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Abstract. In the human nervous system, sensory inputs are coded in a sparse manner where only small num-
bers of neurons are active at a given time, thus the sparse coding is reasonable to be as a plausible model of 
the auditory cortex. In this paper, we propose a biologically inspired feature extraction method for speaker 
verification based on sparse coding. When encoding the speech data using sparse coding model, the learned 
dictionary has the similar characteristics with simple cell receptive fields of auditory neurons and the sparse 
coding coefficients simulate the response of the auditory cortex neuron. Moreover, every dictionary is learned 
from every speaker training sample, so that it has more individual information of the speaker and is useful for 
discriminating different speakers with less dictionary atoms. And based on human auditory masking effect, a 
neuron which performs a Max Pooling operation on the pooled inputs responds to the strongest one of its in-
puts and inhibits other weaker inputs. The robustness of the proposed method is better in terms of a strategy 
to represent natural sounds. The experimental results show that the proposed method outperforms the baseline 
system on two typical corpuses. 
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1   Introduction 

Speaker verification is a sort of biometrics technology which aims to determine whether a person’s claimed 
identity is correct or whether the person is an imposter. This technology is widely used in many identity valida-
tion fields such as the entrance guard system, telephone banking, and database accessing. At present, the main 
research focuses on solving the mismatch problem between training and testing samples. Different techniques 
have been proposed to address this problem, such as the feature extraction technique [1], the model-based trans-
formation technique [2, 3] and score normalization technique [4, 5]. The extraction of effective feature represen-
tation plays a crucial role in solving the mismatch problem. As the current principal feature extraction technique, 
Mel-Frequence Cepstral Coefficient (MFCC) has been successfully used in the speaker verification and achieves 
the desired performance in the ideal environments, but its performance is deteriorated rapidly in the noisy situa-
tions [6]. Therefore, it is necessary to explore a new robust feature extraction technique for the speaker verifica-
tion in different environments. 

It is well known that the human auditory system possesses remarkable abilities to detect, separate, and recog-
nize the speech, the music, and other environmental sounds. Therefore, humans outperform the best machine 
audition systems by almost any measure, and it is an attractive idea to build a system that emulates speaker 
recognition in cortex. Psycho-physiological investigations [7, 8] indicate that the acoustic stimulus only need 
activate a small number of cortical neurons in the brain. Based on this evidence, the sparse coding theory is de-
veloped to encode acoustic signals efficiently, so that it can be used to search for the most compact representa-
tion of signals in terms of the linear combination of atoms in an overcomplete dictionary [9]. There are two 
methods to learn the dictionary for the sparse coding including the data model (e.g., wavelets [10], curvelets [11] 
and Gabor functions [12]) and the data-driven approaches (e.g., k-SVD [13] and online dictionary [14]). When 
standard atoms are chosen based on the data model, the dictionary atoms do not have any particular semantic 
meaning. In contrast, the dictionary learned by data-driven approaches has more flexibility to represent natural 
signals, which have been successfully used in various applications [9, 15-17]. For instance, one exemplar dic-
tionary can be created by composing the training samples of all classes, and the classification is performed by 
comparing with the norm values or the residual errors of sparse coding coefficients between the unknown speak-
er and object speaker [15]. However, it has much redundancy by using the training samples as the dictionary. In 
addition, if the training samples are huge, the computation will be an intractable problem. Therefore, a more 
compact and/or robust dictionary need be learned from the training samples. Another exemplar dictionary using 
the GMM mean supervectors of all training speaker utterance can also be applied to the speaker verification by 
comparing the norm values of sparse coding coefficients between the unknown speaker and object speaker [15, 
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18]. However, the speaker models are constructed by a large number of mixtures Gaussian models. As a result, 
such large size dictionaries are not feasible for the greedy search with limited computational resources. On the 
other hand, when training samples are clustered to obtain parameter estimations, the computation can be reduced, 
but the valuable information of individual training samples will be lost which affects the performance. Therefore, 
it is helpful to track the individual information of training samples. In this paper, every dictionary is learned from 
every training sample, so that it has more individual information of the speaker and is useful for discriminating 
different speakers with less dictionary atoms. The learned dictionary has the similar characteristics with simple 
cell receptive fields of auditory neurons and the sparse coding coefficients simulate the response of the auditory 
cortex neuron when encoding the speech data. Based on the human auditory masking effect, Max Pooling proce-
dure on the sparse coding coefficients is well established. For audio signals, both biological and psychoacoustic 
evidence suggest that humans have a pooling mechanism within critical bands and loudness pooling (cube root 
of intensity) across bands [19], so the robustness of the proposed method is high in terms of emulating speaker 
recognition in the cortex. 

