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Abstract. A simple, highly efficient intra prediction algorithm to reduce the computational complexity of 
H.264/AVC High Profile is proposed. The algorithm combines two methods. The first method is a quant-based 
block-size selection decision that is based on the sum of the quantization AC coefficients among intra 8 × 8 
mode predictions, combined with an error adjustment to select either intra 4 × 4 or intra 16 × 16 mode 
predictions. The second method is a novel direction-based prediction mode decision that is used to reduce the 
possible prediction modes for the rate-distortion (RD) optimization technique. Our experimental results 
demonstrate that the proposed algorithm reduces the encoding time by approximately 54% compared with that 
needed for an exhaustive search using the joint model reference software. The peak signal-to-noise ratio 
degradation is negligible, and the bit rate increment is minimal. Furthermore, the results show that our 
algorithm achieves a significant improvement in both computation performance and RD performance as 
compared with the existing algorithms. 
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1   Introduction 

The H.264/Advanced Video Coding (AVC) standard [1], also known as MPEG-4 Part-10 AVC, was developed by 
the Joint Video Team (JVT). JVT is a group of video coding experts from the ITU-T Video Coding Experts Group 
(VCEG) and the ISO/IEC Moving Picture Experts Group (MPEG). This standard significantly improves the 
coding performance, yielding a shorter bit rate and operating at the same peak signal-to-noise ratio (PSNR) as the 
previous video coding standards. As compared with MPEG-4, H.263, and MPEG-2, H.264/AVC can save up to 
39%, 49%, and 64% of the bit rate, respectively [2]. 

The H.264/AVC standard adopts a number of advanced coding tools, such as variable block sizes, multiple 
reference frames, multiple intra prediction modes, rate-distortion optimization (RDO), and exhaustive search 
decision [2]. In inter mode coding, a macroblock (MB) can be divided into 16 × 16, 16 × 8, 8 × 16, 8 × 8, 8 × 4, 4 
× 8, and 4 × 4 blocks for motion estimation. In intra mode coding, an MB can be divided into intra 16 × 16 (I16 
MB), intra 8 × 8 (I8MB, High Profile only [2-3]), and intra 4 × 4 (I4MB) blocks for intra prediction. In intra-mode 
coding, there are nine prediction modes for I4MB and I8MB and four prediction modes for I16MB. In the RDO 
technique, H.264/AVC defines the rate-distortion (RD) cost function as follows [4-5]: 
 
   ,                                 (1) 
 
where QP is the quantization parameter; SSD denotes the sum of the squared difference between s and c, which is 
the distortion metric; s and c indicate the original block and its reconstructed block, respectively; MODE denotes 
an MB mode; λ is a Lagrange multiplier that weighs the influence of both distortion and bit rate in the RD cost 
function; and R represents the number of bits associated with the currently selected MB mode MODE. 

To achieve the best coding performance, the RDO technique compares all possible combinations of modes to 
find the minimum RD cost. Unfortunately, this exhaustive search process results in drastic computational 
complexity [6-7]. Therefore, the development of fast algorithms that reduce computational complexity and 
preserve video quality and bit rate, as close as possible to those of an exhaustive search, has become the primary 
factor for practical H.264/AVC coding. 

In general, the coding performance of inter mode coding is superior to intra mode coding because inter mode 
coding offers a shorter bit rate. However, intra mode coding is essential for scene changes, light condition changes, 
the appearance of a new object, and error recovery. A number of algorithms have been previously presented to 
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reduce the computational complexity of intra mode coding. These algorithms can be classified into two categories: 
block-size selection decision and fast prediction mode decision. 

For block-size selection decision, a smaller block size prediction mode (I4MB) is generally more suitable for 
MBs with complex texture, while a larger block size prediction mode (I16MB) is more suitable for smooth MBs. 
For example, Yu et al. [8] and Huang et al. [9] used the variance classification of texture complexity to filter out 
I4MB or I16MB mode prediction. Wei et al. presented a method that uses the variance of DC coefficients to 
eliminate the I4MB or I16MB prediction mode [10]. Lin et al. [11] used the sum of absolute low-frequency 
components of a discrete cosine transform (DCT) block of an MB as a flatness degree, which is used to select the 
I4MB or I16MB prediction mode. In another study, Lim et al. [12] used the variance of an inner-8 × 8 sub-block of 
an MB as a threshold to select either the I4MB or I16MB prediction mode. Zhang et al. [27] presented an algorithm 
that using DC ratio to select only one or two block types in 4 × 4, 8 × 8 and 16 × 16 intra prediction instead of three 
of them. 

For fast prediction mode decision, many fast intra prediction mode methods have been proposed. To reduce 
computational complexity, these methods can be divided into two types. One type modifies the match criterion to 
reduce the RD cost. For example, in [13], Tseng et al. proposed an enhanced RD function that combines the sum of 
absolute integer-transformed differences (SAITD) as a distortion and a rate predictor to obtain the approximate 
rate for I4MB prediction. Lee et al. [14] proposed a mode decision algorithm based on the sum of absolute 
transformed differences (SATD) that incorporates both SATD and the variance information into the RDO mode 
decision method, and presented an improved algorithm for their own algorithm [11]. 

