features typically found in standard UNIX such as multi-user access, preemptive multi-tasking,
demand-paged virtual memory and SMP support. In addition to the Linux kernel, a large amount of applications,
system software and tools are also freely available. This makes Linux the preferred operating system for clusters.

Yang and Liao: Construction and Performance Evaluation of Multiple Linux PC Clusters Using NAT

27

The idea of the Linux cluster is to maximize the performance-cost ratio of computing by using low-cost
commodity components and free-source Linux and GNU software to assemble a parallel and distributed
computing system. Software support includes the standard Linux/GNU environment, including compilers,
debuggers, editors, and standard numerical libraries. Coordination and communication among the processing
nodes is a key requirement of parallel-processing clusters. In order to accommodate this coordination,
developers have created software to carry out the coordination and hardware to send and receive the
coordinating messages. Messaging architectures such as MPI and PVM, allow the programmer to ensure that
control and data messages take place as needed during operation.

SD

Ω

PROFESSI ONAL WORK STATION
AP400

SD

Ω

PROFESSI ONAL WORK STATION
AP400

SD

Ω

PROFESSI ONAL WORK STATION
AP400

SD

Ω

PROFESSI ONAL WORK STATION
AP400

SD

Ω

PROFESSI ONAL WORK STATION
AP400

SD

Ω

PROFESS IONAL WORKSTATION
AP400

SD

Ω

PROFESSI ONAL WORK STATION
AP400

SD

Ω

PROFESSI ONAL WORK STATION
AP400

SD

SuperStack II
Switch 3300

SUPER
STACK

3C16980

ModuleStatus 3ComUnit

1 2
3 4
5 6
7 8

1 2 3 4 5 6 7 8 9 10 11 12

13 14 15 16 17 18 19 20 21 22 23 24
1 2 3 4 5 6 7 8 9 10 11 12

green =
enabled, link O K
fl ashing green

disabl ed, l ink OK
off = link fail

13 14 15 16 17 18 19 20 21 22 23 24

Packet
Status
Packet
Status

1x

13x

6x

18

7x

19x

12x

24

Fig. 1. Logic view of a PC Cluster

2.3 Message Passing Interface

1) MPICH: MPICH is a robust and flexible implementation of the MPI (Message Passing Interface). MPI is
often used with parallel or distributed computing projects. MPICH is a multi-platform, configurable system
(development, execution, libraries, etc) for MPI. It can achieve parallelism using networked machines or using
multitasking on a single machine [15, 16].
2) LAM: LAM is an implementation of the Message Passing Interface (MPI) parallel standard that is especially
friendly to clusters. It includes a persistent runtime environment for parallel programs, support for all of MPI-1,
and a good chunk of MPI-2, such as the dynamic functions, one-way communication, C++ bindings, and MPI-
IO [16, 17].

2.4 Multi-Cluster Environments

The components of personal-computer are cheaper today and the ratio of cost to price is even more valuable
when we use the Beowulf cluster for parallel processing and applications. The problem is that we can’t easily
import the devices such as the main processor which was appeared years ago because of the Moore’s Law. We
could not get higher performance because we can’t easily combine these heterogeneous computational resources.

We have several ways to combine our heterogeneous cluster to build a new computational resource to get a
better performance in recent years [18]. This is a domain of Grid Computing. The purpose of the Grid
Computing is that we can get any type of resources to resolve many of demanding problems [19, 20]. In other
words, researchers have many contributions about to use the improvements or the extensions of MPI
implementation, for combination of getting higher computational power. The overall solutions of coupling
several clusters into a distributed computing environment with MPI can be divided into four ways [21].

1) Grid Computing Environments: If all of our cluster nodes have public IP addresses there are no major
problem. In such situation we can build a large computing farm using the Grid-enabled MPI Implementation [10,
22]. All nodes of cluster platform need install the Grid Computing middleware such as Globus Toolkit [19]. In
Globus the inter-cluster communication in Grid Computing environment is using the Globus-I/O mechanism;
intra-cluster communication is still using the supported MPI libraries. MPICH-G2 is the implementation of the
widely distributed MPICH-library for Grid-environments that support Globus.

Journal of Computers Vol.19, No.2, July 2008

28

2) Network Address Translation: If we don’t have many public IP address used for the cluster nodes, the
previous solution is not directly available. The Grid-enabled solution needs the support of middleware support.
In the Grid Computing environment all IP address must be public IP addresses. The Beowulf type clusters are
usually connected together with the private IP addresses. The packets with private addresses are normally not
routed through the public IP address area. In a Local Area Network (LAN) environment it’s still might be
possibly to grouping the clusters, because the packets in LAN will be traveling over the switch or router by the
specially solution, network address translation (NAT) [23].

