
Design and Implementation of a Secure Service-Oriented
Workflow Platform

Tao-Ku Chang Jyun-Siao Huang

Department of Computer Science and Information Engineering, National Dong Hwa University

Hualien, Taiwan, ROC

{tkchang, m9921029}@mail.ndhu.edu.tw

Received 12 April 2013; Revised 31 August 2013; Accepted 28 October 2013

Abstract. The current focus of enterprises on automating processes has led to the extensive application of
workflow management systems. To integrate traditional workflow management systems with others has pre-
viously been difficult; however, rapid development of Web services has solved the communication problems
among heterogeneous platforms and allows for the efficient integration of legacy systems. This paper em-
phasizes the design and implementation of a secure service-oriented workflow platform effectively integrat-
ing heterogeneous platforms. Moreover, current system architectures could adopt the developed WS-
Security application framework rapidly and inexpensively.

Keywords: Service-oriented architecture, Workflow, Security

1 Introduction

The application system in an organization or enterprise may have been developed over many years, and the
resulting diversity in the types of database system and system platform can impede the interoperability between
system services. Considerable manpower is needed to convert data accessed from different systems. For exam-
ple, if one department of an organization wants to use the system service of another department, the personnel in
charge of each system need to coordinate diverse message exchange formats, which can require a considerable
amount time and money.

This situation is especially difficult when sharing service information and integrating systems among different
enterprises, due to the likelihood of greater differences in the application systems used by different organizations.
One of the current solutions is to employ Web-services [1] techniques that provide a standard means of interop-
eration between different software applications running on diverse platforms and/or frameworks.

The exploding popularity of the Internet has brought strong growth in e-commerce, and prompted more enter-
prises to employ web services and WfMSs (workflow management systems) [2][3][4][5] to support their pro-
cesses. The first goal is to integrate WfMSs between organizations and consider how to support access control,
since services may have to access data maintained by other sides. This paper describes the design of a secure
service-oriented workflow platform that can design workflow and integrate heterogeneous application systems.

The remainder of this paper is organized as follows: Section 2 gives an overview of relevant technologies and
standards, Section 3 presents the proposed secure service-oriented workflow platform, Section 4 describes the
syntax of a secure service-oriented WfMS document, Section 5 presents our implementation and experimental
results, and Section 6 draws conclusions about the work described in the paper.

2 Related Techniques and Standards

Fig. 1 shows the service-oriented architecture of Web services. First, the service requester generates request
message X in SOAP [6] format according to the WSDL [7] document obtained from the service provider or
service broker (UDDI [8]) (note that the WSDL is an XML-based [9] language for describing Web services and
how to access them). The service provider replies by verifying if the service requester is authorized to obtain the
service according to its authentication policy. It then performs the operations specified in X and returns the exe-
cution results in another SOAP document, R. Note that SOAP is not the only message format for implementing
the SOA. In this paper, SOAP is used in the proposed system. A high-level language such as the Web Services
Business Process Execution Language (WS-BPEL) [10] is the standard for assembling a set of discrete services
into an end-to-end process flow, radically reducing the cost and complexity of process integration initiatives.

Chang and Huang: Design and Implementation of a Secure Service-Oriented Workflow Platform

3

Service
requester

Service
provider

Authentication
policy

WSDL

Request
SOAP

Response
SOAP

X

R

Service
broker
(UDDI)

WSDL

Internet

Fig. 1. Service-oriented architecture

However, these standards do not provide a security mechanism for protecting enterprise information when da-
ta are being transferred. Security is one of the main concerns when developing business applications, and this
has prompted the development of security specifications for Web services. This involves applying techniques
such as encryption or adding digital signatures to XML documents in the SOAP. The W3C proposed a specifica-
tion for XML document encryption and the handling of digital signatures in 2002: XML Signature Syntax and
Processing [11] and XML Encryption Syntax and Processing [12]. The international organization OASIS is
starting to establish a standard for Web-services security, with the draft being called WS-Security [13]. The
eXtensible Access Control Markup Language (XACML) is a standard defines a declarative access control policy
language implemented in XML and a processing model describing how to evaluate authorization requests ac-
cording to the rules defined in policies [14].