The other type employs edge direction detection to select a small part of prediction modes for RDO calculations. 
For example, Pan et al. [15] proposed a fast intra prediction algorithm that extracts image features using Sobel 
edge operators and selects the predictor according to their statistics. Wang et al. exploited the features of the edge 
histogram descriptors used in MPEG-7 to detect the dominant edge direction in order to reduce the possible 
prediction modes [16]. Tsai et al. [17] calculated the gradient of four selected pixels of a block to extract the 
orientation of the block. 

Furthermore, Tsai et al. [18] proposed two direction detection algorithms by computing sub-block and pixel 
direction differences. Kim et al. presented an adaptive prediction method that is based on the variance of the block 
boundary pixels [19]. Quan et al. [20] presented an algorithm that used the ratio of the variance along the 
horizontal direction to that along the vertical direction to select a small part of prediction modes. Adibelli et al. [21] 
proposed a technique that performs a small number of comparisons among the current block’s neighboring pixels 
prior to the intra prediction process. Zeng et al. [22] proposed an algorithm to reduce the number of prediction 
modes according to their Hadamard distances and prediction directions. Huang et al. [9] presented an algorithm 
based on [16] by adding the most probable mode (MPM) to the algorithm. Lim et al. [12] used the similarity of the 
reference pixels to restrict the search of the prediction modes. 

In this study, two additional efficient methods that reduce the computational complexity of H.264/AVC High 
Profile are proposed. The first method is a quant-based block-size selection decision and the second is a novel 
direction-based prediction mode decision. These methods form a highly efficient intra prediction algorithm. 

The rest of this paper is organized as follows. In Section 2, intra mode coding in H.264/AVC is reviewed. The 
proposed algorithms are described in Section 3. Section 4 presents and compares the experimental results, and 
Section 5 presents the conclusions.  

2   H.264/AVC Intra Prediction Overview 

The intra prediction algorithm predicts the pixels in an MB using the pixels in the available neighboring blocks. 
For the luminance (luma) component of an MB, a 16 × 16 predicted luma block is formed by performing intra 
prediction for each 4 × 4 luma block in the MB and for the 16 × 16 MB. There are nine prediction modes for each 
4 × 4 luma block and four prediction modes for a 16 × 16 luma block. A mode decision algorithm is then used to 
compare the 4 × 4 and 16 × 16 predictions and to select the best luma prediction mode for the MB. In general, 4 × 
4 prediction modes are selected for highly textured regions, while 16 × 16 prediction modes are selected for flat 
regions. 

Nine 4 × 4 luma prediction modes are designed in a directional manner. A 4 × 4 luma block consisting of pixels 
a–p is shown in Fig. 1. The pixels A–M belong to the neighboring blocks and are assumed to be already encoded 
and reconstructed; therefore, they are available in the encoder and decoder to generate a prediction for the current 
MB. Each 4 × 4 luma prediction mode generates 16 predicted pixel values using some or all of the neighboring 
pixels A–M, as shown in Fig. 2. The arrows indicate the directions of prediction in each mode. The predicted pixels 
are calculated by a weighted average of the neighboring pixels A–M for each mode, except mode2 (DC) which is 
the average of the pixels A-M. In the I16MB prediction block, a uniform prediction is performed for all luminance 
components of an MB using four prediction modes, as shown in Fig. 3. 

The intra prediction mode for the 8 × 8 luma block has been adopted in H.264/AVC High Profile and is known 
as the fidelity range extensions (FRExt) [23]. The I8MB prediction modes are the same as the I4MB prediction 
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modes, except that the block size of I8MB is an 8 × 8 matrix. Because the high profile is primarily targeted at 
providing significant improvements in the coding efficiency for higher-fidelity video material [24] and our target is 
high-resolution video sequences, we focus on the high profile in this study. 

 

Fig. 1. Labelling of prediction samples (4 × 4) 

 

Fig. 2. Intra 4 × 4 luma prediction modes 

 

Fig. 3. Intra 16 × 16 luma prediction mode 

3   Proposed Algorithm 

As shown in Fig. 4, in the H.264/AVC normal procedure, an intra frame performs intra prediction to select the best 
intra mode, and an inter frame performs intra prediction after motion estimation. Figure 5 shows a flowchart of our 
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H.264/AVC compliant intra encoder. The blue boxes in Fig. 5 form a quant-based block-size selection decision to 
filter out I4MB prediction or I16MB prediction depending on the pre-calculated information obtained from I8MB 
prediction. The two red boxes are fast intra mode prediction decisions for I4MB and I8MB predictions. Because 
I16MB prediction has only four prediction modes and is significantly faster than I4MB and I8MB predictions, 
therefore, we remain I16MB prediction to the normal process. 

 
Fig. 4. H.264 encoder flowchart 

 
Fig. 5. H.264 compliant intra encoder flowchart 

3.1   Quant-based block-size selection decision 

In H.264/AVC High Profile, the additional integer 8 × 8 DCT is used for I8MB prediction. As shown in Fig. 6, 
after DCT, the upper left element is referred to as the DC coefficient, which represents the average of the original 
I8MB prediction. All other elements are referred to as the AC coefficient, which represents the variance across the 
8 × 8 block. The AC coefficient provides a very good method for classifying texture images [9, 14]; the more 
complex the texture, the larger the AC coefficient.  