2   Speaker Verification Based on Sparse Representation  

Since humans outperform the best machine auditory systems by nearly any method, the construction of artificial 
recognition systems has been an attractive idea that emulates our auditory recognition in cortex. If the artificial 
system could solve what the auditory system does, the recognition system would be an effective method in un-
derstanding object recognition. In human nervous system, sensory information is coded in a sparse manner 
where only small numbers of neurons are active at a given time so that the sparse coding is effective to be as a 
believable model of the auditory cortex. At present, the sparse coding has been prevalent in the neural sensory 
systems. A sparse coding is a high dimensional vector that includes most zeros and a few non-zero entries. How-
ever, only a few non-zero entries in the sparse coding provide not only a powerful representation that can capture 
complex structures in data, but also a computational efficiency. Because the sparse representation has naturally 
discriminative abilities, it has been exploited in various areas of the pattern recognition such as the face recogni-
tion, texture classification and speaker recognition. For instance, the face recognition is based on the sparse rep-
resentation classification (SRC) with an exemplar dictionary which is created by arranging the training samples 
of all classes as columns. The test data is represented as the sparse linear combination of the atoms (columns) of 
the dictionary. The test speaker is assigned to the class which is associated to the atom of the highest non zero 
coefficient in the sparse vector. Later the similar exemplar dictionary with SRC is created using GMM mean 
supervectors [15] and the total variability i-vectors [20] for speaker verification task. Different from exemplar 
dictionaries, the learned dictionaries not only outperform the examples but also are more data-independent [21].  

In this paper, the key design for our proposed method based on learned dictionaries has two aspects. One is 
that every dictionary is learned from every training sample, so that it has more individual information of the 
speaker and is useful for discriminating different speakers with less dictionary atoms. Secondly, using the audito-
ry models to emulate speaker recognition in the cortex, our system follows the biologically inspired features 
which use human masking effect in auditory cortex because the learned dictionary has the similar characteristics 
with simple cell receptive fields of auditory neurons. The sparse coding coefficients simulate the response of the 
auditory cortex neuron to encode the speech data and the Max Pooling operation on the sparse coding coeffi-
cients is established based on human masking effect in auditory cortex. The human masking effect means that 
the weak signal is inaudible in the vicinity of a strong signal where a neuron which performs a Max Pooling 
operation on the pooled inputs corresponds to the strongest one of its inputs, and inhibits other weaker inputs. 
Therefore, our proposed approach is strongly robust to noises based on the auditory models.  

2.1   Auditory Masking Effect  

Auditory masking is an interesting psychoacoustic phenomenon of the human hearing system. In the presence 
of a strong sound, many weaker sounds get masked [22]. In Fig. 1, the auditory masking effect phenomenon is 
described, where x axis represents the frequency range of the human ear and y axis represents the sound pressure 
level. Normal human ears have a dynamic frequency range from about 20 to 20000 Hz. In a quiet environment, 
the human ear can perceive the hearing threshold which is the minimum sound pressure to different frequencies 
sound. When the masker exits at about 500 Hz, the hearing threshold is changed and three sounds at about 380 
Hz, 680 Hz and 720 Hz are masked. i.e., these sounds will not be audible. Because the auditory masking effect 
exits, three masked sounds are lower than the masking threshold and higher than the hearing threshold, which are 
not perceived. 
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Fig. 1. Auditory masking effect 

Masking is used to investigate the auditory system’s ability to separate the components of a complex sound. 
For example, if two sounds of two different frequencies exit at the same time, they can be heard separately rather 
than a combination sound, which is known as frequency selectivity. Because of the cochlea filtering, a complex 
sound is split into different frequencies components which cause a spike at a specific place on the basilar mem-
brane of the cochlea. These components are coded independently on the auditory nerve which transmits sound 
information to the brain.   

2.2   Sparse Coding of Speech  

We define a speech frame feature sequence NK
N RxxX ×∈= ],...,[ 1  with T

Knnnx ]x,...,[x1= where there are 
Nn ,...,1= , the signal dimension K, the number N of the speech frames and the transposition T. 