A workflow is a computational model of computer-supported cooperative work [15]. Business tasks are mod-
eled as workflow processes that are automated by the WfMS. The workflow model (also referred to as a work-
flow process definition) is the computerized representation of the business process. It defines the starting and
stopping conditions of the process, activities in the process, and control and data flows among these activities.

The Workflow Management Coalition (WfMC) developed a reference model for a WfMS. Fig. 2 depicts the
workflow reference model that specifies the generic components and interfaces that form a WfMS, including
workflow engines, process definition tools, workflow client applications, a worklist handler, and administration
and monitoring tools. There are five interoperable interfaces for the generic components; these define five criti-
cal software component interfaces from the viewpoint of functionality to promote standardization of message
exchange and implement interoperability between different processes [16].

Workflow Enactment
Service Other Workflow

Enactment ServicesAdministration
& Monitoring

Tools

Process
Definition

Tools

Client Worklist
Apps Handler

Tool Agent

Invoked
Applications

Process Definition Import/Export

Typical
Web Services

Interoperability

Workflow
Engines

Workflow
Engines

Fig. 2. Workflow reference model [15]

3 The Proposed Secure Service-Oriented Workflow Platform

Fig. 3 shows the system architecture for the proposed WfMS platform. The process definition designer first uses
the process definition tool to design the process definition and then stores it in a database. The user then con-
nects to the workflow server and sends a request, and generates a new process as described in the secure service-
oriented WfMS document. When other participants in the process log into the system, they will acquire the
worklist and select the work item to execute its task.

A complete workflow should include the following execution steps:
(1) Analyze the goal of the workflow. This involves determining the numbers of participants and arranging

tasks for each of them. Workflow developers use process definition tool to design a workflow, then
generate the secure service-oriented WfMS document and store it in a database.

Journal of Computers Vol. 24, No. 4, January 2014

4

(2) Start a new workflow. Users will connect to the workflow server and select the workflow that is going
to be processed. This system will acquire the corresponding WfMS document and place an assigned se-
rial number in the document’s header. The workflow engine reads the initial processing arguments from
the workflow control data and starts a new workflow. The workflow system records the result in the
same WfMS document, and follows the security definition from this document to encrypt and embed-
ded the digital signature therein; the activity has then finished.

(3) The system will generate a new version of the secure service-oriented WfMS document after the execu-
tion of an activity. Meanwhile the system will determine and notify the next participant from the defini-
tion of transitions and activities to start the next workflow process.

(4) Steps 1 to 3 are repeated until the workflow process is successfully completed. If the process is aborted
by any abnormal condition, this will be recorded in the log in the database.

Human

Component

Application

Database

Document

Security
Policy

Container
(XACML)

Database

…

Web Services
Security Definitions

Client Tool

User

Monitoring Tool

Supervisor

Workflow Engine

Transition Controller

Process
Controller

Workflow
Parser

Status Monitor

Worklist
Handler

Process Definition
Tool

Process Definition
Designer

Web Services
Invoker

Process
Definition

Execution
Log

Service

Workflow
Control Data

Fig. 3. The Secure service-oriented WfMS architecture

The many applications provided by Web services nowadays make it necessary to ensure the security of data
transmission. However, adding a new security mechanism to the client or server requires modifications to the
programs in the system. We implemented security authentication for the service-oriented WfMS and developed
a WS-Security application framework that can be deployed to the service that implements WS-Security without
changing the existing Web-services architecture. The operation process is shown in Fig. 4.