In our algorithm, we exploit the AC coefficient characteristics for block size selection, represented by blue 
boxes in Fig. 5. First, the I8MB prediction is processed. Then, the sum of the absolute AC coefficients from the 
I8MB prediction is used to determine either the I4MB or I16MB prediction. In H.264/AVC, multiplication scaling 
(part of the DCT) is integrated into the quantization process, as shown in Fig. 7. The sum of absolute AC 
coefficients in the middle of the quantizer from four optimal I8MBs is summarized as follows: 

     QauntACsum = .        (2) 

This has two advantages: (1) No time-consuming operations are needed to calculate QuantACsum ; the only 
operation required is to summarize the absolute AC coefficients, and (2) QuantACsum considers the QP; that is 
applicable to a variety of different values of QP. 

As the first step, we assume that QuantACsum of all I4MB, I8MB, and I16MB are normal distributions, as shown 
in Fig. 8. In the figure, the average of QuantACsum is assumed to be a perfect adaptive threshold to select I4MB or 
I16MB prediction. If QuantACsum is greater than the threshold, I4MB prediction is selected; otherwise, I16MB 
prediction is selected. We initialize the threshold to QuantACsum after accomplishing the first I8MB prediction. 
Then, when either I4MB or I16MB prediction is completed, we update the threshold to the average of QuantACsum 
if I8MB prediction is the optimal mode. Our first algorithm to update the threshold is summarized in Algorithm 1. 

As the first step, we assume that QuantACsum of all I4MB, I8MB, and I16MB are normal distributions, as shown 
in Fig. 8. In the figure, the average of QuantACsum is assumed to be a perfect adaptive threshold to select I4MB or 
I16MB prediction. If QuantACsum is greater than the threshold, I4MB prediction is selected; otherwise, I16MB 
prediction is selected. We initialize the threshold to QuantACsum after accomplishing the first I8MB prediction. 
Then, when either I4MB or I16MB prediction is completed, we update the threshold to the average of QuantACsum 
if I8MB prediction is the optimal mode. 
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Fig. 6. Integer 8 × 8 DCT 

 

 
Fig. 7. Summarize the absolute quantization AC coefficients 

 

Fig. 8. Distribution of QuantACsum for I4MB, I8MB, and I16MB 

Line 1 in Algorithm 1, total_number is initialized to 0. In line 2 (indicate the first red box in Fig. 5), the RD cost 
(I8MB_rdcost) and best mode (I8MB_best_mode) for I8MB can be obtained in the normal I8MB prediction 
process, the extra computation is to calculate QuantACsum. Line 3 indicates the diamond box in Fig. 5, the threshold 
(Th) is initialized to QuantACsum when first run. Line 4-9 perform the I4MB prediction process that has shown in the 
second red box in the Fig 5, I4MB_rdcost and I4MB_best_mode denote the RD cost and the best mode for I4MB, 
respectively. Similarly, Line 11-16 perform the I16MB prediction process (the black box in the Fig 5), 
I16MB_rdcost and I16MB_best_mode denote the RD cost and the best mode for I16MB, respectively. Finally, 
Line 18-19 is to update the threshold (the blue box in the Fig 5), and Quant_total is initial to 0.  

We applied Algorithm 1 (which updates the threshold for block size selection) to the JVT reference software 
(version JM13.2) [25] for four test sequences with a QP ranging from 16 to 32 to check the hit rate (HR), which 
was found to be comparable with that obtained by the variance-based algorithm [9]. The HR indicates that the 
accuracy ratio of the best mode selected using the block size selection algorithm is the same as that of the best 
mode selected using an exhaustive search by the JM13.2. The results are shown in Table 1. However, HR 
performance using Algorithm 1 is only 86.38% on average, which is worse than that using the variance-based 
algorithm (90.44% on average). We determined that there were two types of errors in the distribution assumed in 
Fig. 8. We refer to these error types as an unbalance error and an I8MB curve bias error. 

The following is an example of an unbalance error. In the mobile test sequence (QP = 28), optimal I4MB is 
77.26%; however, optimal I16MB only occupies 3%. The distribution in this situation is illustrated in Fig. 9. It is 
evident that the threshold should be moved to the left when the amount of optimal I4MB is larger than that of 
optimal I16MB. Therefore, we adjusted the threshold relative to the amount of optimal I4MB and I16MB, i.e., if 
the amount of optimal I4MB is larger than that of optimal I16MB, then the threshold is decreased; otherwise, the 
threshold is increased. Our second algorithm to update the threshold is summarized in Algorithm 2.  
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Algorithm 1: Update the threshold for block size selection 

 
1: ++total_number 
2: perform I8MB prediction process and calculate QuantACsum 
3: if QuantACsum  Th then 
4:  perform I4MB prediction process 
5:  if I8MB_rdcost < I4MB_rdcost then 
6:   best mode = I8MB_best_mode 
7:  else 
8:   best mode = I4MB_best_mode 
9:  end if 
10: else 
11:  perform I16MB prediction process 
12:  if I8MB_rdcost < I16MB_rdcost then 
13:   best mode = I8MB_best_mode 
14:  else 
15:   best mode = I16MB_best_mode 
16:  end if 
17: end if 
18: Quant_total += QuantACsum 

19: Th =  

 

 

Fig. 9. Distribution of QuantACsum for I4MB, I8MB, and I16MB (unbalance error) 

I4MB_number, I8MB_number and I16MB_number, in Algorithm 2, are all initialized to 0. Note that the ratio in 
line 24, if the ratio is greater than 1 that means the amount of optimal I4MB is larger than that of optimal I16MB, 
so that the threshold is decreased (line 25); otherwise, the threshold is increased. 