MK
M RddD ×∈= ],...,[ 1  ( MK < ) consisting of M atoms is the base (dictionary)  with T

Kmmmd ]d,...,[d1=  in 
which there are Mm ,...,1= , m∀  and M

m Rd ∈  with 1|||| 2 =md and NM
N R ×∈= ],...,[ 1 ααα is the sparse cod-

ing coefficient.  
The sparse coding [23] is an unsupervised model in which the unlabeled input data X  are represented the lin-

ear combinations of these basis vectors md  with the additive noise ε  and  
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Sparse coding is designed to study the production model )|( DXp , so that the distribution )|( DXp  is as 

close as possible to the empirical distribution of the input data )(* Xp . The production model )|( DXp  is de-

composed into  

                                                 ααααα dpDXpdDXpDXp )(),|()|,()|(  ==                               (2) 

If the noise ε  follows the Gaussian white noise distributions, there is  
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where 2δ  is the variance of the noise, Z  is the normalized constant and 
2

2|||| αDX −  is the residue of the linear 

representation. In order to get the distribution )|( DXp , it needs to specify the prior distribution )(αp . Assum-

ing the sparse coefficients statistically independent, the prior probability can be represented as  
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The specified coefficient distribution is 

                                                        
)(1

)( mS
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p αβ

β
α −=                                                                             (5) 

where the function )( mS α  determines the shape of the prior distribution, β  controls the kurtosis degree of 

distribution and βZ  is the normalized constant. For instance, if 1=β  and )1log()(
2

mmS αα +=  are satisfied, 

)( mp α  follows the Cauchy distribution. 

   The KL-distance is used to measure the similarity between the production model )|( DXp  and the empirical 

distribution of the input data )(* Xp , where there is  

dXDXpXpdXXpXpdX
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Because the empirical distribution )(* Xp  is constant and the KL-distance is minimum, this is equivalent to 

maximizing the log-likelihood of )|( DXp in which there is 

                        ><= )|(logmaxarg* DXpD
D

                                  (7) 

Where, >< )|(log DXp  denotes expectation over the input data.  

However, the integral over α  to obtain  )|( DXp  is generally intractable, so we can approximate its integral 

with the maximum value of )|( DXp  and obtain an approximate solution    

   ><>=<= )(),|(logmaxmaxarg)|(logmaxmaxarg
'* αα

αα
pDXpDXpD

DD
          (8) 

Finally, the energy function is defined with 

                                                      )(),|(log)|,( ααα pDXpDXE −=                                                        (9) 

Since maximizing the log-likelihood )|( DXp  is equivalent to minimizing the energy function, the equation (8) 

is equivalent to 

                           ><= )|,(minminarg
'* DXED
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α

α
                              (10) 

The energy function is further expanded with 

                                                  
=

+−=
M

m
mSDXDXE

1

2

2
)()|,( αλαα                                                          (11) 

where βδλ 22=  and the energy function contains two parts. The first part is the reconstruction error, where the 
base functions represent the input data by the low reconstruction error. The second part is the penalty of sparse 
coefficient, which is used to constrain the sparsity of coefficients. 
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2.3   Dictionary Learning 

In order to learn the bases (dictionaries) MK
M RddD ×∈= ],...,[ 1 , the initial dictionary is given which consists of 

random M samples from the training sets. The process of the iteratively learned dictionary D includes two steps: 
sparse coding phase and dictionary update phase. 

2.3.1  Sparse Coding Phase 

Fixing a dictionary D, the best coefficient matrix ],...,[ 1 Nααα =  can be found. The representation coefficients 

are computed by orthogonal matching pursuit regression [24] 

                                               1

2

2
minarg nnn Dx αλαα

α
+−=                                                                (12) 

2.3.2  Dictionary Update Phase 

After the sparse coding is done, a second stage is performed to search for a better dictionary. This process up-
dates one column at a time and the sparse coding dictionary can be updated by optimizing the equation 
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where nD  is the new dictionary, 1−nD  is the updated dictionary and λ  is a regularization parameter.  

In this paper, we assume that there are I training classes belonging to I different classes. And 
NK

N

i RxxX ×∈= ],...,[
1

 is a speech frame feature sequence of the training samples of the ith object class, where nx  

with Nn ,...,1=  is a K dimensional vector stretched by the nth speech frame of the ith object class. 
MK

M

i RddD ×∈= ],...,[ 1
 ( MK < ) consisting of M atoms is the dictionary of ith object class  in which 

T

Kmmmd ]d,...,[d1=  with Mm ,...,1=  is a K dimensional vector by the mth atom of the ith object class and  md   is a 

unit column vector. A K-dimension test speech frame T
Ksssy ]y,...,y[ 1= can be well approximated by the linear 

combination of atoms in the dictionary of the ith object class. For instance, i
s

i
s Dy α=  with  

Ti
Ms

i
s

i
s

i
s ],...,,[ 21 αααα =  is the sparse coefficient of the test speech frame sy  in the dictionary iD  of the ith object 

class. I dictionaries are learned with Ii ,...,1= , where each of them represents a class. The object function of 

determining iD  is 

                                                     

