
On-line Error Detection in a Polynomial Basis Multiplier over GF(2m)
Using Self-Checking Alternating Logic

Wen Tzeng Huang1 Sun Yen Tan2 Che Wun Chiou3,*

Chiu Ching Tuan4 Chih Hsiang Chang5

1 Department of Computer Science & Information Engineering, Minghsin University of Science & Technology

Hsinchu 30401, Taiwan

wthuang@must.edu.tw

2 Department of Electronic Engineering, National Taipei University of Technology

Taipei 10608, Taiwan

sytan@ntut.edu.tw

3 Department of Computer Science and Information Engineering, Chien Hsin University of Science and Technology

Taoyuan 320, Taiwan

cwchiou@uch.edu.tw

4 Department of Electronic Engineering, National Taipei University of Technology

Taipei 10608, Taiwan

cctuan@ntut.edu.tw

5 Institute of Computer and Communication, National Taipei University of Technology

Taipei 10608, Taiwan

garychang0706@gmail.com

Received 22 May 2013; Revised 5 July 2013 ; Accepted 25 July 2013

Abstract. Polynomial basis multipliers which are widely applied in public-key cryptosystems such as elliptic
curve cryptosystem are suitable to be FPGA (Field Programmable Gate Array) and VLSI (Very Large Scale
Integrated circuit) implementations due to their regularity and modularity properties. On-line error detection
capability can provide a countermeasure to recently developed fault-based cryptanalysis. A novel polynomial
basis multiplier using self-checking alternating logic (SCAL) method is developed. The proposed polynomial
basis multiplier can provide both on-line error detection and off-line testability capabilities. Our proposed
multiplier requires only one-third of the extra space complexity that existing multipliers require. Our pro-
posed SCAL polynomial basis multiplier is the first polynomial basis multiplier over GF(2m) with both on-
line error detection and off-line testability capabilities.

Keywords: Finite field multiplier, elliptic curve cryptosystem, concurrent error detection, fault-based crypt-

analysis.

1 Introduction

Finite field arithmetic has been widely applied to coding theory [1], cryptography [2], and digital signal pro-
cessing [3-4]. Finite field arithmetic includes addition, multiplication, division, and inversion operations. The
multiplication operation is the most important arithmetic operation for application to cryptosystems such as the
elliptic curve cryptosystem (ECC). ECC uses much smaller key bits than the RSA (Rivest-Shamir-Adleman)
public-key cryptosystem to deliver an equivalent level of security. For example, an ECC with a 160-bit key
approaches the same security level of RSA with a 1024-bit key. Moreover, less computation is needed with ECC
to achieve the same level of security as RSA; therefore, ECC computes faster than RSA. These benefits make
ECC more attractive than RSA for use as a cryptosystem on devices with limited resources, such as portable

* Corresponding author.

Huang et al: On-line Error Detection in a Polynomial Basis Multiplier over GF(2m)

47

smart phones. Unfortunately, cryptosystems on smart phones are highly vulnerable to side-channel attacks, in-
cluding fault-based attacks.

The applications of ECC are almost exclusively in digital systems; therefore, ECC strongly depends on finite
field arithmetic operations, especially GF(2m). These GF(2m) operations include addition, multiplication, multi-
plicative inversion, and exponentiation operations. Addition in GF(2m) is easily performed using exclusive OR
(XOR) gates. Multiplicative inversion and exponentiation are much more time-consuming than addition and
multiplication but can be performed using iterative multiplications. Hence, efficient implementation of multipli-
cation is fundamental in cryptographic applications.

The efficiency of finite field multiplication depends on the specification of the field element representation.
Three major bases represent elements in GF(2m): a polynomial basis (PB) [5-10], dual basis (DB) [11-15], and
normal basis (NB) [16-23]. Each basis has its own particular advantages. The PB architectures have the ad-
vantages of low circuit complexity, simplicity, regularity, and modularity. The DB multipliers have the lowest
chip area among these basis multipliers. The NB multipliers can perform the squaring operation only by cycli-
cally shifting its binary form.

Fault-based cryptanalysis is a new efficient method for attacking both private-key and public-key cryptosys-
tems. Boneh et al. [24] proved that fault-based cryptanalysis is efficient against RSA cryptosystems. Kelsey et al.
[25] used differential fault analysis to easily recover the key of symmetric data encryption standard (DES), and
only required about 200 ciphers. Biham and Shamir [17] and Boneh et al. [24] also showed that fault-based
cryptanalysis can effectively attack public-key cryptosystems. Therefore, the simplest method to avoid attacks
from fault-based cryptanalysis is to check the correctness of the ciphers before output of the cipher. For this
reason, the development of techniques to detect errors in cryptosystems is an important area of research.

In 1998, Fenn et al. [26] firstly proposed on-line error detection for bit-serial PB multipliers in GF(2m) using
the parity prediction method. Reyhani-Masoleh and Hasan [27,28] provided error detection methods in bit-
parallel and bit-serial polynomial basis multipliers in GF(2m) using parity checking. Bayat-Sarmadi and Hasan
[29] used multiplication parity bits for concurrently detecting errors in PB multipliers; this method detected all
of the odd parity errors and most of the even parity errors. However, parity checking is very time consuming. If
an XOR tree is applied to compute parity bits, at least  m2log XOR-gate delays are required. For modern cryp-

tographic applications, the field size m can be very large, ranging from 160 to 2048 bits. For example, the time
overhead in the method of Bayat-Sarmadi and Hasan [29] is approximately 20% or more, on average. Chiou [30]
used the re-computing with shifted operands (RESO) method to provide a concurrent error detection method for
polynomial-based multipliers using all-one polynomials. Lee et al. [31] extended these results to the PB multi-
plier generated by a general irreducible polynomial. Chiou et al. [32] then applied the same concept to concur-
rently detect errors in the PB Montgomery multiplier. Such time redundancy methods [30-32] require very little
time overhead; for example, only about 1.3% time overhead is required for the method proposed by Chiou et al.
[32].