As shown in Table 1, the HR produced by Algorithm 2 is superior to the HR produced by Algorithm 1. On 
average, the HR improved from 86.38% up to 94.16%. In addition, the HR accuracy of Algorithm 2 (94.16%) is 
much better than that of the variance-based algorithm (90.44%). 

The second error type, an I8MB curve bias error, occurs when the distribution curve of I8MB is not in the 
middle of the I4MB and I16MB distribution curves. For example, as shown in Fig. 10, the I8MB distribution curve 
is biased toward the I4MB distribution curve. In this situation, the threshold should slightly shift to left. To recover 
the I8MB curve bias error, we analyzed four conditions, which are shown in Table 2. For Condition 1, the 
percentage of the I8MB_rdcost (I8MB RD cost) is less than that of the I16MB RD cost (I16MB RD cost) when the 
optimal mode is I4MB. The values are obtained by performing exhaustive search. Conditions 2–4 have the similar 
meaning like Condition 1. 

It is evident that the likelihood of Condition 1 is much greater than that of Condition 2. Therefore, we can 
deduce that when I16MB prediction is selected (i.e., skip I4MB prediction) and I8MB_rdcost is less than 
I16MB_rdcost (Condition 1), in this situation, the error possibility of the selection is greater than that when I16MB 
prediction is selected and I8MB_rdcost is greater than I16MB_rdcost (Condition 2). So , we can assume that when 
I16MB prediction is selected and I8MB_rdcost is less than I16MB_rdcost, the selection is supposed to be incorrect, 
and decrease the threshold (shift the threshold to the left that is shown as Fig. 9) that let the I4MB selection made 
greater advantage when process next MB; otherwise, if I8MB_rdcost is greater than I16MB_rdcost , we assume 
that the I16MB selection is correct and increase the threshold. Conditions 3 and 4 for I4MB selection can be 
deduced in a similar manner by skipping_I16MB prediction. Our final algorithm to update the threshold is 
summarized in Algorithm 3. 
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Algorithm 2: Update the threshold for block size selection 

 
1: total_number++ 
2: perform I8MB prediction process and calculate QuantACsum 
3: if QuantACsum  Th then 
4:  perform I4MB prediction process 
5:  if I8MB_rdcost < I4MB_rdcost then 
6:   best mode = I8MB_best_mode 
7:   Quant_total += QuantACsum 

8:   Quant_avg =  

9:  else 
10:   best mode = I4MB_best_mode 
11:   I4MB_number++ 
12:  end if 
13: else 
14:  perform I16MB prediction process 
15:  if I8MB_rdcost < I16MB_rdcost then 
16:   best mode = I8MB_best_mode 
17:   Quant_total += QuantACsum 

18:   Quant_avg =  

19:  else 
20:   best mode = I16MB_best_mode 
21:   I16MB_number++ 
22:  end if 
23: end if 

24: ratio +=  

25: Th = Quant_avg × ratio 
 

Table 1. Hit rate for block size selection algorithms 

Test Sequence QP Variance-based 
algorithm [9] 

Algorithm 1 Algorithm 2 Algorithm 3 

Mobile (CIF) 16 92.82 84.60 99.01 99.10 
20 93.24 77.78 97.73 99.04 
24 93.18 73.68 96.20 98.53 
28 93.98 73.59 94.65 99.02 
32 94.59 72.65 92.08 98.34 

Average 93.56 74.46 95.93 98.80 
Container (CIF) 16 92.95 94.48 97.54 97.86 

20 92.26 94.59 95.38 97.02 
24 91.08 93.85 94.57 95.53 
28 90.20 92.16 92.10 91.99 
32 89.90 92.04 91.74 91.23 

Average 91.28 93.42 94.27 94.73 
Parkrun (720p) 16 82.70 78.40 94.92 99.49 

20 93.80 89.50 94.34 96.93 
24 93.20 88.93 92.03 94.60 
28 96.52 92.74 93.92 95.46 
32 97.92 92.98 94.01 95.13 

Average 92.83 88.51 93.84 96.32 
Shields (720p) 16 75.70 84.72 96.23 98.04 

20 84.16 89.52 95.78 96.27 
24 83.80 87.03 93.11 96.47 
28 86.45 86.53 88.97 93.22 
32 90.29 87.88 88.84 91.54 

Average 84.04 87.13 92.59 95.11 
Total Average 90.44 86.38 94.16 95.76 
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Fig. 10. Distribution of QuantACsum for I4MB, I8MB, and I16MB (I8MB curve bias error) 

 
Algorithm 3: Update the threshold for block-size selection 

 
Line 1–23 are identical to Algorithm 2 
24: if I4MB_number > 0 and I8MB_number > 0 and I16MB_number > 0 then 

