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Abstract. Most of today’s software applications are built on top of libraries or frameworks. The increasing 
number of cloud-based services gives rise to 3rd party frameworks that offer such services from a cloud plat-
form. Just as applications evolve, frameworks also evolve. Such evolution is even more pronounced in 
frameworks that underlie cloud-based services. Upgrading is straightforward when the framework changes 
preserve the API and behavior of the offered services. However, major changes are introduced with the new 
framework release, which have a significant impact on the application. A framework user has to consider 
how to adjust to the new version. In this paper, we study the evolution of an application and its underlying 
framework through a multi-version analysis. For the analysis, we investigate two kinds of component rela-
tionships: one is component rank, the other is clone relation. Component rank measurement is a way of quan-
tifying the importance of a component by its usage. As framework components are used by applications, the 
rankings of the components are changed. We confirm that upgrading to the new framework version has an 
impact to a component rank of the entire system. On the other hand, existence of code clone shows how ap-
plication developers use existing framework code as a reference, and removal of clones shows which reuse 
activities were recognized as problematic. Analysis of results from these relationships provides useful in-
sights into developers’ activities. 
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