Regular architecture is a very important property of very large scale integration (VLSI). In this study, we pre-
sent a self-checking alternating logic (SCAL) bit-parallel PB multiplier using alternating inputs. Our SCAL
approach can detect both permanent and transient faults and has a fault-secure property, in which any occurring
fault in a fault model can be detected by at least one alternating input pair. In contrast, in existing error detection
approaches, some occurring single faults are not excited and thus are not detected. Our SCAL PB multiplier
retains a regular structure and requires only a small time overhead, similar to previous time redundancy methods
[30-32].

The remainder of this article is organized as follows. Section 2 briefly reviews the polynomial basis and SCAL.
Section 3 introduces the traditional bit-parallel polynomial basis multiplier. In Section 4, the novel bit-parallel poly-
nomial basis multiplier with on-line error detection capability is presented. Comparison results are given in Section 5.
A brief conclusion is finally made in Section 6.

2 Preliminaries

This section reviews basic concepts concerning PB multiplication over GF(2m) and SCAL. For more detail,
readers can refer to [2] and [33,34,35], respectively.

2.1 Polynomial Basis

Let P(x) be a degree m irreducible primitive polynomial over GF(2) in Eq. (1)

 =
−

−
−

− =+++++= m

i

i
i

m
m

m
m

m
m xppxpxpxpxpxP

00
1

1
2

2
1

1)( (1)

Journal of Computers Vol. 24, No. 2, July 2013

48

where pi∈ GF(2) = {0,1} and p0 = pm = 1. Then, let a set {1, x, x2,…,xm-2, xm-1} be a polynomial basis of GF(2m)
generated by P(x) [2]. Thus, we can represent any element in GF(2m) defined by p(x) as A, B, and C, which can
be represented as follows, where ai, bi, ci∈{0,1}, and 0 ≤ i ≤ m-1.

A = a0+a1x+a2x2+⋅⋅⋅+ am-2xm-2+am-1xm-1
B = b0+b1x+b2x2+⋅⋅⋅+ bm-2xm-2+bm-1xm-1
C = c0+c1x+c2x2+⋅⋅⋅+ cm-2xm-2+cm-1xm-1

Moreover, let C be the product of A and B, which can be represented by Eq. (2).

()

{ } . 1-i0 , 0,1

, ...

mod)(

...mod)(mod)(mod)(

mod)(...

mod)()(

)(

1
1

2
2

1
1

0
0

1
1

2
2

1
1

0
0

1
1

2
2

1
1

0
0

mcwhere

xcxcxcxc

 P(x)xBxa

 P(x)xBxa P(x)xBxa P(x)xBxa

 P(x)xBxaxaxaxa

 P(x)xBxA

xC

i

m
m

m
m

m
m

≤≤∈
++++=












+

+++
=

++++=

=

−
−

−
−

−
−

 (2)

2.2 SCAL

A circuit whose output is encoded in an error-detecting code is called a self-checking circuit. Alternating logic
design techniques achieve fault detection capability; this is one of the time redundancy techniques. Yamamoto et
al. [33] pointed out that any combinational circuit can be made self-dual with only one extra input. The alternat-
ing logic technique can be easily extended to the multipliers and other arithmetic units, provided that the func-
tional modules are self-dual. Reynolds and Metze [34] showed that an arbitrary function G with m variables
could become a self-dual function G* with m+1 variables by setting

() ()
() . (ii)

 and , (i)

1

1

)YG(Y,yG

YGyY,G

m
*

m
*

=

=

+

+

When ym+1 is the logical value “0,” G* realizes the original function G. When ym+1 is “1,” G* performs the du-

al function G of G. Let Y* represent a group of m+1 variables (Y, ym+1). The function F*(Y*) is an SCAL circuit

if it satisfies the following condition when both alternating inputs *YY and * are applied:

() , **
f

**
f

* YG)(YG Yf, ≠∋∃∀

where f represents a stuck-at fault in G*, and *

fG denotes the function F* with an

existing fault f. A design method has been reported that provides alternating logic with self-checking capability
[34,35]. This proposed design can be extended to other arithmetic units, such as multipliers and dividers, using
combinational circuits with hardware redundancy.

3 Bit-parallel PB Multiplier

This section will discuss the traditional bit-parallel PB multiplier. Based on the above properties, the polyno-
mial basis multiplication of GF(2m) C(x)=A(x)B(x) can be represented as follows:

()

() () ()
,...

 mod
1

1210
−

−++++=

=
m

m xcxcxcc

xPxBxA

xC

.10for)2(where −≤≤∈ miGFci
Based on Horner’s rule, C(x) can then be computed as follows:

() () ()
()

BxaBxaxBaBa

Bxaxaxaa

xBxAxC

m
m

m
m

1
1

2
210

1
1

2
210

...

...
−

−

−
−

++++=

++++=

=

 (3)

Because the finite field operation needs the mod P(x) operation, it can be simplified using the following equa-

tion, Eq. (4).