NAT is a mechanism to map IP addresses. It usually couples with the packet filting, mangling, and IP
masquerade, the mechanism map the private IP address by a public IP address. This mechanism needs a node
that has the availability to connect between the public and private network. This node provides IP forwarding of
outgoing packets in the private network and keeping track all incoming packets to correct node in the private
network.

3) Gateways: Another solution of coupling the clusters is the one of gateway node. The gateway is the node
that connects the public IP network and persisted in the MPI communication world in the MPI mechanisms. It
provides the mechanisms that joining the MPI jobs and managing the message passing over the network. Every
node in the MPICH-G2 has the availability of being a gateway node.

PACX-MPI [24], is a MPI implementation of coupling the clusters to a distributed high-performance
computing system. Unlike the MPICH-G2 using the Grid Computing environment, PACX-MPI has its two level
hierarchy of network structure, one for inter-cluster communication that perform on a TCP/IP network with high
latency network, while the other is providing the low-latency, high bandwidth network for intra-cluster
communication with vendor-supported MPI library. To reach this goal, it uses a daemon-based system to handle
these two types of communication level.

4) Proxies: The proxies are the application service that provides the private and public IP address
communication, which is unlike NAT proxies are in the user space solution. The proxy server would have
sufficient knowledge to handle the inside and outside communication. Stampi is the example MPI
implementation with proxy mechanism. A usually solution is the SOCKS v5 server [25].

5) Comparisons among These Technologies: In general, Beowulf-Cluster usually using private ip address to
inter-connected together and in fact, we have many single clusters that in separated locations. The grid
computing environment providing too much mechanisms and each of the grid computing member would install
the grid middleware, if we want to build a multi-cluster environment, these additional software installation will
cause more overhead in our configuration. The gateway solution is suited when we have more high-speed inter-
cluster connection network and we don’t want to use TCP/IP for inter-cluster communication. The Linux kernel
now provide the system level of IP filter and NAT module, we don’t need to choose the SOCKS solution for
building our multi-cluster, so we choose NAT solution to combine our single clusters to a multi-cluster.

2.5 Monitoring Systems for Beowulf Clusters

Several tools have been developed to monitor a large number of machines as stand-alone hosts as well as hosts
in a cluster. These tools can be useful because they monitor the availability of services on a host and detect if a
host is overloaded, but they do not generally provide performance monitoring information at the level of detail
needed to tune the performance of a Beowulf cluster. In contrast with existing systems, which usually display
information only graphically, our project integrates performance monitoring with scheduling systems. In the
following sections, we discuss open-source cluster-monitoring tools.

Ganglia [26] is an Open Source project (available on SourceForge at http://ganglia.sourceforge.net) with a
BSD license. It grew out of the University of California, Berkeley, Millennium Cluster Project (see
http://www.millennium.berkeley.edu) in collaboration with the National Partnership for Advanced
Computational Infrastructure (NPACI) Rocks Cluster Group. Ganglia provides a complete, real-time monitoring
and execution environment based on a hierarchical design. It uses a multicast listen/announce protocol to
monitor node status, and uses a tree of point-to-point connections to coordinate clusters of clusters and aggregate
their state information. Ganglia uses the extensible Markup Language (XML) to represent data, external Data
Representation (XDR) for compact binary data transfers, and an open source package called RRDTool for data
storage (in Round Robin databases) and for graphical visualization.

The SMILE Cluster Management System (SCMS) [27] is an extensible management tool for Beowulf clusters.
SCMS provides a set of tools that help users monitor, submit commands, and query system status; maintain
system configuration, and more. System monitoring is limited to heartbeat-type measurements.

Yang and Liao: Construction and Performance Evaluation of Multiple Linux PC Clusters Using NAT

29

3 SYSTEM IMPLEMENTATION

3.1 Multi-clusters with NAT Settings

In this section, the construction procedure is described. We used dual-processor motherboards to reduce the
number of boxes to eight, and thus, minimizing the space needed for storage as shown in Fig. 2 (and the
footprint of the cluster). This structure impacts performance because two processors share the memory bus
(which causes bus contention but reduces the hardware cost) since only one case, motherboard, hard drive, etc.,
are needed for two processors. We ruled out the option of rack-mounting the nodes, essentially to reduce cost,
but chose to use standard mid-tower cases on shelves. This approach is occasionally given the name of LOBOS
(lots of boxes on shelves).

The idea of the Linux cluster is to maximize the performance-cost ratio of computing by using low-cost
commodity components and free-source Linux and GNU software to assemble a parallel and distributed
computing system. Software support includes the standard Linux/GNU environment, including compilers,
debuggers, editors, and standard numerical libraries. Coordination and communication among the processing
nodes is a key requirement of parallel-processing clusters. In order to accommodate this coordination,
developers have created software to carry out the coordination and hardware to send and receive the
coordinating messages. Messaging architectures such as MPI or Message Passing Interface, and PVM or Parallel
Virtual Machine, to allow the programmer to ensure that control and data messages take place as needed during
operation.