Service
Requestor

Service
Provider

SOAPs

(Xs)

Encryption

Signature

Server-side WS-Security Framework

Key
Database

WS-Security
API

Handler Chains

Security
Handler

Authentication
Handler

SOAP

SOAP

Client-side WS-Security
Framework

Security
Handler

WS-Security
API

Key
Database

SOAP
(R)

1

SOAP
(X)

2

6

SOAP

5

SOAPs

(Rs)

Encryption

Signature

4 3 SOAP
(X)

Fig. 4. Web services security

In this security model, Web services invoker will check the security policy described by XACML to deter-
mine whether user can access Web services or not. Moreover, the service requester and service provider have to
write the client-side and server-side security handler programs, respectively. The security handler programs
invoke subroutines in the WS-Security API to interpret the security policy stored in the database. The API pro-
vides a convenient way for the proxy programs to set up the required keys. After all the required keys are ob-
tained, the proxy program can then instruct the WS-Security API to secure or desecure SOAP messages. A re-
quest message from a workflow participant to execute Web services will be captured by the security handler,
which will start the encryption and add a digital signature to the SOAP message to ensure the confidentiality and
integrity of data exchange. The authentication handler will then authenticate the identity of the participant to
ensure that only authenticated people can access the targeted services.

There are six steps for securely invoking Web services in the proposed operational model:

Chang and Huang: Design and Implementation of a Secure Service-Oriented Workflow Platform

5

(1) The service requester sends SOAP document X to the client-side proxy.
(2) The client-side security handler invokes routines in the WS-Security API to generate secured SOAP

document Xs.
(3) The server-side security handler receives Xs and invokes the WS-Security API to desecure it. The dese-

curing process includes decrypting cipher data in Xs and verifying all the digital signatures embedded in
Xs. The WS-Security API supports obtaining the identity of the service requester from the embedded
digital signatures. It can then check the obtained identity against its authentication policy. The dese-
cured document X is sent to the service provider.

(4) The response message is stored in SOAP document R, and this is sent to the server-side security handler.
(5) The server-side security handler invokes routines in the WS-Security API to generate secured SOAP

document Rs.
The client-side proxy receives Rs and invokes routines in the WS-Security API to desecure it. In addition to

decrypting the cipher data in Rs, the digital signatures embedded in Rs should be verified.

4 The Syntax of the Secure Service-Oriented WfMS Document

The syntax of a secure service-oriented WfMS document is designed according to the above-mentioned security
requirements as well as the architecture shown in Fig. 3. The structure of a secure service-oriented WfMS doc-
ument consists of five parts (see Fig. 5): the header, workflow definition, security definition, and digital signa-
ture. The root element of the example WfMS document has the start tag <WfMS:workflow xmlns: =
"http://www.WfMS.ndhu.edu.tw">.

Digital Signature Section

Activity Results Section

Security Definition Section
Key definition section

Algorithm definition section

Security pattern section

Workflow Definition Section

Header Section

Fig. 5. The secure service-oriented WfMS document structure

 Header Section
Each secure WfMS document represents a workflow process. When a user creates a new workflow, the work-

flow engine will assign a new serial number to the secure WfMS document and place this in the header section.

 Workflow Definition Section
The workflow definition section provides a basic definition of the process, including its activities and transi-

tions. Each activity describes the operations performed by related members in this workflow. Each operation is
represented by certain information tools (e.g., a user interface for creating forms), and it reads, creates, or modi-
fies the content recorded in an XML document. Transitions are defined by writing down the process of the
workflow. When a user finishes executing its activity, the workflow engine will automatically follow the transi-
tion definition to determine which activities should be performed next. In this paper, WS-BEPL [10] is used in
workflow definition.

 Security Definition Section

The security definition section has three parts: the key definition, algorithm definition, and security pattern.
The key definition describes the link, name, type, and location of the key. The algorithm definition is for encryp-
tion and signature. The security pattern describes the adopted combination of key and algorithm definitions.

 Digital Signature Section

The digital signature definition section defines when and how to construct digital signatures. The generated
signature is stored in this section.
We specify syntax of security and digital signature definitions that are shown in the appendix A and B in the
Backus-Naur Form in this paper. In a secure WfMS document, the workflow and security definition sections are

Journal of Computers Vol. 24, No. 4, January 2014

6

generated when a workflow is created and cannot be changed. The workflow must follow the definition to per-
form the required activities. Some information will be added in the secure WfMS document during the execution
of the workflow process.