Huang et al: On-line Error Detection in a Polynomial Basis Multiplier over GF(2m)

49

1

1
2

210 ... −
−++++= m

m
m xpxpxppx (4)

Let xB mod P be as shown in Eq. (3).
xB = b0x +b1x2+b2x3+⋅⋅⋅+ bm-2xm-1+bm-1xm
=b0x +b1x2+b2x3+⋅⋅⋅+ bm-2xm-1+bm-1(p0+p1x+p2x2+⋅⋅⋅+pm-2xm-2+pm-1xm-1)
= bm-1 p0+(bm-1p1+b0)x+(bm-1p2+b1)x2+⋅⋅⋅+(bm-1pm-1+ bm-2)xm-1. (5)

Hence, let Bi = xiB = 1
1

2
210 −

−++++ mi
m

iii xxx ββββ  and its binary representation be expressed as follows,

where 10for }1,0{ −≤≤∈ mji
jβ . Based on Eq. (5), Bi can be directly obtained from the previously computed

result of Bi-1, as shown in Eq. (6).

() () () 11
21

1
1

21
12

1
1

1
01

1
10

1
1

1

m-i
mm

i
m

ii
m

ii
m

i
m

i

i

xpxpxpp

xB

B

−
−−

−
−

−−
−

−−
−

−
−

−

+++++++=

=

βββββββ
 (6)

Thus, the relationship between the coefficients of Bi and Bi-1 can be summed as follows:







≤≤+

=
=

−
−

−
−

−
−

 1-mj1 if

0j if
1
1

1
1

0
1
1

i
jj

i
m

i
mi

j
p

p

ββ
β

β

Thus, C can be represented as shown in Eq. (7).

{ } . and 1,-j0 , 0,1 where

, ...

...

mod

1

0

1
1

2
2

1
1

0
0

1
1

2
2

1
1

0
0


−

=

−
−

−
−

=≤≤∈

++++=

++++=

×=

m

i

i
jijj

m
m

m
m

acmc

xcxcxcxc

BaBaBaBa

 PBA

C

β

 (7)

Based on Eq. (4), the traditional bit-parallel multiplier is as shown in Figure 1.

0
0β 0

1β 0

2β 0
3β 0

2−mβ 0
1−mβ 1

0β 1

1β 1

2−mβ 1

1−mβ1

2β 1

3β
1

0
−mβ 1

2

−mβ 1

2

−
−

m

mβ 1

1

−
−

m

mβ1

3

−mβ1

1

−mβ

  
1

−=mj
  

1

=j
  

0

=j

levelm−




















2log

Fig. 1. The traditional bit-parallel multiplier.

4 The proposed bit-parallel self-checking PB multiplier

Journal of Computers Vol. 24, No. 2, July 2013

50

In this section, the proposed bit-parallel self-checking PB multiplier will be developed. The principle of the
self-checking alternating logic [33] can be modified and used as the bit-parallel multiplier with the capabilities
of on-line error detection and off-line testing. Therefore, if the bit-parallel self-checking PB multiplier is used to
design ECC, it can avoid the attack of the fault-based cryptanalysis such that this design can guarantee the data
security under the transmission process.

A bit-parallel PB multiplier with self-checking capability is easily derived from the proposed PB multiplier. A
single stuck-at fault model is assumed in this study. We have dealt with the problem of concurrent error detec-
tion in the bit-parallel PB multiplier by using an SCAL design, which includes self-dual AND gate and 3-input
XOR gate. Because a 3-input XOR gate is a self-dual gate, only a self-dual AND circuit needs to be designed.

Table 1 shows the truth table of the self-dual AND circuit, whose equation is))()((taabtbtaabtbz =++= .

Table 1. Truth table of self-dual AND circuit.

Fig. 2. Detailed circuit K with self-dual AND.

  
1

−= mj
  

1

=j
  

0

=j

levelm−




















3log

0
0b 0

1b 0
2b 0

3b
0

2−mb 0
1−mb 1

0b 1
1b

1
2−mb 1

1−mb1
2b 1

3b
1

0
−mb 1

2
−mb 1

2
−
−

m
mb

1
1

−
−

m
mb1

3
−mb1

1
−mb

Fig. 3. The SCAL PB multiplier.

Huang et al: On-line Error Detection in a Polynomial Basis Multiplier over GF(2m)

51

The truth table of the self-dual AND circuit is shown as Table 1. The self-dual characteristic can be find out in
the AND truth table. When the output z is set 1 as the input "011" and the output z is set 0 as the input "100",
these characteristics can be made the bases under the off-line testing. The results of the twice operations should
be the mutual exclusion, when "011" is as the first primary input and "100" is as the second input. It represents
that there is a fault of the AND gate if the output results are the same. Since the Figure 3 structure uses our pro-
posed cell K of Figure 2, the capability of Figure 3 owns the SCAL function such that it can make the functions
of the off-line testing and concurrent error detection. When the first clock inputs one normal value and then the
second clock inputs its backhand value during operations, there is a fault if the both outputs are the same. On the
contrary, it is under a normal operation as the both outputs to be opposite. Hence, our system can check whether
there is a fault operation in the circuit.

Two steps must be executed in sequential order: the original multiplication function, C=A×B, and the comple-
mented multiplication function. Then the results of the two steps are compared. A mismatch indicates an existing
error. The detailed execution status is depicted in Figure 3. The self-checking algorithm of the proposed PB
multiplier is described as follows:

Algorithm-MulSCAL:

/* To execute and compare both C = A × B and BAC ×= */
Step 1: Perform C = A × B;

Step 2: Perform BAC ×= ;
Step 3: Compare the result C in Step 1 with the complemented value calculated in Step 2. An error = 1 is sig-

naled if a mismatch occurs.