Fig. 2. NOW using four SMP PCs

When we have many single clusters and want to consolidate build them as a big and single computation
resource with NAT, The master node of our single cluster are connected with inter- and intra-cluster networks.
Key point is that how could we conFig. our master nodes of many of our single clusters and make them could
communicate over the network. In general, a PC cluster is constructing by using Linux as their OS environment.
The kernel version 2.4 and latter provides a subsystem called Netfilter. It operates a packet filtering job in kernel
stack. We use this feature for IP-Masquerade, a solution of network address translation (NAT), in the setting, we
just open the capability of packet forwarding module. We make the client that can communicate around the
public network. IP-Masquerade in Linux has several ways to be enabled. You should use the root account to
perform the following commands.

The building steps of multi-cluster in each cluster’s master node are list below. First, you can use “sysctl”
command to enable kernel IP forward function like this command “sysctl -w net.ipv4.ip_forward=1”. Another
way, you can change the “/proc/sys/net/ipv4/ip_forward” value to 1. Then, you can use “iptables” command to
change Netfilter trains, before this configuration you should load kernel module include ip_tables and
iptable_nat through “modprobe” or “insmod” command, after modules loaded. The command is like below:

iptables -t nat -A POSTROUTING -o <eth> -s <private_net> -j MASQUERADE

Journal of Computers Vol.19, No.2, July 2008

30

Under the command, the “eth” parameter is the mapped to your master node’s public address interface and
the “private_net” parameter is your cluster’s private network address, if your private network is 192.168.1.0 and
its netmask is 255.255.255.0. You should type “192.168.1.0/24”.

After enabling the NAT support for each cluster’s master node, if we want to combine these clusters together,
we must build a static routing path that causes every node in this environment can pass messages to each other.
We use a simple example to explain this concept. For example; we have two 2-client clusters, named Cluster A
and Cluster B. In their private network setting, Cluster A and Cluster B should conFig. different private network
address like as 192.168.1.0 and 192.168.2.0 or other, respectively. After IP-Masquerade in Linux kernel, we can
look each master node as a network router, in this concept, we don’t mind that private network couldn’t route
between public networks because every cluster master node in our setting is in public network. Our
configuration is concentrated on made the routing policy to each cluster master. The policy is simple, if we must
combine N cluster together, each master must add (N-1) route trains to satisfy each cluster communications
together.

In this example for cluster A, we can add this command to add a routing train on this cluster master:
route add –net 192.168.2.0 netmask 255.255.255.0 gw <cluster B master IP >
For cluster B, we also add the command on cluster master:
route add –net 192.168.1.0 netmask 255.255.255.0 gw <cluster A master IP >
After this configuration and master node is set to use IP-Masquerade. We easily can combine the two Linux

PC clusters for applying MPI parallel applications for obtain large computation power.

Fig. 3. A simple PC form consists of two PC clusters

3.2 Monitor System Design and Implementation

The concept of our monitor system is to improve the availability of monitor system in the distributed computing
environment. Nowadays, the monitor system is not well developed on user requirements. So we started on the
user interaction and the manner of application executing, and developed the applications by the portability of the
Java Virtual Machine. Our system can be divided into three applications of the Cluster architecture:

 Observe server: The role of the Observe server is running the collect daemon that getting the information
of each cluster’s total information that observing from the master node and replicate the data to their local
file based database for the usage of the web interface,

 Master node: The master node executes the master daemon that could collect the information of their
slave nodes to their local file based database and response the Observe server,

 Slave node: All other nodes of our cluster must to run the slave daemon. The slave program must get
information in user specific metrics like CPU speed, available size of memory, load of this node and
other information user interested in.

In the other side, we have a separate role to display and control our cluster in another way, there are two types
of this role:

 Web portal: We use two tools that generate the web service for controlling and displaying the
information of our system; first we use the drawing tool called Round Robin Database Tool (RRDtool) to
draw the state chart from the collected information in the Observe server. Second is the web front-end

Yang and Liao: Construction and Performance Evaluation of Multiple Linux PC Clusters Using NAT

31

portal created by PHP, when user is connecting to the portal, he can retrieve the information by the state
chart and control the system by the web interface.

 PDA application: The mobile devices are not suit for displaying detail information and remote controlling.
We need to simplify our information and design the appropriate interface for this usage. The Java
application framework is suitable for this type of application and we choose it to develop our simple
application. Implementation of this work is connecting the Observe server and gets all metrics of our
information and directly displaying these to a classified format.

Our system has been implemented for machines with a private network; it resides on one node, which
controls all the others with remote commands. That choice allows easy installation and upgrade, and need to
have daemons running on computing and service nodes. On the other hand this choice can scale if the number of
nodes is huge. The software has been implemented for managing a cluster of clusters, on public networks.