5 System Implementation and Experiment Results

Based on the infrastructure mentioned in Section 3, we use ASP.NET to develop a secure service-oriented
WfMS platform to help a user design workflow process. Fig. 6 illustrates the operation of our workflow plat-
form implementation.

To create a new workflow, users establish an organization structure using organization designer tool on this
platform (see Fig. 7). According to goal of the workflow, flow designers start to design the flow of activities in
a workflow. Our platform also provides a GUI-based tool for users to construct it (see Fig. 8). Before executing
a workflow, users can perform flow simulation to check whether the flow could work successfully or not. Fig. 9
shows the snapshot of simulation processes.

Wired /
Wireless
Wired /
Wireless

Internet /
Intranet

Internet /
Intranet

System Client

Desktop/NB/Mobile

System Administrator Flow Designer

Form Designer

Flow
Task Panel

Flow Admin Console
Flow Monitor

Flow OC DesignerFlow Admin Console
Flow Monitor

Flow Process Designer

Vs.net
Form Designer

Flow
SDK Suite

Flow routing Engine

Another Application System

Web Service/Excel/Text/Rfc…

Fig. 6. The secure service-oriented WfMS platform implementation

Fig. 7. The organization designer tool

Chang and Huang: Design and Implementation of a Secure Service-Oriented Workflow Platform

7

Fig. 8. The flow designer tool

Fig. 9. The flow simulation

The workflow platform first reads an XML document to obtain the tree structure of the target XML document.
The user sets up the security pattern for the elements and attributes in the editor’s graphical interface. The user
can generate a security pattern by selecting the available keys and algorithms, or input the related information of
keys and algorithms manually.

Table 1. The times required to encrypt and decrypt the body of the SOAP message

Number of
encrypted
elements

Average time (in seconds)

100 bytes* 500 bytes*

Encryption Decryption Encryption Decryption

10 0.6048 0.6750 0.6471 2.0538

20 0.6183 1.2096 0.7308 3.9798

30 0.6471 1.7865 0.8577 5.9913

40 0.6777 2.3346 0.9702 8.4942

50 0.7038 2.8683 1.1259 10.026

60 0.7317 3.4452 1.2933 12.1365

70 0.7731 3.9519 1.5885 17.0577

80 0.8298 4.5846 1.8846 16.6923

90 0.8856 5.1606 2.2482 18.9567

100 0.9567 5.7096 2.6154 21.6036

*Number of bytes to be encrypted in an element

We conducted experiments to evaluate the performance of the WS-Security API presented in Section 3. All
the experiments were performed on a PC with a 3.4-GHz Intel Core i7-2600K processor, 4GB of RAM, the MS

Journal of Computers Vol. 24, No. 4, January 2014

8

Windows 7 operating system. All the encryptions and digital signatures used the RSA algorithm that implement-
ed RSASSA-PKCS1 and RSASSA-PKCS1 with MD5 [17]. SOAP document had 101 elements: a tree plus its
root node with 100 child element nodes, where each child node was associated with a text node. Each text node
comprised either 100 or 500 bytes. Table 1 lists the execution times for encrypting and decrypting the body of
the SOAP message, and Table 2 lists the times required for signing and verifying.

Table 2. The times required to sign and verify the body of the SOAP message

Number of
encrypted
elements

Average time (in seconds)

100 bytes* 500 bytes*

Sign Verify Sign Verify

10 0.3240 0.0981 0.3231 0.1125

20 0.3654 0.1269 0.3798 0.1404

30 0.3942 0.1548 0.4644 0.2106

40 0.4563 0.1692 0.5481 0.2664

50 0.4779 0.1971 0.6606 0.3375

60 0.5211 0.2529 0.7596 0.4365

70 0.5769 0.2394 1.0413 0.6327

80 0.5904 0.3096 1.2510 0.8433

90 0.6615 0.3375 1.5336 1.0827

100 0.7317 0.4077 1.8279 1.3077
*Number of bytes to be encrypted in an element

6 Conclusion

We have designed a WfMS based on the reference model proposed by the WfMC that employs service-oriented
architecture to effectively integrate heterogeneous platforms. The developed access control mechanism
(XACML) and WS-Security application framework can be rapidly applied to an existing system architecture and
increase the security of enterprise information exchange between stakeholders and customers. Moreover, the
experimental results presented here demonstrate that applications exhibit good performance.