Lemma 1: The PB multiplier in Figure 3, containing a fault f, produces an erroneous alternating output for the

alternating input (A; A) and (B; B) iff both (A; A) and (B; B) sensitize the fault.

Proof: The circuit sensitizes the fault iff ()XC is produced instead of C(X); X sensitizes the fault

iff () ()XCXC = is produced instead of () ()XCXC = . An erroneous alternating output results iff ()XC is pro-

duced instead of C(X) and C(X) instead of ()XC , that is, iff both (A; A) and (B; B) sensitize the fault.

In the terminology of totally self-checking networks, the alternating output (C; C) is the correct code-space

output, (C;C) and (C ; C) are non-code-space outputs that are detectable, and (C ;C) is an incorrect code-space
output that is not detectable and must be avoided.

An alternating network is called a self-checking alternating network if for every fault from a prescribed set

there exists at least one input (A; A) and (B; B) that produces a non-alternating, detectable output (the self-

testing condition), and there does not exist any input (A; A) and (B; B) that produces an erroneous alternating,
non-detectable output (the fault-secure condition). In contrast to totally self-checking networks in which the self-
test condition must be met using code-space inputs only, self-checking alternating networks allow all possible

inputs of the form (A; A) and (B; B). Therefore, meeting the self-test condition is much easier; in fact, it is
equivalent to showing that the network is irredundant. In this paper, the necessary and sufficient conditions for
an alternating network to be self-checking for a fault set consisting of single stuck-at fault are derived. It is as-
sumed that the networks considered are, or can be made to be, single-line irredundant and hence self-testing;
hence, a proof that the network is self-checking then reduces to a proof that it is fault-secure. The results ob-
tained for single stuck-line-faults can sometimes be extended to certain multiple faults (e.g., unidirectional
faults), but this issue is not pursued here.

Theorem 1: The PB multiplier shown in Figure 3 is fault-secure for single faults on primary input lines, pri-

mary input fan-out branch lines, and output lines of primary inverters.

Proof: Consider a single stuck-at d fault on a primary input line ai or bi. If A or B sensitizes the fault, ai or bi

= d . But then ia or ib = d, and A or B cannot sensitize the fault. Conversely, if A or B sensitizes the fault,

then ai or bi = d , and A or B cannot sensitize the fault. So, by Lemma 1, the PB multiplier in Figure 3 is fault-
secure for single faults on primary input lines. The extension to primary input fanout branch lines and to output
lines of primary inverters is immediate.

Theorem 2: The PB multiplier in Figure 3 is fault-secure for all single faults if it is internal fanout-free.

Journal of Computers Vol. 24, No. 2, July 2013

52

Proof: Consider a single stuck-at d fault on an internal line l. (Non-internal lines are covered by Theorem 1.)

By way of contradiction, assume that the circuit is not fault-secure for that fault. Then there exists an input A or

B for which both X and X sensitize the fault and produces an erroneous alternating output. The inversion parity
of a path P is defined as the parity of the number of inverting gates encountered in tracing the path P and is
denoted by π(P).

Let Px and
x

P denote the paths sensitized from line l to the output under (A; A) and (B; B), respectively.

Then,

y(X) = d♁π(Px) and y(X) = d♁π (
x

P).

But since the PB multiplier in Figure 3 is free of any internal fanout, then there is only one path from l to the

network output; that is, Px = x
P . Hence, π(Px) =π (

x
P); therefore, y(X) = y(X) = C, say, and the non-alternating

output (C;C) is produced under (A; A) and (B; B), a contradiction.

Theorem 3: The PB multiplier in Figure 3 is fault-secure for all single faults if it is essentially inverter-free.
Proof: The proof is the same as the proof for Theorem 2, except that here π(Px)=π (

x
P) because there are no

inverters internal to the network.

Theorem 4: The PB multiplier in Figure 3 is fault-secure for all single faults if it is fault-secure for single

faults on fanout gate outputs.

Proof: Consider a stuck-line fault on an internal line l that is not a fanout gate output. (Non-internal lines are

covered by Theorem 1.) There is a unique fanout-free path segment from l either to the network output or to a
fanout gate. For the former case, the network is fault-secure by Theorem 2. For the latter case, again by Theorem
2, a sensitized stuck-at fault on l can only produce a non-alternating signal, say (C;C), at the fanout gate output.
But this is equivalent to a stuck-at d fault on the fanout gate output for which the network is fault-secure by
hypothesis.

Theorem 5: The PB multiplier in Figure 3 is fault-secure for all single faults if, for any fault on a fanout gate

output that is sensitized to the network output, all sensitized paths to the network output have the same inversion
parity.

Proof: Consider a fault on the output of a fanout gate. If an erroneous output is to be produced as a result of

the fault, by Lemma 1 both X and X must sensitize the fault. However, by hypothesis, for any such (A; A) and

(B; B) the inversion parities of all sensitized paths to the network output are equal, and, as before, a detectable
non-alternating output is produced. The circuit must therefore be fault-secure for any fault on a fanout gate out-
put. By Theorem 4, it is then fault-secure for all single faults.

The significance of Theorems 4 and 5 lies in the fact that to examine the fault-secureness of a functional reali-

zation that does not fit the classification of Theorems 2 and 3 (i.e., one that is neither free of internal fanouts nor
essentially inverter-free), it is only necessary to simulate the network behavior under faults on fanout gate out-
puts and to compare it with the fault-free behavior to determine if an erroneous alternating output is produced.
Because such a simulation can be done quickly, an optimal network design program, such as Davidson’s branch
and bound program, which produces irredundant and hence self-testing networks, could be modified to produce
an optimal self-checking realization from a dualized functional specification, without significantly degrading the
program performance. For some network structures not of the type considered in this section, the fault-secure
property can be deduced by inspection, and, therefore, a simulation of the network behavior is not required.
Corollary 1 specifies the conditions.