25:  ratio +=  

26:  ratio_left_bound = ratio − 0.2 
27:  ratio_right_bound = ratio + 0.2 
28:  if QuantACsum  Th then      // I4MB prediction selected 
29:   if I8MB_rdcost < I4MB_rdcost then   // Condition 3 
30:    if ratio < ratio_right_bound then 

31:     ratio +=  

32:    else 
33:     ratio = ratio_right_bound 
34:    end if 
35:   else         // Condition 4 
36:    if ratio > ratio_left_bound then 

37:     ratio −=  

38:    else 
39:     ratio = ratio _left_bound 
40:    end if 
41:  else          // I8MB prediction selected 
42:   if I8MB_rdcost < I16MB_rdcost then   // Condition 1 
43:    if ratio > ratio_left_bound then 

44:     ratio −=  

45:    else 
46:     ratio = ratio _left_bound 
47:    end if 
48:   else         // Condition 2 
49:    if ratio > ratio_right_bound then 

50:     ratio +=  

51:    else 
52:     ratio = ratio_right_bound 
53:   end if 
54:  end if 
55: end if 
56: Th = Quant_avg × ratio 

 
 
In Algorithm 3, lines 1–23 are identical to Algorithm 2. Lines 25–27 calculate the left and right ratio boundaries, 

which keep the ratio inside the boundary to avoid the worst case, and in our enormous experiments, the left ratio 
boundary minus 0.2 and right boundary plus 0.2 that to make the ratio boundary wider can get the best results. The 
value Line 31 and line 50 increase the ratio, line 37 and line 44 decrease the ratio when I4MB prediction is skipped, 
as described in the previous paragraph, and among those lines, the value 0.1 is to make ratio increases or decreases 
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a small step. As shown in Table 1, the HR using Algorithm 3 is better than that using Algorithm 2; on average, it 
has improved from 94.16% up to 95.76%. 
 

Table 2. Percentages for four conditions 

Test Sequence Optimal best mode = I4MB Optimal best mode = I16MB 
Condition 1: 
I8MB_rdcost  
I16MB_rdcost 
(%) 

Condition 2: 
I8MB_rdcost  
I16MB_rdcost 
(%) 

Condition 3: 
I8MB_rdcost  
I4MB_rdcost 
(%) 

Condition 4: 
I8MB_rdcost  
I4MB_rdcost 
(%) 

Mobile (CIF) 70.25 11.48 1.53 1.46 
Container (CIF) 31.96 4.67 9.33 5.21 
Parkrun (720p) 35.88 1.17 1.65 0.32 
Shields (720p) 41.19 2.29 12.17 1.69 

 

3.2   Direction-based prediction mode decision 

Most edge direction detection methods use edge detectors to determine dominant directions and to reduce the 
number of prediction modes. However, most methods do not consider information from neighboring blocks. We 
improve the traditional edge direction detection methods by including related neighboring blocks. 

First, we calculate three variances:  (variance of the vertical mode),  (variance of the horizontal 
mode), and  (variance of the diagonal down-right mode) when the upper left blocks are available, as shown in 
Figs. 11 (a), (b), and (c), respectively. The fourth variance,  (variance of the down-left mode), can be 
calculated when the upper right block is also available, as shown in Fig. 11 (d). Equations (3), (4), (5) and (6) are 
used to, respectively, calculate , ,  And  as follows. 

                (3) 

               (4) 

        (5) 

              (6) 

where x and y denote the position of the pixel; The pixels I(x, y) belong to the neighboring blocks those are already 
encoded and reconstructed when x or y equals to 0; The pixels I(x, y) belong to the luma 4 × 4 block when both x 
and y are greater than 0. 

Next, the ratio of the smallest and the second smallest mode from the variance set { , ,  [ ]} is 
calculated. If the ratio (smallest variance / second smallest variance) is less than the threshold, a direction exists. 
Then, the mode with the smallest variance and its two neighboring modes plus the MPM, or the DC mode when 
MPM is the same as the first three modes, are selected as candidate modes. The MPM is defined as the prediction 
mode of the left or upper neighbor, whichever has the smaller prediction number. The MPM is the only candidate 
mode when , , and  are equal. When , , and  are equal, there is a high probability 
(approximately 90% in our experiment) that the samples in the prediction reference (labelled A–M in Fig. 1) have 
the same value. Under this condition, the prediction values of the nine prediction modes are identical; therefore, 
only one prediction mode is required. In our algorithm, we select the MPM as the single candidate mode because in 
the H.264 syntax, only one bit flag is needed to signal MPM, while four bits are needed to signal a non-MPM. 
Selecting the MPM as the single candidate mode can save three bits for one block coding.  

Finally, we propose our fast intra prediction mode algorithm for I4MB in Algorithm 4. 

The symbols: up_block_available, left_block_available and up_right_block_available in Algorithm 4, indicate 
that if the preceding block has up, left or upright encoded block. And, M0, M1, M3, M4, M5, M6, M7, M8 and DC 
are indicated in Fig. 2. 