Acknowledgement

This work was supported in part by the National Science Council, Taiwan, under grant NSC-102-2221-E-259-
015. The author wishes to acknowledge the comments offered by the anonymous reviewers.

References

[1] "Web Services Architecture," W3C Working Group Note 11 February 2004. http://www.w3.org/TR/ws-arch/.

[2] D. Georgakopoulos, M. Hornick, A. Shet, "Overview of Workflow Management: From Process Modeling to Workflow

Automation Infrastructure," Distributed and Parallel Databases, Vol. 3, No 2, pp. 119-153, 1995.

[3] M. Shi, G. Yang, Y. Xiang, S. Wu, "Workflow Management Systems: A Survey," in Proceedings of International

Conference Communication Technology Proceedings, IEEE Press, 1998.

[4] W. Du and A. Elmagarmid, "Workflow Management: State of the Art vs. State of the Products," in Proceeding NATO

Advanced Study Institute on Workflow Management Systems, 1997.

[5] "Workflow Reference Model Diagram 2010," Workflow Management Coalition Standard, http://www.e-

workflow.org/standards/index.htm.

Chang and Huang: Design and Implementation of a Secure Service-Oriented Workflow Platform

9

[6] "SOAP Version 1.2," W3C Recommendation 24 June 2003. http://www.w3.org/TR/2003/REC-soap12-part0-

20030624/.

[7] "Web Services Description Language (WSDL) Version 2.0," W3C Candidate Recommendation 27 March 2006.

http://www.w3.org/2002/ws/desc/.

[8] Universal Description, Discovery and Integration (UDDI).

http://www.oasisopen.org/committees/uddi-spec/.

[9] "Extensible Markup Language (XML) 1.0 (Fourth Edition)," W3C Recommendation 16 August 2006.

http://www.w3.org/TR/xml/.

[10] "Web Services Business Process Execution Language Version 2.0," OASIS Standard, April, 2007.

[11] T. Imamura, B. Dillaway, and E. Simon, "XML Encryption Syntax and Processing Version 1.1," W3C Recommenda-

tion, 11 April 2013, http://www.w3.org/TR/xmlenc-core/.

[12] M. Bartel, J. Boyer, B. Fox, B. LaMacchia, and E. Simon, "XML-Signature Syntax and Processing W3C Recommen-

dation," 10 June 2008. http://www.w3.org/TR/xmldsig-core/.

[13] "Web Services Security: SOAP Message Security 1.1 (WS-Security 2004)," OASIS Standard Specification, 1 February

2006. http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf.

[14] T. Moses, "eXtensible Access Control Markup Language (XACML) Version 3.0," OASIS Standard, 2013.

[15] Computer Supported Cooperative Work (CSCW), Springer Netherlands, ISSN: 0925-9724.

[16] Workflow Handbook, Workflow Management Coalition, 2006.

[17] "PKCS #1 v2.2: RSA Cryptography Standard," RSA Laboratories, October 27, 2012. http://www.emc.com/emc-

plus/rsa-labs/pkcs/files/h11300-wp-pkcs-1v2-2-rsa-cryptography-standard.pdf

Appendix:

A. Syntax of security definition section
Key Definition

<key_definition [key_link="Key Link"]>

<key_name>Name of Key</key_name>

[<key_type>String*</key_type>]

Download Protocol {Download Protocol}

</key_definition>

Download Protocol

<download_protocol

location="URL adr"

[security_pattern_name="Security Pattern Name"]