The flow of this system is shown in Fig. 4, the master nodes can collect the system information from its slave
nodes in the multiple Linux PC clusters. Then the Observe server will gather all information from master nodes,
and send to Web server for displaying form remote users and applications. The system architecture and software
architecture are shown in Fig. 5 and Fig. 6. Also, the Observe server will be called to provide services and
information form the Web server.

Fig. 4. Overview of monitor system

Fig. 5. Monitor system architecture

Journal of Computers Vol.19, No.2, July 2008

32

Fig. 6. Software architecture of our monitor system

The functions of three daemons in our system are listed as below:
 Slave Daemon: The Slave daemon can obtain the related system information of each slave node form

Kernel, and provide the services to its Master node in the PC cluster,
 Master Daemon: The Master Daemon is responsible to collect the system information from all slave

nodes in its cluster, and put the related information into Local Database. Local Database is used for the
purpose that will not allow the high load of master node for an instant. The function of Local Database
can be view as a buffer,

 Collect Daemon: This daemon is running on the Observe Server. It is used for collecting the system
information of each master node of multiple Linux PC clusters. It can provide services by using database
to applications or the remote users.

All server daemons are written in C and the web portal interface is written in PHP, We could get some
information through our web portal and they are shown from Fig. 7 to Fig. 10. For the user without computer,
we have also implemented a JAVA-based PDA version of our monitor shown in Fig. 11.

Fig. 7. Home page created with PHP and RRDTool

Yang and Liao: Construction and Performance Evaluation of Multiple Linux PC Clusters Using NAT

33

Fig. 8. Platform information page

Fig. 9. The overall system information webpage of one cluster platform

Fig. 10. The detail system information webpage

Journal of Computers Vol.19, No.2, July 2008

34

Fig. 11. Monitoring screen on PDA

4 EXPERIMENTAL RESULTS

4.1 Experimental Environment

Table 1 shows the hardware specification of our testing environment. The network topology is shown as in Fig.
12. Our inter-cluster connection are build on the Fast Ethernet that giving the speed of 100 Mb/s.

Table 1. Hardware specification

The configuration steps of multi-cluster are listed below.
 First, get all information of public and private IP addresses of these four cluster’s master on executing

“ifconfig” command,
 Second, all the slave nodes default gateway should be the cluster’s master node in the file named

“/etc/sysconfig/network”,
 Third, setting the configurations for the master node of three clusters with the follows in upper section we

described.

Yang and Liao: Construction and Performance Evaluation of Multiple Linux PC Clusters Using NAT

35

Fig. 12. Experimental environment in HPC Lab consisting of four PC clusters

In order to compare the difference of various numbers of nodes in multi-cluster combination and our single
cluster, we set three cases in the multi-cluster in Table 2. In each multi-cluster setting, each node of our cluster
has dual CPUs, so the case named “mc8” has four nodes, while the others are the same. In every multi-cluster
case is also including the master node of each single cluster to build with. We can regard mc8 cluster as the eight
CPUs case of heterogeneous cluster with Fast Ethernet because the master are connected in the LAN
environment, and we can use this case to compare the performance to other single clusters in our testing cases.

To compare the performance differences of mc16 and mc32 with single cluster that has the same numbers of
CPUs. We build the sc16 and sc32 clusters that the hardware components are the same as amd-dual01, but sc16
is build with 8 nodes and sc32 is build with 16 nodes, and their intra-cluster network environment is Gigabit
Ethernet. We can use these two single clusters to compare the total difference when we evaluate with mc16 and
mc32.

In another approach, we want to know how the starting node of the MPI job does influence the performance
of each testing case. We use the master nodes of our four single clusters to evaluate this issue. We will discuss
this issue in the rear of each testing case.

Table 2. Test setting of single and multi-clusters

In choosing implementation of the MPI library, we use MPICH to build for our experimentation because the
new version of LAM/MPI that’s after 6.5.8 could not suite to multi-cluster in private to public IP address
translation. We use the MPICH 1.2.6 to compile our experimental program in the multi-cluster environment. In
our experimental environment, we have two different hardware platform i386 for AMD ATHLON MP and
x86_64 for AMD ATHLON 64 platform, so we should make different binary codes for MPICH implementation
and of course, the experiment binary codes are also expected.

Journal of Computers Vol.19, No.2, July 2008

36

4.2 Performance Comparisons

In order to compare our multi-cluster performance, we choose four parallel applications for evaluations: Matrix
multiplication, PI computation, prime number generation, and the bucket sort.
1) Matrix Multiplication: The matrix operation derives a resultant matrix by multiplying two input matrices, a
and b, where matrix a is a matrix of N rows by P columns and matrix b is of P rows by M columns, and then the
resultant matrix c is of N rows by M columns. The serial realization of this operation is quite straightforward as
listed below:

for(k=0; k<M; k++)
 for(i=0; i<N; i++){
 c[i][k]=0.0;
 for(j=0; j<P; j++)
 c[i][k]+=a[i][j]*b[j][k];
 }

Its algorithm requires n3 multiplications and n3 additions, leading to a sequential time complexity of Ο(n3).
For matrix multiplication, the smallest sensible unit of work is the computation of one element in the result
matrix. It is possible to divide the work into even smaller chunks, but any finer division would not be beneficial
because of the number of processor is not enough to process, i.e., n2 processors are needed.