}||||||{||minarg 1

2

2
,

iiii

iiD

DX αλα
α

+−
 

  s.t. 1=m

T

mdd                                                  (14) 

Where ],...,[ 1 N

i ααα =  is the representation matrix of iX  over iD , and the parameter λ  is a positive scalar 

number that balances the 2l -norm and the 1l -norm terms. The 1l  penalty yields a sparse solution for iα  of the ith 

object class, but there is no analytic link between the value of λ  and the corresponding effective sparsity 
0|||| iα . 

In order to prevent D from being arbitrarily large which would lead to arbitrarily small values of iα , it is com-

mon to constrain its column M
mmd 1)( =  to have an 2l  norm less than or equal to one. The joint optimization of the 

dictionary iD  and the coefficients iα  of the sparse decomposition belongs to the NP-hard problem [21, 25], but 

this problem can be solved when one need be optimized and the other is fixed alternately for iD and iα . 

2.4   Calculating the Max Pooling Operation on Each Row in Sparse Coding Coefficients  

The cortical neuron system encodes the speech in a spike way. When the sound with a particular frequency is 
transmitted into the neurons, a spike is created at a specific position. While the other neuronal positions keep in 
the silence state for no response sound incentives. Based on human masking effect, the weak signal is inaudible 
in the vicinity of a strong signal. A neuron which performs a Max Pooling operation on the pooled inputs re-
sponds to the strongest one of its inputs and inhibits other weaker inputs [19]. And according to these character-
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istics of the neurons system, the spiking response of the neurons is well predicted by the Max Pooling operation. 
The Max Pooling operation can be formalized mathematically as returning the largest one of its inputs. In this 
paper, based on this Max Pooling operation and assuming the dictionary D to be pre-learned, we compute the 
following speech feature by a pooling function [26]  

                                                                 ( )iαψ=iZ
~

                                                                                     (15) 
Where iα  is the sparse coefficient of the test speech frame sequence Y in the dictionary iD  of the ith object class 

and the pooling function ψ  is defined on each row of iα . Each row of iα  corresponds to the responses of all 

the local descriptions to one specific atom in the dictionary iD  of the ith object class. We define the pooling 
function ψ  as a Max Pooling function on the absolute sparse codes 

                                                  } |||,...,||,max{|z i
mN

i
m2

i
m1

i
m ααα=                                                                (16) 

Where, i
mz  is the mth element of jZ

~
 of the ith object class, i

mnα  is the matrix element at the mth row and the nth 

column of iα with Nn ,...,1=  and Mm ,...,1= . Then, i
mz  of the ith object class is concatenated to form a feature 

vector representation  

                                                                  Ti
M

i
1

i ]z,...,z[Z
~ =                                                                               (17) 

where T denotes the transpose operation. 

2.5   Computing the Result Score 

In the evaluation process, we refer to the method in [15] by selecting J speakers for a speaker verification task, 
where the speaker selection is random but the claimed speaker is included. For each learned dictionary of J 
speakers, the test speaker can be represented as a linear combination of the learned dictionary and J groups of 
sparse coding coefficients are obtained. Then, based on the characteristics of the neurons system for the acoustic 
stimulus, the Max Pooling operation of J+1 groups are calculated. jZ

~  ( Jj ∈ ) is used to express the Max Pool-

ing operation in one of J groups of sparse coding coefficients of the jth object class, and claimZ
~  is used to express 

the Max Pooling operation of each row element in sparse coding coefficients of the claim object class, where the 
claimed speaker is coded as a linear combination of his/her claimed dictionary. Since the KL-distance [27] is a 
natural distance function to measure the similarity of two probabilities, it can be used to compute the similarity 
between two speaker models. The KL-distance score method is written as, 
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with Mm ,...,1= . If the label of R corresponds to the claimed speaker, the verification result indicates the true 

speaker, otherwise the impostor speaker. 