Corollary 1: The PB multiplier in Figure 3 is fault-secure for all single faults if, for every fanout gate, all

paths to the network output have the same inversion parity.

The circuit is a multi-output network, and then the conditions for self-checking can be relaxed, because a
multi-output network is fault-secure for all single faults, provided that for every input for which an erroneous
alternating output is produced on one output line, a non-alternating output is produced on at least one other out-

Huang et al: On-line Error Detection in a Polynomial Basis Multiplier over GF(2m)

53

put line. Therefore, multi-output realizations in which logic is shared between outputs should be simpler than
those in which each output is produced with independent logic.

Any single stuck-at fault occurring in the proposed SCAL PB multiplier is detectable by our proposed algo-
rithm. All unidirectional faults are also detectable by the algorithm because unidirectional faults will cause, on
output, either a normal logical value 0 and faulty logical value 1, or a normal logical value 1 and faulty logical
value 0, but not both, for all inputs. Thus, SCAL circuits can detect all faults that are unidirectional in nature.

5 Comparison

 In this section, the proposed bit-parallel PB multiplier is compared with other existing similar multipliers. The
case of general irreducible polynomial for P(x) is firstly compared, and then the cases of trinomial and pentano-
mial are compared in order. Table 2 lists the space complexities of bit-parallel PB multipliers with and without
self-checking capability. The proposed SCAL PB multiplier requires about 33% of the space overhead that is
required by the original PB multiplier. Compared to the PB multipliers with error detection capability proposed
by Bayat-Sarmadi and Hasan [36], our proposed SCAL PB multiplier requires approximately 8.5% less space
overhead. Most importantly, our proposed SCAL PB multiplier retains regular structure.

Table 2 compares the results of the proposed PB multiplier with those of a normal bit parallel PB multiplier
and that of Bayat-Sarmadi and Hasan [36]. CMOS VLSI technology [37] is used to evaluate the space complexi-
ty.

Table 2. Space complexities of bit-parallel PB multipliers.

 Original bit-parallel PB

multiplier
(Fig. 1)

Bayat-Sarmadi and Hasan
[36]

The proposed SCAL PB
multiplier (Fig.3)

Error detection No Yes Yes
Off-line testing No No Yes

2 input AND gate m2 m2 m2
2 input OR gate 0 0 m2
2 to 1 Multiplex 0 0 m2

2 input XOR gate m2-m m2+4m+12 0
3 input XOR gate 0 0 ≤(m/2)m

Latch 0 2m2+m 0
Transistor counts 6m2+12(m2-m) 26 m2+56m+48 18 m2+12(m/2)m
Time complexity

  x

A

Tm

T

))1(log2(2 −+
+

  x

A

Tmm

T

))(log5(2
2 −+

+

  muxx

A

TTm

T

++
+

33)log3(

Note: TA = propagation delay of 2-input AND gate, Tx = propagation delay of 2-input XOR gate, T3x = propaga-
tion delay of 3-input XOR gate, Tmux = propagation delay of 2-to-1 multiplexer.

(A) Case of trinomial
A design example of the proposed PB multiplier generated by trinomials is discussed here. An irreducible

polynomial consisting of three non-zero terms, such as)0(1)(>>++= nmxxxP nm is called a trinomial of

degree m. If the proposed PB multiplier is generated by such an irreducible trinomial 1)(++= nm xxxP , Eq. (4)

can be rewritten as shown as Eq. (8).

() 11
2

111
1

1
1

11
2

1
0

1
1

1

−−
−

+−−
−

−
−

−−
−

−−
−

−

++++++++=

=
mi

m
ni

n
ni

n
i
m

ni
n

ii
m

i

i

xbxbxbbxbxbb

xB

B

 (8)

Based on equations (1), (4), and (8), the output result C of the proposed PB multiplier of GF(24) generated by

P(x) = x4+x3+1 can be obtained by Eq. (9).

c0 = a0b0+a1b3+a2(b2+b3)+a3(b1+b2+b3)
c1 = a0b1+a1b0+a2b2+a3(b3+b2) (9)
c2 = a0b2+a1b1+a2b0+a3b3
c3 = a0b3+a1(b2+b3)+a2(b1+b2+b3)+a3(b0+b1+b2+b3)

Journal of Computers Vol. 24, No. 2, July 2013

54

The proposed SCAL bit-parallel PB multiplier with P = x4+x3+1 is shown in Figure 3. Two steps must be ex-
ecuted in sequential order: 1) the original multiplication function: C=A×B, and 2) the complemented multiplica-
tion function, BAC ×= . The results of both steps are then compared, and a mismatch indicates an existing error.
The detailed execution status is depicted in Figure 4. The self-checking algorithm for the proposed PB multiplier
is described as follows:

Algorithm-MulSCAL:

/* To execute and compare both C=A×B and BAC ×= */
Step 1: Perform C=A×B.

Step 2: Perform BAC ×= .
Step 3. Compare the result C of Step 1 with the complemented value calculated in Step 2. An error = 1 is sig-

naled if a mismatch occurs.

Based on Theorems 1 through 5, Algorithm-MulSCAL can detect any single stuck-at fault occurring in any

cell K of the proposed SCAL PB multiplier shown in Figure 4.

Fig. 4. An example of the proposed SCAL bit-parallel PB multiplier with m = 4.