An 8 × 8 block of the I8MB mode has nine prediction modes that are identical to the I4MB mode, except for the 
block size. Consequently, the I8MB fast prediction mode decision is almost identical to the I4MB fast prediction 
mode decision, but the threshold (ThI8) can be different from ThI4. We applied this algorithm to JM13.2 with a 
threshold ranging from 0.9 to 1.0 in order to check the HR and the filter rate (FR). The FR is the percentage of 
blocks selected to filter out improper prediction modes. In the results of our algorithm, shown in Table 3, the 
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threshold (Th) was set to ThI4 and ThI8. A smaller threshold produces a higher HR, improving the coding 
performance; however, a higher HR decreases the FR, increasing the computation time.  

 
Algorithm 4: Direction-based prediction mode decision 

 
1: if up_block_available and left_block_available then 
2:  calculate σVER and σHOR 
3:  if σVER  ≤ σHOR then 
4:   smallest =σVER 

5:   secondsmallest = σHOR 

6:   probable_best_mode = M0 
7:  else 

8:   smallest = σHOR 

9:   secondsmallest =σVER 

10:   probable_best_mode = M1 
11:  end if 
12:  calculate σDDR 
13:  if σDDR  < smallest then 
14:   secondsmallest = smallest 

15:   smallest = σDDR 

16:   probable_best_mode = M4 
17:  else 
18:   if σDDR < secondsmall then 

19:    secondsmallest = σDDR 

20:   end if 
21:  end if 
22:  if up_right_block_available then 
23:   calculate σDDL 
24:   if σDDL < smallest then 
25:    secondsmallest = smallest 

26:    smallest = σDDL 

27:    probable best mode = M3 
28:  else 
29:   if σDDL < secondsmallest then 

30:    secondsmallest = σDDL 

31:   end if 
32:  end if 
33: end if 
34: 
35: ratio = smallest / secondsmall 
36: if ratio < ThI4 then 
37:  if probable_best_mode equals M0 then 
38:   candidate mode set = {M0, M5, M7, MPM or DC} 
39:  end if 
40:  if probable_best_mode equals M1 then 
41:   candidate mode set = {M1, M6, M8, MPM or DC} 
42:  end if 
43:  if probable_best_mode equals M3 then 
44:   candidate mode set = {M3, M7, M8, MPM or DC} 
45:  end if 
46:  if probable_best_mode equals M4 then 
47:   candidate mode set = {M4, M5, M6, MPM or DC} 
48:  end if 
49: else 
50:  if σVER, σHOR and σDDR are equal then 
51:   candidate mode set = { MPM } 
52:  else 
53   candidate mode set = {all modes} 
54:  end if 
55: end if 
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Fig. 11. Calculation of variance for (a) vertical, (b) horizontal, (c) down-right, and (d) down-left modes 

 

Table 3. Hit rate and filter rate for fast intra prediction mode algorithm 

Test Sequence Th I8MB 
FR (%)

I8MB 
HR (%)

I4MB
FR(%)

I4MB 
HR (%) 

Mobile (CIF) 1.0 94.43 76.43 95.56 82.01 
0.95 82.13 81.38 88.40 84.52 
0.9 72.87 84.90 81.93 86.67 

Container (CIF) 1.0 93.09 84.96 93.73 87.82 
0.95 83.38 87.86 87.65 89.41 
0.9 74.78 90.24 81.42 90.91 

Parkrun (720p) 1.0 98.10 74.40 98.73 75.75 
0.95 87.96 78.60 91.47 78.58 
0.9 78.33 82.39 84.28 81.27 

Shields (720p) 1.0 97.62 80.11 97.17 82.18 
0.95 88.51 83.33 90.27 84.30 
0.9 80.08 86.20 83.29 86.35 

4   Experiments 

To verify the performance of our proposed algorithms, we conducted several simulations on various test sequences 
after implementing the proposed quant-based block-size selection decision algorithm and direction-based 
prediction mode decision algorithm using the JM13.2. Because most current methods, except [9], do not involve 
the high profile or simultaneously cover both block-size decision and prediction mode decision, we adopted the 
same parameter settings used in the study by Huang et al. [9]. All test sequences were performed with RDO 
enabled. The intra period was set to 1 for intra frame coding, and 15 for inter frame coding; ThI8 was 0.9 and ThI4 
was 0.95 in the direction-based prediction mode decision. Table 4 shows the results of the simulation that applied 
two QCIF-sized, four CIF-sized, two 720p-sized, and four full HD format test sequences. In Table 4, we used 
Bjontegaard delta PSNR (BDPSNR) and Bjontegaard delta bit rate (BDBR) [26] as the measuring tools and 
defined ΔPSNR, ΔBR, and the time saving factor ΔTS as follows: 

                       (7) 
 

                        (8) 
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   ,                  (9) 

Where PSNRpro, BRpro, and Tpro denote the PSNR of the proposed algorithm, the bit rate of the proposed algorithm, 
and the time consumed by the proposed algorithm, respectively. PSNRref, BRref, and Tref denote the PSNR of the 
reference software, the bit rate of the reference software, and the time consumed by the reference software, 
respectively. 