In the Figures 13, 14, and 15, we could find out the amd64-dual01 leads the performance in these four single
clusters because of its new architecture and the optimization for the x86_64 architecture in new kernel 2.6. The
amd-dual1 cluster has the worst performance because of its network speed is only 100Mbps speed and the CPU
clock is the slowest of these four single clusters. We can also check the performance of amd-dual1 and mc8. It
shows that when the matrix size increased the performance of both cases is lower than other cases in the
100Mbps network.

In the performance evaluation results in Fig. 13 shows the performance benefit in the multi-cluster system.
First the performances of the mc8, mc16 and mc32 clusters are between the performance of amd1 and amd64-
dual01 these two clusters. When the matrix size is not very large, the communication overhead occur the
execution time of mc32 and mc8 are very closely. But we can get the better performance in the mc16 cluster.

When the matrix size increased as in Figures 14 and 15, it shows if we increase our nodes to 16 to execute the
matrix multiplication program, we could get the best performance changes. The case of the matrix size
increasing to 2048, the performances of single clusters are not the same in the Figures 13 and 14, but multi-
cluster also shows the better performance in the mc16 and mc32 settings. Though, the case of mc8 shows the
worst performance because the network speed of the mc8 cluster is the Fast Ethernet and in normal LAN
environment communications that is like the case of amd-dual1.

When we compare our multi-cluster settings with single cluster settings with matrix multiplication, our
program must send the divided matrix as a multiplier and the full matrix as multiplicand with traditional block
send and receive functions. We could find that when the matrix size is 512 in Fig. 13, sc32 could not have the
poor performance than the mc32 because the communication over the single cluster is running through a single
switch that has bigger intra-communication bandwidth. The results in larger matrix size are more significant
when we have strong intra-communication bandwidth in Fig. 14 and Fig. 15. In this type of parallel processing
type that has large message passing over the computation nodes, the multi-cluster only has little advantage even
has bed performance.

In the experiment on starting node of the MPI job. As shown in Fig. 16, we respectively conduct the relation
in the execution time and the availability of the MPI job start location. We can get the better performance when
we choose the amd64-dual01 as the node for job starting than other nodes, the amd1 is the second fast, the amd-
dual01 is the third and the last is the amd-dual1. We can find out that if we choose node that gets better
performance in single cluster case to starting the MPI job, we can get better performance when we combine our
single cluster to multi-cluster.

Yang and Liao: Construction and Performance Evaluation of Multiple Linux PC Clusters Using NAT

37

Matrix Multiplication

0

500

1,000

1,500
2,000

2,500

3,000

3,500

Matrix size = 512

P
ro

ce
ss

in
g

tim
e

(m
s)

amd-dual1
amd-dual01
amd1
amd64-dual01
mc8
mc16
mc32
sc16
sc32

Fig. 13. Comparison of matrix multiplication when the matrix size is equal to 512

Matrix Multiplication

0

5,000

10,000

15,000

20,000

25,000

Matrix size = 1024

Pr
oc

es
si

ng
 ti

m
e

(m
s)

amd-dual1
amd-dual01
amd1
amd64-dual01
mc8
mc16
mc32
sc16
sc32

Fig. 14. Comparison of matrix multiplication when the matrix size is equal to 1024

Matrix Multiplication

0
20,000
40,000
60,000
80,000

100,000
120,000
140,000
160,000
180,000

Matrix size = 2048

P
ro

ce
ss

in
g

tim
e

(m
s)

amd-dual1
amd-dual01
amd1
amd64-dual01
mc8
mc16
mc32
sc16
sc32

Fig. 15. Comparison of matrix multiplication when the matrix size is equal to 2048

Choosen of MPI start node in Matrix Multiplication with all nodes

0

20,000

40,000

60,000

80,000

100,000

120,000

size = 512 size = 1024 size = 2048

P
ro

ce
ss

in
g

tim
e

(m
s)

amd-dual1
amd-dua01
amd1
amd64-dual01

Fig. 16. Comparison on MPI jobs starting locations in matrix multiplication

Journal of Computers Vol.19, No.2, July 2008

38

2) PI Computation: The PI computation program calculates the value of PI by numerical integration in order
to estimate the area of the curve f(x)=4/(1+x2) between 0 and 1. We can compute an approximation by dividing
the interval zero and one into numbers of subintervals to each parallel process and then let each parallel process
compute the area of their own subset.