Table 3 lists the space complexities of bit-parallel PB multipliers using irreducible trinomials with and with-

out self-checking capability. As compared to Bayat-Sarmadi and Hasan’s multiplier [36] for m=233 of NIST
(National Institute of Standards and Technology) suggested values, the proposed SCAL PB multiplier saves
about 8 % space complexity.

Table 3. Space complexities of bit-parallel PB multipliers using irreducible trinomials.

 The traditional bit-
parallel PB multiplier
using trinomial

Bayat-Sarmadi and
Hasan [36]

The proposed SCAL PB
multiplier using trinomial
(Fig. 4)

On-line error de-
tection

No Yes Yes

Off-line error de-
tection

No No Yes

2-input AND
gate

m2 m2 m2

2-input OR gate 0 0 m2
2-to-1 Multiplex-

er
0 0 m2

2-input XOR gate m2 m2+4m+12 0
3-input XOR gate 0 0 ≤(m/2)m

Latch 0 2m2+m 0
Transistor count 6m2+12(m2) 26 m2+56m+48 18 m2+12(m/2)m

Huang et al: On-line Error Detection in a Polynomial Basis Multiplier over GF(2m)

55

m=233 971610 1424610 1304334
Time complexity

  x

A

Tm

T

))1(log2(2 −+
+

  x

A

Tmm

T

))(log5(2
2 −+

+
  muxx

A

TTm

T

++
+

33)log3(

(B) Case of pentanomial

Pentanomials are also important because there are many values of m for which pentanomials exist. Let

1)(123 ++++= nnnm xxxxxP be an irreducible pentanomial over GF(2m), where m>n3>n2>n1>1. The irreduci-

ble pentanomial is one kind of low-weight irreducible polynomial over GF(2m). The design example of the pro-
posed bit-parallel PB multiplier generated by a pentanomial is discussed here. As the generated pentanomial

1)(123 ++++= nnnm xxxxxP is used, Eq. (4) can be reformed and is shown as Eq. (10).

()

()
()

...

...

11
2

131
3

31
13

1
1

131
23

121
2

21
12

1
1

121
22

111
1

11
1

1
1

111
21

1
0

1
1

−−
−

+−−
−

−
−

−−
−

+−

−
−

−
−

−−
−

+−

−
−

−
−

−−
−

−−
−

+++++++

+++++

++++++=

mi
m

ni
n

ni
n

i
m

ni
n

ni
n

ni
n

i
m

ni
n

ni
n

ni
n

i
m

ni
n

ii
m

i

xbxbxbbxbxb

xbbxbxb

xbbxbxbbB

 (10)

Based on Eqs. (3) and (10), the output result C of the proposed PB multiplier of GF(27) to be generated by

P(x) = x7+x5+x3+x+1 can be obtained and is shown as Eq. (11).

c0 = a0b0+a1b6+a2b5+a3(b4+b6)+a4(b3+b5)+a5(b2+b4)+a6(b1+b3),
c1 = a0b1+a1(b0+b6)+a2(b5+b6)+a3(b4+b5+b6)+a4(b2+b3+b4+b5)+a6(b2+b3+b4+b5),
c2 = a0b2+a1b1+a2(b0+b6)+a3(b5+b6)+a4(b4+b5+b6)+a5(b2+b3+b4+b5)+

a6(b2+b3+b4+b5),
c3 = a0b3+a1(b2+b6)+a2(b1+b5)+a3(b0+b4)+a4(b3+b6)+a5(b2+b5+b6)+ (11)

a6(b1+b2+b4+b5),
c4 = a0b4+a1b3+a2(b2+b6)+a3(b2+b5)+a4(b4+b6)+a5(b3+b6)+a6(b2+b5+b6),
c5 = a0b5+a1(b4+b6)+a2(b3+b5)+a3(b2+b4)+a4(b1+b3)+a5(b2+b6)+a6(b1+b6),
c6 = a0b6+a1b5+a2(b4+b6)+a3(b3+b5)+a4(b2+b4)+a5(b1+b3)+a6(b2+b6).

The design structure of our proposed SCAL multiplier can be applied to the example of the pentanomial P(x)

= x7+x5+x3+x+1. P(x) = x7+x5+x3+x+1 includes 72 multiplication operations. It requires calculation of the
items b4+b6,b3+b5,b2+b4, b0+b6,b0+b6,b4+b5+b6,b2+b3+b4+b5, b0+b6, b5+b6, b2+b6, b1+b5, b0+b4, b2+b5+b6,

b1+b2+b4+b5, b2+b5, ahead of the addition operation. Before entering the parallel addition, the sum can reduce
the complexity of the calculations because each case of a pentanomial will require this operation. Moreover, to
obtain the final result, our proposed structure needs m2 K cells to implement the multiplication and additions to
get the summation of each column of the matrix. We use the example of P(x) = x7+x5+x3+x+1 to illustrate this.
It requires 60 addition operations.

Table 4 lists the space complexities of bit-parallel PB multipliers using irreducible pentanomial with and
without self-checking capability. The proposed SCAL PB multiplier using irreducible pentanomial requires
approximately 33% of the space overhead that is required by the original PB multiplier [38]. But, the proposed
multiplier provides the design-for-testing capability.

Table 4. Space complexities of bit-parallel PB multipliers using irreducible pentanomials.