As shown in Table 4, when the quant-based block-size decision is used independently, the PSNR degraded by 
0.002 dB, and the bit rate increased by 0.11% on average; both results are negligible. The average time savings 
increased by 22.39% when compared with an exhaustive search using the JM13.2. When the direction-based 
prediction mode decision is independently employed, the PSNR degraded by 0.012 dB and the bit rate increased by 
0.15% on average; both results are still negligible. The average time savings increased by approximately 41.58%. 
We combine the two algorithms to form a two-stage algorithm for fast intra prediction coding. From the 
experimental results presented in Table 5, both the average degradation of the PSNR (−0.015 dB) and the average 
increase of the bit rate (0.30%) are minimal in our proposed two-stage algorithm, and on average, reduces the 
encoding time by 55.19%. 

Table 4. Performance of our proposed algorithms 

Test 
Sequence 

QP Quant-Based Block−Size 
Decision 

Direction-Based Prediction 
Mode Decision 

Two-Stage Approach 

ΔPSNR 
(dB) 

ΔBR 
(%) 

ΔTS 
(%) 

ΔPSNR 
(dB) 

ΔBR 
(%) 

ΔTS 
(%) 

ΔPSNR 
(dB) 

ΔBR 
(%) 

ΔTS 
(%) 

Container 
(QCIF) 

16 −0.016 0.08 8.12 −0.026 0.01 38.61 −0.040 0.04 48.17
20 −0.014 −0.30 11.19 −0.016 −0.11 38.77 −0.028 0.15 49.88
24 −0.008 0.23 18.84 −0.026 0.16 38.25 −0.027 0.42 52.59
28 0.002 0.26 20.38 −0.033 0.34 38.31 −0.027 0.68 53.61
32 −0.005 0.93 23.20 −0.041 0.34 39.19 −0.048 1.80 56.59

Foreman 
(QCIF) 

16 0.018 0.08 8.11 −0.005 0.07 41.00 0.003 0.10 50.17
20 0.004 0.00 8.00 −0.008 0.11 40.47 −0.019 −0.09 49.71
24 0.004 0.05 8.86 −0.007 0.10 40.83 0.005 0.32 50.48
28 −0.005 0.08 10.87 −0.002 0.44 40.63 −0.008 0.11 51.69
32 −0.015 0.11 14.14 −0.029 0.10 39.55 −0.034 0.50 52.48

Container 
(CIF) 

16 0.002 0.02 19.80 −0.005 0.32 40.21 0.001 0.34 53.42
20 0.000 0.19 22.85 −0.015 0.30 40.31 −0.010 0.34 54.79
24 0.002 0.64 25.53 −0.017 0.42 39.62 −0.011 0.94 56.38
28 −0.006 1.08 31.23 −0.018 0.67 39.09 −0.018 1.44 57.75
32 −0.011 1.54 34.26 −0.016 0.45 38.66 −0.026 1.89 57.83

Hall (CIF) 16 −0.001 0.02 9.06 −0.028 −0.03 41.71 −0.030 0.05 49.50
20 0.008 0.15 12.50 −0.004 0.03 41.58 −0.002 0.23 51.45
24 −0.001 0.14 22.86 −0.008 0.14 41.87 −0.002 0.40 56.25
28 −0.001 0.40 25.01 −0.008 0.17 41.39 −0.016 0.65 56.97
32 0.006 0.41 29.12 −0.003 0.03 41.24 −0.015 0.07 58.73

Mobile 
(CIF) 

16 −0.004 −0.03 8.13 −0.012 0.06 38.05 −0.016 0.13 45.03
20 −0.003 −0.05 8.58 −0.012 0.10 38.10 −0.012 0.05 45.70
24 −0.006 0.06 9.00 −0.014 0.13 38.09 −0.015 0.13 46.00
28 −0.004 −0.01 9.85 −0.008 0.11 38.07 −0.010 0.16 46.42
32 −0.003 −0.17 10.09 −0.011 0.00 37.48 −0.015 0.31 46.74

Paris (CIF) 16 0.001 0.10 8.29 −0.015 0.18 41.43 −0.010 0.18 48.57
20 −0.003 −0.07 8.71 −0.007 0.12 41.35 −0.019 0.14 49.05
24 0.006 0.06 9.24 −0.011 0.18 40.88 −0.027 0.31 49.26
28 −0.011 −0.09 11.11 −0.018 0.19 40.97 −0.025 0.30 50.02
32 −0.003 −0.34 14.71 −0.024 −0.05 40.40 −0.025 0.21 51.08

Parkrun 
(720p) 

16 0.002 0.02 6.73 −0.010 0.01 39.05 −0.009 0.02 47.34
20 0.000 0.01 15.46 −0.006 0.03 41.70 −0.008 0.01 53.38
24 −0.001 0.04 15.16 −0.004 0.07 39.61 −0.006 0.07 51.85
28 −0.004 −0.04 18.43 −0.006 0.06 40.45 −0.007 0.05 53.39
32 −0.006 −0.07 23.48 −0.010 0.06 40.71 −0.009 0.11 55.11

Shields 
(720p) 

16 −0.006 −0.06 11.36 −0.02 −0.04 41.21 −0.024 −0.11 51.19
20 −0.003 −0.05 17.12 −0.007 0.03 41.35 −0.013 −0.04 53.50
24 −0.001 0.12 21.82 0.003 0.42 41.81 −0.002 0.38 55.58
28 −0.003 0.22 24.13 −0.005 0.37 41.60 −0.013 0.52 56.30
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32 −0.008 0.12 26.52 −0.016 0.33 41.21 −0.021 0.57 57.34
Blue_sky 
(1080p) 