In Figures 17and 18 we could find out that the case of mc16 and mc32 have good performance when the node
increasing. Comparing this result with the mc8, it shows the communication in heterogeneous cluster with eight
CPUs in the Fast Ethernet environment has very heavy overhead and when we add more nodes the problem is
dividing to smaller sets that cause good performance.

PI Problem

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

Subspaces: 1,000,000,000

Pr
oc

es
si

ng
 ti

m
e

(m
s)

amd-dual1
amd-dual01
amd1
amd64-dual01
mc8
mc16
mc32
sc16
sc32

Fig. 17.Comparison of the PI problem when the subspaces are equal to 1,000,000,000

PI Problem

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

Subspaces: 2,100,000,000

Pr
oc

es
si

ng
 ti

m
e

(m
s)

amd-dual1
amd-dual01
amd1
amd64-dual01
mc8
mc16
mc32
sc16
sc32

Fig. 18. Comparison of the PI problem when the subspaces are equal to 2,100,000,000

Choosen of MPI start node in PI Problem with all nodes

0
500

1,000
1,500
2,000
2,500
3,000
3,500
4,000

Subspaces:
1,000,000,000

Subspaces:
2,100,000,000

P
ro

ce
ss

in
g

tim
e

(m
s)

amd-dual1
amd-dua01
amd1
amd64-dual01

Fig. 19. Comparison on MPI jobs starting locations in PI problem

Yang and Liao: Construction and Performance Evaluation of Multiple Linux PC Clusters Using NAT

39

The totally performance comparison of mc16, mc32, sc16, and sc32 is described below. The MPI program of
the PI problem broadcasts divided part of each computation node with MPI_Broadcast function and last the
master receive the results using MPI_Reduce function; the communication overhead of this problem is very
small, and this problem speed is not the primary factor. So the results of multi or single clusters are almost the
same. As the previous section we first compare the performances of four single clusters. The order of processing
time in descending order is amd64-dual01, amd1, amd-dual01, and the last is amd-dual1 cluster and this result is
no matter the subspaces is bigger. The results reflect the processing time on different MPI jobs starting nodes in
Fig. 19.

3) Prime Number Generation: This problem is to generate the largest prime number between 1 and one given
number. For instance we want to find the largest prime number between 1 and 20,000,000. A parallel program
that initially runs on a lead node and sends the task of testing number 101-200 to node 1, and sends the task of
testing number 201-300 to node 2, and so on. Along with the testing task, there would also be an instruction to
return whatever primes a slave node has discovered to the lead node. When all nodes have completed their tasks,
there will have a message to tell you how many primes are found and what the biggest prime number is.

In this case, we evaluate two different integer ranges to observe the performance. The performance
comparisons are shown in Figures 20 and 21. In our environment when the available nodes increased like mc16
and mc32, we have the better performance than single cluster settings. So the performance ratio increased
regardless the problem size even when we add our number of nodes to 32.

Prime Problem

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

Range: 25,000,000

Pr
oc

es
si

ng
 ti

m
e

(m
s)

amd-dual1
amd-dual01
amd64-dual01
amd1
mc8
mc16
mc32
sc16
sc32

Fig. 20. Comparison of the prime problem when the range is equal to 25,000,000

Prime Problem

0
5000

10000
15000
20000
25000
30000
35000
40000

Range: 50,000,000

Pr
oc

es
si

ng
 ti

m
e

(m
s)

amd-dual1
amd-dual01
amd64-dual01
amd1
mc8
mc16
mc32
sc16
sc32

Fig. 21. Comparison of the prime problem when the range is equal to 50,000,000

Journal of Computers Vol.19, No.2, July 2008

40

Choosen of MPI start node in Prime Problem with all nodes

0
1,000
2,000
3,000
4,000
5,000
6,000
7,000
8,000
9,000

10,000

Range: 25,000,000 Range: 50,000,000

P
ro

ce
ss

in
g

tim
e(

m
s)

amd-dual1
amd-dua01
amd64-dual01
amd1

Fig. 22. Comparison on MPI jobs starting locations in the prime problem

The order of processing time in descending order is amd1, amd64-dual01, amd-dual01 and amd-dual1. The

amd1 leads the performance of single cluster and the reason is that the prime number generation is not using the
float-point computation power; this problem needs the integer computation performance. The bogomips value
shows the integer performance of specific processor in the kernel information that consisting in /proc/cpuinfo
file. The bogomips value of amd1 is 4230.52 and the bogomips value of the amd64-dual01 is 3915.77, so we
can use this value to explain why the amd1 leads the performance.

In the prime number generation problem, however the communication through each computation node is very
frequency and the size for each communication is very small, the primary factor for this problem is the
computing power of each processor. So in the totally performance evaluation of this problem, the mc16 and
mc32 still has the advantage than the sc16 and sc32.

We still evaluate the performances on starting node of the MPI job; we can compare it in Fig. 22 with
performances in single clusters in Figures 20 and 21. The performance of single clusters reflects the starting
node of the MPI job.