 The bit-parallel PB multiplier

using pentanomials [38]
The proposed SCAL PB multi-
plier using pentanomials

On-line error de-
tection

No Yes

Off-line error de-
tection

No Yes

2-input AND gate m2 m2
2-input OR gate 0 m2

2-to-1 Multiplex-
er

0 m2

2-input XOR gate m2+m-1 0
3-input XOR gate 0 ≤(m/2)m+3m

Latch 0 0
Transistor count 18m2+12m-12 18 m2+12(m/2)m+3m

m=163 480186 643035

Journal of Computers Vol. 24, No. 2, July 2013

56

Time complexity   xA TmT))1(log3(2 −++   muxxA TTmT +++ 33)log3(

5 Conclusions

We have presented a novel bit-parallel PB multiplier over GF(2m) with on-line error detection using the alter-
nating logic approach. The bit-parallel PB multiplier with on-line error detection and off-line testing capability is
firstly proposed in this study. It modifies the logic gate structure to have self-dual and self-checking properties,
and no extra gate is required. Therefore, regular structure is retained for the proposed PB multiplier and our
approach is suitable for VLSI and FPGA implementation. Although the proposed SCAL PB multiplier still re-
quires 33% of the space overhead while comparing with existing PB multipliers with on-line error detection, the
proposed PB multiplier has fault-secure property. We describe that the traditional bit-parallel PB multiplier how
to be modified to have the self dual characteristic. Then self-checking capability is included in the proposed PB
multiplier. Therefore, our design is not only to meet the ability of concurrent error detection in operation but also
make the off-line testing easy. Thus, the proposed design with alternating logic strategy can be easily extended
to other arithmetic units, such as multiplicative inverter and dividers.

Acknowledgment

The authors would like to thank anonymous referees and the editor for their carefully reading the paper and
for their great help in improving the paper. The authors also like to thank the National Science Council of the
Republic of China, for partially financial supports to this research under Contract No. NSC 101-2221-E-231-024.

References

[1] F.J. MacWilliams, N.J.A. Sloane, The theory of error-correcting codes, North-Holland, Amsterdam, 1977.

[2] R. Lidl, H. Niederreiter, Introduction to finite fields and their applications, Cambridge University Press, New York, 1994.

[3] R.E. Blahut, Fast algorithms for digital signal processing, Addison-Wesley, Reading, MA, 1985.

[4] I.S. Reed, T.K. Truong, "The use of finite fields to compute convolutions," IEEE Trans. Inf. Theory, Vol. IT-21, No.2, pp.

208–213, 1975.

[5] T.C. Bartee, D.J. Schneider, "Computation with Finite Fields," Inf. Computer, Vol. 6, pp. 79–98, 1963.

[6] E.D. Mastrovito and T. Mora, "VLSI Architectures for Multiplication over Finite Field GF(2m)," in Proceedings of 6th

International Conference on Applied Algebra, Algebraic Algorithms, and Error-Correcting Codes (AAECC-6), pp. 297–

309, July 1988.

[7] T. Itoh, S. Tsujii, "Structure of Parallel Multipliers for a Class of Fields GF(2m)," Information and Computation, Vol. 83,

pp. 21–40, 1989.

[8] C.-Y. Lee, E.H. Lu, J.Y. Lee, "Bit-parallel Systolic Multipliers for GF(2m) Fields Defined by All-one and Equally-spaced

Polynomials," IEEE Trans. Computers, Vol.50, No.5, pp. 385–393, May 2001.

[9] W.-T. Huang, C. H. Chang, C. W. Chiou, S.-Y. Tan, "Non-XOR Approach for Low-cost Bit-parallel Polynomial Basis

Multiplier over GF(2m)," IET Information Security, Vol. 5, No. 3, pp. 152-162, Sep. 2011.

[10] C. W. Chiou, C.-Y. Lee, Y.-C. Yeh, "Multiplexer Implementation of Low-complexity Polynomial Basis Multiplier in

GF(2m) Using All One Polynomial," Information Processing Letters, Vol. 111, No. 3.1, pp.1044-1047, Jan. 2011.

[11] C.-Y. Lee, C.W. Chiou, "Efficient Design of Low-complexity Bit-Parallel Systolic Hankel Multipliers to Implement

Multiplication in Normal and Dual Bases of GF(2m)," IEICE Transactions on Fundamentals of Electronics, Communica-

tions and Computer Science, Vol. E88-A, No. 11, pp. 3169–3179, Nov. 2005.

[12] C.W. Chiou, C.-Y. Lee, "Multiplexer-based Double-Exponentiation for Normal Basis of GF (2m)," Computers & Securi-

ty, Vol. 24, No. 1, pp. 83–86, 2005.

Huang et al: On-line Error Detection in a Polynomial Basis Multiplier over GF(2m)

57

[13] H. Wu, M. A. Hasan, I. F. Blake, "New Low-complexity Bit-parallel Finite Field Multipliers Using Weakly Dual Ba-

ses," IEEE Trans. Computers, Vol. 47, No. 11, pp.1223-1234, Nov. 1998.

[14] J.-H. Wang, H.W. Chang, C.W. Chiou, W.-Y. Liang, "Low-complexity Design of Bit-parallel Dual Basis Multiplier

over GF(2m)," IET Information Security, Vol. 6, No. 4, pp. 324-328, Dec. 2012.

[15] Y.Y. Hua, J.-M. Lin, C.W. Chiou, C.-Y. Lee, Y. H. Liu, "A Novel Digit-serial Dual Basis Systolic Karatsuba Multiplier

over GF(2m)," Journal of Computers, Vol. 23, No. 2, pp. 80-94, July 2012.

[16] J.L. Massey, J.K. Komura, Computational Method and Apparatus for Finite Field Arithmetic, U.S. Patent 4,587,627,

1986.