[pki_certificate="PKI name"]

[verify_certificate="Yes_or_No"]

{proxy="URL adr {,URL adr}"}/>

Key Link String

Name of Key String

PKI_nameX.509|PGP|SDSI

Yes_or_NoY|Yes|YES|N||No|NO

Algorithm Definition  Built-in Algorithm | Downloadable Algorithm

Built-in Algorithm

<algorithm_definition [algorithm_link="Algorithm Link"]

use="(SECURITY|SIGNATURE|DIGEST)">

<algorithm_id>

Algorithm id

Journal of Computers Vol. 24, No. 4, January 2014

10

</algorithm_id>

[<cipher_format XML_text="(NO|YES)"/>]

</algorithm_definition>

Downloadable Algorithm

<algorithm_definition [algorithm_link="Algorithm Link"]

use="(SECURITY|SIGNATURE|DIGEST)">

<algorithm_name> Name of Algorithm </algorithm_name>

[<type> Type of Algorithm </type>]

[<version> Version of Algorithm </version>]

[<property Attribute Lists />]

[<cipher_format XML_text="(NO|YES)"/>]

Algorithm Download Protocol {Algorihtm Download Protocol}

</algorithm_definition>

Algorithm Link  String

Algorithm id  String

Name of Algorithm  String

Type of Algorithm  String

Version of Algorithm  String

Algorithm Download Protocol 

<download_protocol linking_method="DDL"

 [security_pattern_name="Security Pattern Name"]

Jar_file_location="URL adr"

Serialization_file_location="URL adr"

{proxy="URL adr {,URL adr}"}/> |

<download_protocol linking_method="plug-in"

 [security_pattern_name="Security Pattern Name"]

location="URL adr" Attribute Lists

{proxy="URL adr {,URL adr}"} ostype="OS type"/>

Attribute Lists  Attribute {Attribute}

Attribute  Attribute Name="String"

Attribute Name  String

OS type  Linux | windows 2000 | windows XP | Sun Solaris

Security Pattern Definition 

<dsl:security_pattern name="Security Pattern Name"

encrypted_format="W3C|DSL">

<key_infomation>

<encryption_key>

Encryption Key Definition

</encryption_key>

<decryption_key>

Decryption Key Definition

</decryption_key>

</key_infomation>

<security_algorithm>

Algorithm Definition* |

<algorithm_definition algorithm_link="Algorithm Link"/>

</security_algorithm>

</dsl:security_pattern>

Security Pattern Name  String

Encryption Key Definition 

Key Definition* | <key_definition key_link="Key Link"/>

Decryption Key Definition 
Key Definition* | <key_definition key_link="Key Link"/>

Chang and Huang: Design and Implementation of a Secure Service-Oriented Workflow Platform

11

B. Syntax of digital signature definition section
Digital Signature Definition 

<dsl:digital-signature

name="Signature Name"

time="When to Put Signature">

<key_infomation>

<sign_key>

 Key_definition*|

<key_definition key_link="Key_Link">

</sign_key>

<verify_key>

Key_definition |

<key_definition key_link="Key_Link">

</verify_key>

</key_infomation>

Signature Algorithm Definition

<digest-element>

Digest Item Lists

</digest-element>

</dsl:digital-signature>

Signature Algorithm Definition

Integrated Algorithm | Separated Algorithm

Integrated Algorithm

<signature_algorithm>

(Algorithm Definition*|

 <algorithm_definition algorithm_link="Algorithm Link"/>)

</signature_algorithm>

Separated Algorithm

<security_algorithm>

(Algorithm Definition |

 <algorithm_definition algorithm_link="Algorithm Link"/>)

</security_algorithm>

<digest_function>

(Algorithm Definition |

 <algorithm_definition algorithm_link="Algorithm Link"/>)

</digest_function>

<digest-element>

When to Put SignatureBEFORE|AFTER

Digest Item Lists  Digest Item {,Digest Item}

Digest Item  <digest-item Select Expression scope=(element|content)/>