4) Bucket Sort: This problem is that we have a amount of unsorted numbers in a list and we want to sort it to
a numerical order. The bucket sort utilizes a divide-and-conquer method to solve this problem. In parallel
version of the bucket sort, there are n numbers in a unsorted list and p processors to solve problem. First we
partition this list to p regions, one region for each processor. Each processor maintains p “small” buckets and
separates the numbers in its region into its own small buckets. These small buckets are then emptied into the p
final buckets for sorting, which requires each processor to send one small bucket to each of the other processors.

We also use two different size of array to test our single and multi-clusters. Figures 23 and 24 show the
performance comparison between single and multi-clusters. We observe that the amd1 also lead the single
cluster performance as we have described in Prime number example and this results also reflect the starting node
of the MPI job. This case also shows that when we use 8 CPUs cluster like mc8 the bucket sort application
brings the communication overhead and when we increase our number of nodes like mc16 and mc32 we finally
get good performance.

The different of bucket sort and the prime number generation is that because the bucket sort communication
overhead is heavy than the prime number in data exchange, We find out that un the MPI jobs starting locations
comparison in Fig. 25. The size of the array could not affect the performance of this problem; the multi-cluster
performance would be very closely in this case. Totally we can observe when we build a multi-cluster using 16
nodes and 32 nodes we could still conduct good performance in this case of jobs.

In the totally performance evaluation for multi and single clusters with mc16, mc32, sc16, and sc32, the
property for communication overhead is likely as the matrix multiplication problem and the computation is very
heavy with each computation node. When we use the small a list for sorting, the single cluster has the better
performance but using larger size of list in Fig. 24 the network advantage for single cluster couldn’t help too
much in this problem. The computation advantage for multi-cluster could eliminate the communication overhead
in this type of problem. So in large computation and communication overhead are both exist such like this
problem, multi-cluster could get some advantage even has the same performance in single cluster.

Yang and Liao: Construction and Performance Evaluation of Multiple Linux PC Clusters Using NAT

41

Bucketsort Problem

0
50

100
150
200
250
300
350
400
450

Array size is 65,536

Pr
oc

es
si

ng
 ti

m
e

(m
s)

amd-dual1
amd-dual01
amd64-dual01
amd1
mc8
mc16
mc32
sc16
sc32

Fig. 23. Comparison of the bucket sort problem when the sizes are equal to 65,536

Bucketsort Problem

0

20,000

40,000

60,000

80,000

100,000

120,000

Array size is 1,048,576

Pr
oc

es
si

ng
 ti

m
e

(m
s)

amd-dual1
amd-dual01
amd64-dual01
amd1
mc8
mc16
mc32
sc16
sc32

Fig. 24. Comparison of the bucket sort problem when the array sizes are equal to 1,048,576

Choosen of MPI start node in Bucket sort Problem with all nodes

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

Array size = 65,536 Array size = 1,048,576

P
ro

ce
ss

in
g

tim
e(

m
s)

amd-dual1
amd-dua01
amd64-dual01
amd1

Fig. 25. Comparison on MPI jobs starting locations in the bucket sort problem

5 Conclusions

To build a cluster computing platform, we commonly inter-connect a number of personal computers or
workstations to achieve high computing power. In general case, we don’t have enough space for setting up many
PCs on it, and questions we are concerned about arises, for instance, network topology, electric power, and
management question etc. Then we can use several places for setting up a number of machines on each place,
and enable networking for transparent computing on each cluster node for enable an enormous nodes cluster in
LAN environment. In this thesis, we use the NAT mechanism to inter-connect two or more clusters to connect a

Journal of Computers Vol.19, No.2, July 2008

42

big one. An experimental environment we use four different speeds of PC cluster in a Fast-Ethernet inter-cluster
network environment for testing many parallel applications. We could find that the multi-cluster with NAT bring
us the more computation power. The NAT mechanism is a easier way to build such a multi-cluster environment
than other solutions. In the future we would like to evaluate different message passing library such as PVM or
different implementations of MPI to help us enhance the performance in multi-cluster setting, or integrate the
multi-cluster environment with scheduler system and the second generation Beowulf-Cluster architecture.

Acknowledgement

This paper is supported in part by National Science Council, Taiwan, under grants NSC 96-2221-E-029-019-
MY3 and NSC 96-2622-E-029-004-CC3.

References

[1] R. Buyya, High Performance Cluster Computing: System and Architectures, Vol. 1, Prentice Hall PTR, NJ, 1999.

[2] R. Buyya, High Performance Cluster Computing: Programming and Applications, Vol. 2, Prentice Hall PTR, NJ, 1999.

[3] A. Geist, Cluster Computing: The Wave of the Future, Lecture Notes in Computer Science Vol. 879, May 1994.