3   Experimental Evaluations  

In this study, the MFCC as features is used to represent the speaker characteristic of the train set and the test set. 
A more compact and individual set of dictionaries is learned from the training samples, where every dictionary is 
learned from every training sample in the train set and sparse coefficients are obtained. In NIST SRE 2003 
speaker recognition evaluation, we select J speaker dictionary models from the training dictionary models where 
the speaker selection is random but includes the claim speaker. The test feature matrix y can be represented as a 
linear combination of J speaker dictionary models respectively and obtain J speaker sparse coefficients. Then we 
calculate the Max Pooling operation on each row in sparse coefficients to concatenate to form the feature vector  

jZ
~   ( Jj ∈ ) and claimZ

~ . Finally, the KL-distance function is used to measure the similar score between jZ
~  

( Jj ∈ ) and claimZ
~ . If the speaker of the similar minimum score corresponds to the claim speaker, the test 

speaker authenticates the claim speaker. The flow chart of the overview of the proposed method is shown in 
Fig. 2. 
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claimz~jZ
~

Jj ∈ Jj ∈ Jj ∈

claimz~jZ
~

Jj ∈

 Fig. 2. The flow chart of the overview of the proposed method 
 

In order to assess the discrimination capability of the system, experiments are carried out on the subset of 
NIST SRE 2003 [28] database and the Chinese-863 database. In NIST-SRE-03, the train set is consisted of 207 
target speaker speeches and each of them is approximately 2 minutes. The test set has 1795 true trials and 17950 
false trials (I=11). In the Chinese-863 database, the train set is composed of 120 target speaker speeches and 
each of them is approximately 2 minutes. The test set has 720 true trials and 7200 false trials (I=11). All the 
speech files are the wave format at the sample frequency of 8 kHz and quantized with 16 bits. Speech streams 
are windowed into a sequence of short-term frames (20 ms long) with 10 ms overlapped data. Furthermore, the 
speech files use 34-dimensional MFCC (16+log_energy, appended with their first deltas) with the cepstral mean 
subtraction (CMS) [6] and the feature warping [6] in order to remove any factors related to the recording condi-
tions.  

The baseline system is a gender-dependent universal background model and Gaussian mixture model (GMM-
UBM) in which 1024 Gaussians are utilized. In the new feature system, the overcomplete dictionaries contain 
256 atoms and each of them is a 34-dimensional vector. The performance of the system is measured by the Equal 
Error Rate (EER) in which EER is statistical evaluation of the biometric performance of the system. Where, 
False Acceptance Rate (FAR) and False Rejection Rate (FFR) are equal. In general, the lower the EER is, the 
more accurate the biometric system is. The results on the subset of NIST SRE 2003 database are shown in Fig. 3, 
where the solid and dashed lines are used to describe the EERs of the baseline system and the new feature sys-
tem, respectively. It can be seen that the new feature system (EER with 0.74%) outperforms the baseline system 
(EER with 10.97%). 

 

 

Fig. 3. EERs of the baseline system (the solid line) and the new feature system (the dashed line) in NIST-SRE-03 database. 

 
The results of Chinese-863 database under the noisy environment (0dB) are shown in Fig. 4, where the solid 

and dashed lines are used to describe the EERs of the baseline system (27.64%) and the new feature system 
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(14.17%), respectively. The results of Chinese-863 database under the noisy environment (5dB) are shown in 
Fig. 5. The EER of the baseline system is 16.39% and that of the new system is 11.1%. In the noisy conditions, it 
can be seen that the new feature system is still better than the baseline system.  

 

 

Fig. 4. EERs of the baseline system (the solid line) and the new feature system (the dashed line) in the Chinese-863 database 
under the noisy environment (0dB). 

 

 

Fig. 5. EERs of the baseline system (the solid line) and the new feature system (the dashed line) in the Chinese-863 database 
under the noisy environment (5dB). 

 
In order to descript the degree of performance improvement where the results of our proposed system are 

compared with those of the baseline system, we define relative error rate. Relative error rate is defined as | 
EERbaseline system - EERproposed system | / EERbaseline system *100%. On the subset of NIST SRE 2003 database, relative 
error rate is 93.25%. On the subset of Chinese-863 2003, relative error rate equals 48.73% under the noisy envi-
ronment (0dB), and it is 32.28% under the noisy environment (5dB). Such results imply that our approach is 
strongly robust to noises. 
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4   Conclusions 

In this paper, we propose a biologically inspired feature extraction for speaker verification. According to the 
acoustic stimulus only activating a small number of cortical neurons in the primary auditory cortex and auditory 
masking effect, we use the Max Pooling operation of each row in sparse coding coefficients as the feature to 
express the strongest one of its inputs of every neuronal response (every atom in the dictionary) for the speaker 
verification. In the ideal and noise environments, the experimental results using this new feature system outper-
form those of the baseline system. This new feature system will have more important applications in the identity 
validation fields of the speaker verification such as the entrance guard system, telephone banking and database 
accessing. 
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