16 −0.016 −0.20 26.96 −0.004 0.11 38.58 −0.026 −0.16 55.87
20 −0.002 0.02 25.62 −0.003 0.13 40.40 −0.009 0.13 56.01
24 −0.01 0.26 32.51 −0.007 0.14 41.91 −0.017 0.39 59.09
28 −0.006 0.32 36.18 −0.005 0.33 42.74 −0.012 0.52 60.61
32 −0.009 0.01 35.17 −0.017 0.35 43.34 −0.020 0.30 60.82

Pedestrian 
(1080p) 

16 −0.003 0.05 18.36 −0.027 −0.13 42.15 −0.029 −0.04 54.71
20 −0.001 −0.04 23.79 −0.008 0.07 42.17 −0.009 0.10 56.87
24 −0.001 0.09 30.64 −0.006 0.27 42.75 −0.007 0.38 59.66
28 −0.002 0.14 38.60 −0.006 0.12 43.28 −0.009 0.17 62.51
32 0.012 0.16 43.03 −0.010 −0.01 42.95 −0.007 −0.07 64.17

Station2 
(1080p) 

16 −0.010 −0.11 17.68 −0.019 −0.18 41.23 −0.027 −0.23 54.11
20 −0.001 0.04 27.22 −0.003 0.17 44.29 −0.003 0.25 58.19
24 0.000 0.04 43.54 −0.007 0.41 53.40 −0.007 0.58 66.74
28 −0.002 0.07 47.64 −0.016 0.34 54.04 −0.015 0.33 68.48
32 0.000 0.19 46.57 −0.020 0.24 49.71 −0.012 0.44 66.92

Sunflower 
(1080p) 

16 −0.003 0.00 43.65 −0.011 −0.06 51.90 −0.013 0.08 67.71
20 −0.001 −0.01 37.79 −0.011 0.17 43.70 −0.010 0.26 63.56
24 0.000 0.06 40.42 −0.011 0.21 44.37 −0.013 0.36 64.08
28 −0.003 −0.03 42.64 −0.023 0.14 44.08 −0.022 0.31 64.70
32 0.007 −0.13 43.73 −0.014 0.01 43.07 −0.020 0.08 65.15

Average −0.002 0.11 22.39 −0.012 0.15 41.58 −0.015 0.30 55.19

 

Table 5 shows a comparison of the average performance of our proposed algorithm with that used in reference 
[9]. The values in this table are the average performance values when QP = {16, 20, 24, 28}. The scope covered in 
the two-stage algorithm of [9] is identical to our proposed two-stage algorithm. The results show that the coding 
performance of our algorithm is slightly better than that of [9] in terms of the time savings (54.74% compared to 
50.57%), and our proposed algorithm significantly improves the coding efficiency in terms of the PSNR 
degradation (−0.013 dB compared to −0.132 dB) and increased bit rate (0.25% compared to 0.90%). 

 

Table 5. Average performance comparison 

Test Sequence Two-Stage Approach [9] Proposed Two-Stage Approach 
ΔPSNR (dB) ΔBR (%) ΔTS (%) ΔPSNR (dB) ΔBR (%) ΔTS (%)

Container (QCIF) −0.191 0.97 48.5 −0.031 0.32 51.06
Foreman (QCIF) −0.161 0.90 36.7 −0.005 0.11 50.51
Container (CIF) −0.123 0.68 50.5 −0.010 0.77 55.59
Hall (CIF) −0.145 1.12 52.6 −0.013 0.33 53.54
Mobile (CIF) −0.154 0.57 35.5 −0.013 0.12 45.79
Parkrun (720p) −0.147 0.61 40.8 −0.008 0.04 51.49
Shields (720p) −0.137 0.83 44.8 −0.013 0.18 54.14
Pedestrian (1080p) −0.089 1.10 64.7 −0.014 0.15 58.44
Station2 (1080p) −0.097 1.04 65.6 −0.013 0.23 61.88
Sunflower (1080p) −0.077 1.16 66.0 −0.015 0.25 65.01
Average −0.132 0.90 50.57 −0.013 0.25 54.74

 

Figures 12(a) and (b) show the RD curves for the Mobile and Shield sequences, respectively. The RD curves 
achieved by our proposed algorithm nearly overlap the RD optimized curves achieved by the JM13.2. From the 
results, we can verify that our algorithm induces negligible RD degradation. 
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(a) 

 

(b) 

Fig. 12. (a) RD curves of Mobile (b) RD curves of Shields 

5   Conclusion 

This study presented two methods to reduce computational complexity of H.264/AVC High Profile intra 
prediction: quant-based block-size selection decision, and direction-based prediction mode decision. These 
methods form a highly efficient intra prediction algorithm. Owing to a higher HR, our proposed algorithm 
provides high accuracy for block size selection and mode prediction. The experimental results demonstrated that 
on average, the proposed algorithm reduces the encoding time by approximately 54% when compared with an 
exhaustive search using the JM13.2. PSNR degradation was negligible (approximately −0.013 dB on average), and 
the increase in bit rate was minimal (approximately 0.25% on average). As compared with the existing algorithms, 
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the results show that our algorithm achieves a significant improvement in both computation performance and RD 
performance. 
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