[17] E. Biham and A. Shamir, "Differential Fault Analysis of Secret Key Cryptosystems," in Proceedings of Crypto 1997,

Lecture Notes in Computer Science, Vol. 1294, pp. 513–525, 1997.

[18] C.W. Chiou, C.-Y. Lee, "Multiplexer-Based Double-Exponentiation for Normal Basis of GF (2m)," Computers & Secu-

rity, Vol. 24, No. 1, pp. 83-86, 2005.

[19] C.W. Chiou, T.-P. Chuang, S.-S. Lin, C.-Y. Lee, J.-M. Lin, Y.-C. Yeh, "Palindromic-like Representation for Gaussian

Normal Basis Multiplier over GF(2m) with Odd Type-t," IET Information Security, Vol. 6, No. 4, pp. 318-323, Dec. 2012.

[20] C.W. Chiou, H.W. Chang, W.-Y. Liang, C.-Y. Lee, J.-M. Lin, Y.-C. Yeh, "Low-complexity Gaussian Normal Basis

Multiplier over GF(2m)," IET Information Security, Vol. 6, No. 4, pp. 310-317, Dec. 2012.

[21] C.-Y. Lee, C. W. Chiou, "Scalable Gaussian Normal Basis Multipliers over GF(2m) Using Hankel Matrix-vector Repre-

sentation," Journal of Signal Processing Systems for Signal Image and Video Technology, Vol.69, No.2, pp.197-211,

Nov. 2012.

[22] T.-P. Chuang, C. W. Chiou, S.-S. Lin, C.-Y. Lee, "Fault-tolerant Gaussian Normal Basis Multiplier over GF(2m)," IET

Information Security, Vol. 6, No. 3, pp. 157-170, Sep.. 2012.

[23] R. Azarderakhsh, A. Reyhani-Masoleh, "Low-complexity Multiplier Architectures for Single and Hybrid-double Multi-

plications in Gaussian Normal Bases," IEEE Trans. Computers, Vol.62, No.4, pp.744-757, April 2013.

[24] D. Boneh, R. Demillo, R. Lipton, "On the Importance of Checking Cryptographic Protocols for Faults," in Proceedings

of EUROCRYPT’ 97, Lecture Notes in Computer Science, Vol. 1233, pp. 37–51, 1997.

[25] J. Kelary, B. Schneier, D. Wanger, C. Hall, "Side-channel Cryptanalysis of Product Ciphers," in Journal of Computer

Security, Vol. 8, No. 2-3, pp. 141–158, Sep. 2000.

[26] S. Fenn, M. Gossel, M. Benaissa, D. Taylor, "On-line Error Detection for Bit-Serial Multipliers in GF(2m)," Journal of

Electronic Testing: Theory and Applications, Vol. 13, pp. 29–40, 1998.

[27] A. Reyhani-Masoleh, M.A. Hasan, "Error Detection in Polynomial Basis Multipliers over Binary Extension Fields," in

Proceedings of CHES 2002, Lecture Notes in Computer Science, Vol. 2523, pp. 515–528, 2003.

[28] A. Reyhani-Masoleh, M.A. Hasan, "Fault Detection Architectures for Field Multiplication Using Polynomial Bases,"

IEEE Trans. Computers, Vol. 55, No. 9, pp. 1089–1103, 2006.

[29] S. Bayat-Sarmadi, M.A. Hasan, "On Concurrent Detection of Errors in Polynomial Basis Multiplication," IEEE Trans.

VLSI Systems, Vol. 15, No. 4, pp. 413–426, 2007.

[30] C.W. Chiou, "Concurrent Error Detection in Array Multipliers for GF(2m) Fields," Electronics Letters, Vol. 38, No. 14,

pp. 688–689, July 2002.

[31] C.-Y. Lee, C. W. Chiou, and J.-M. Lin, "Concurrent Error Detection in a Polynomial Basis Multiplier over GF(2m),"

Journal of Electronic Testing: Theory and Applications, Vol. 22, No. 2, pp. 143–150, 2006.

[32] C.W. Chiou, C.-Y. Lee, A. W. Deng, J.-M. Lin, "Concurrent Error Detection in Montgomery Multiplication over

Journal of Computers Vol. 24, No. 2, July 2013

58

GF(2m)," IEICE Trans. on Fundamentals of Electronics, Communications and Computer Science, Vol. E89-A, No. 2,

pp. 566–574, 2006.

[33] H. Yamamoto, T. Watanabe, Y. Urano, “Alternating Logic and Its Application to Fault Detection,” in Proceedings of

1970 IEEE Int. Computing Group Conference, pp. 220–228, 1970.

[34] D. A. Reynolds, G. Metze, “Fault Detection Capabilities of Alternating Logic,” IEEE Trans. Computers, Vol. 27, No. 12,

pp. 1093–1098, 1978.

[35] S. E. Woodard, “Design of Digital Systems Using Self-checking Alternating Logic,” Ph.D. Thesis, University of Illinois

at Urbana-Champaign, U.S.A., 1977.

[36] S. Bayat-Sarmadi, M.A. Hasan, “Concurrent Error Detection in Finite-field Arithmetic Operations Using Pipelined and

Systolic Architectures,” IEEE Trans. Computers, Vol. 58, No. 11, pp. 1553–1567, 2009.

[37] R. J. Baker, CMOS-circuit, Design, Layout, and Simulation, 2nd Edition, IEEE Press; 2004.

[38] J. L. Mana, R. Hermida, F. Tirado, “Low Complexity Bit-parallel Multipliers Based on A Class of Irreducible Pentano-

mials,” IEEE Trans. VLSI Systems, Vol. 14, No. 12, pp. 1388–1393, 2006.