[4] T. L. Sterling, J. Salmon, D. J. Backer, and D. F. Savarese, How to Build a Beowulf: A Guide to the Implementation and

Application of PC Clusters, 2nd Printing, MIT Press, Cambridge, Massachusetts, USA, 1999.

[5] B. Wilkinson and M. Allen, Parallel Programming: Techniques and Applications Using Networked Workstations and

Parallel Computers, Prentice Hall PTR, NJ, 1999.

[6] F. Cappello, O. Richard, D. Etiemble, “Understanding performance of SMP clusters running MPI programs”, Future

Generation Computer Systems, Vol.17, pp. 711-720, 2001

[7] D. Turner and X. Chen, “Protocol-dependent message-passing performance on Linux clusters”, Proceedings of the 2002

IEEE International Conference on cluster computing, pp. 187-194, 2002.

[8] K. N. Nguyen and T. T. Le, “Evaluation and Comparison Performance of Various MPI Implementations on an OSCAR

Linux Cluster”, Proceedings of the International Conference on Information Technology: Computers and

Communications (ITCC.03), 2003.

[9] C. T. Yang, C. C. Hung, and C. C. Soong, “Parallel Computing on Low-Cost PC-Based SMPs Clusters,” Proceedings of

the 2001 International Conference on Parallel and Distributed Computing, Applications, and Techniques (PDCAT

2001), pp 149-156, July 2001.

[10] D. Balkanski, M. Trams, W. Rehm, “Communication middleware systems for heterogeneous clusters: a comparative

study,” Proceedings of 2003 IEEE International Conference on Cluster Computing, pp. 504- 507, 2003.

[11] T. Anderson, D. Culler, and D. Patterson, “A Case for Network of Workstations”, IEEE Micro, Vol.15, No.1, pp. 54-64,

Feb. 1995.

[12] Message Passing Interface Forum, http://www.mpi-forum.org/.

[13] MPI Forum. “MPI: A message-passing interface standard”. International Journal of Supercomputer Applications, Vol.8,

No.3/4, pp. 165-416, 1994.

[14] PVM – Parallel Virtual Machine, http://www.epm.ornl.gov/pvm.

[15] MPICH official site, http://www-unix.mcs.anl.gov/mpi/mpich/.

[16] H. Ong and P. A. Farrell, “Performance Comparison of LAM/MPI, MPICH, and MVICH on a Linux Cluster connected

by a Gigabit Ethernet Network,” Proceedings of the 4th Annual Linux Showcase & Conference, October 2000.

Yang and Liao: Construction and Performance Evaluation of Multiple Linux PC Clusters Using NAT

43

[17] LAM/MPI official site, http://www.lam-mpi.org/.

[18] M. Matsuda, T. Kudoh, Y. Ishikawa, “Evaluation of MPI Implementations on Grid-connected Clusters using an

Emulated WAN Environment”, Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and

the Grid (CCGRID’03), 2003.

[19] Foster and C. Kesselman, The Grid: Blueprint for a Future Computing Infrastructure, Morgan Kaufmann Publishers,

1999.

[20] Foster, C. Kesselman, and S. Tuecke, “The anatomy of the grid: Enabling scalable virtual organizations,” International

Journal of Supercomputing Applications, Vol.15, No.3, 2001.

[21] M. Müller, M. Hess, E. Gabriel, “Grid enabled MPI solutions for Clusters”, Proceedings of the 3rd IEEE/ACM

International Symposium on Cluster Computing and the Grid (CCGRID’03), 2003.

[22] Y. Tanaka, M. Sato, M. Hirano, H. Nakada, S. Sekiguchi, “Performance Evaluation of a Firewall-compliant Globus-

based Wide-area Cluster System”, Proceedings of the Ninth IEEE International Symposium on High Performance

Distributed Computing, pp. 121-128, 2000.

[23] P. Srisuresh and K. Egevang, Traditional IP Network Address Translator (Traditional NAT), RFC 3022, Internet

Engineering Task Force, 2001.

[24] E. Gabriel, M. Resch, T. Beisel, and R. Keller, “Distributed computing in a heterogeneous computing environment”,

Proceedings of the 5th European PVM/MPI Users' Group Meeting on Recent Advances in Parallel Virtual Machine

and Message Passing Interface, pp 180-187, 1998.

[25] M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas, and L. Jones, SOCKS Protocol Version 5, RFC 1928, Internet

Engineering Task Force, 1996.

[26] M. L. Massie, B. N. Chun, D. E. Culler,” The ganglia distributed monitoring system: design, implementation, and

experience”, Parallel Computing, Vol.30, pp. 817-840, 2004.

[27] P. Uthayopas and A. Rungsawang, “SCMS: An Extensible Cluster Management Tool for Beowulf Clusters”,

Supercomputing 99, Portland (OR), 1999.

Journal of Computers Vol.19, No.2, July 2008

44

