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Abstract. In order to efficiently represent source images and inhibit the blocking artifacts, a novel multi-focus image fusion 
scheme based on image decomposition and quad tree (QT) decomposition is proposed. The registered source images are first 
decomposed into cartoon and texture components by using image decomposition, and then, QT decomposition is performed 
on the cartoon and texture components. The salient features of the cartoon and texture components construct the feature 
space. The focused regions of the source images are detected by the salient features of the cartoon and texture components. 
The final fused image can be produced by combining the image regions that corresponding to the focused component regions. 
Experimental results have demonstrated that the proposed method can efficiently inhibit the blocking artifacts and signifi-
cantly improve the fusion quality compared to the other existing fusion methods in both spatial and transform domain.  
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1   Introduction 

Multi-focus image fusion can be defined as the process of combing substantial information from multiple images 
of the same scene to create a single composite image that will be more suitable for human visual perception or 
further computer processing [1]. It has been proven to be an effective way to extend the depth of the field [2]. In 
general, the image fusion methods can be categorized into two groups: spatial domain fusion and transform 
domain fusion [3]. In this paper, we concentrate on spatial domain methods. 

The spatial domain fusion methods can be divided into two categories: pixel based methods and region based 
methods. In spatial domain, the simplest pixel based fusion method is to take the average of the source images 
pixel by pixel. However, the simplicity may reduce the contrast of the fused image. To improve the quality of 
the fused image, some region based methods have been proposed to combine the partitioned blocks or segment-
ed regions based on their sharpness [4]. The sharpness is measured by the local spatial features [5] such as ener-
gy of image gradient (EOG) and spatial frequency (SF) [4]. Then, the focused blocks or regions are selected 
from source images by being simply copied into the fused image. However, if the size of the blocks is too small, 
the block selection is sensitive to noise and subject to incorrect selection of blocks from the corresponding 
source images. Or else, if too large, the in-focus and out-of-focus pixels are partitioned in the same block, which 
is selected to build the final fused image. Accordingly, the blocking artifacts are produced and may compromise 
the quality of the final fused image. To eliminate the blocking artifacts, researchers have proposed some im-
proved schemes. Goshtasby et al. [6] have detected the focused blocks by computing the weight sum of the 
blocks and significantly eliminated the blocking artifacts. But the iterative procedure is time-consuming. Huang 
et al. [7] have detected the focused blocks by using pulse-coupled neural networks (PCNN) and improved the 
visual quality of the fused image. But the parameters of the PCNN are complicated and lack adaptability. 
Aslantas et al. [8] have selected the block-size by using differential evolution algorithm and enhanced the adapt-
ability of the fusion method. But this method requires longer computational time. De et al. [9] have selected the 
optimal size of the block division by using quad tree (QT) structure and effectively solved the problem of deter-
mining of block size. Wan et al. [10] have selected the focused pixels from the source images by using robust 
components analysis (RPCA) and obtained better fusion quality. But the RPCA decomposition is time consum-
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ing. These schemes all achieve better performance than the traditional methods and significantly inhibit the 
blocking artifacts.  

Image decomposition is an important way of image processing, which separates a given image into cartoon 
and texture components. The cartoon component holds the geometric structures, isophotes and smooth-piece of 
source images, while the texture component contains textures, oscillating patterns, fine details and noise [11]. 
The cartoon and texture components represent the most meaningful information of source images, which are 
important for image fusion. Image decomposition has been proven to be an effective way to extract the structure 
information and texture information from image [12]. The objective of this paper is to investigate its potential 
application in the multi-focus image fusion. The main contribution of this paper is that a multi-focus image fu-
sion framework based on image decomposition and QT decomposition is established. The framework is based 
on the discriminative features that computed from the cartoon and texture components of the source images. To 
eliminate the blocking artifacts, the optimal block division is determined by quad tree decomposition. The pro-
posed method can significantly inhibit the blocking artifacts and better represent the source images. 

The rest of the paper is organized as follows. In section 2, the basic idea of image decomposition and QT de-
composition will be briefly described, followed by the new method based on image decomposition and QT de-
composition for image fusion in section 3. In section 4, extensive simulations are performed to evaluate the 
performance of the proposed method. In addition, several experimental results are presented and discussed. 
Finally, concluding remarks are drawn in section 5. 

2   Related Work 

2.1   Image Decomposition  

Nowadays, an observed image f  represents a real scene in many problems of image analysis [13]. The image 

f  may contain texture or noise. In order to extract the most meaningful information from f , most models [14-

23] try to find another image u , “close” to f , such that u  is a cartoon or simplification of f . These models 

assume that there is a relation between the following relation between f  and u  as follows:  

f u v= + .   (1)

where v  is noise or texture. In 1989, Mumford et al. [14] have established a model to decompose the black and 
white static image by using bounded variation function, which is called Mumford-Shah energy functional:  

2
0\

( , ) (|| || ( ) ( )MS R C
E u C u u u dxdy Len Cλ μ= ∇ + − + . (2)

where C  is the segmenting contour, 0λ >  and 0μ >  are the weight coefficients. 0u  is the feature of the origi-

nal image. u  is the optimal piecewise approximation of 0u . In 1992, Rudin et al. [15] have simplified the Mum-

ford-Shah model and proposed total variation minimization energy functional model of Rudin-Osher-Fatemi 
(ROF) as:  

2
0( ) (|| || ( )ROF R

R

E u u dxdy u u dxdyλ= ∇ + −  . (3)

where 0λ >  is the weight coefficient. The ROF model is efficient for de-noising images while keeping sharp 
edges. In fact, both Mumford-Shah model and ROF model can minimize the energy function that they have 
constructed and obtain the correct decomposition of the source image. But Meyer [16] has proved that the ROF 
model will remove the texture when λ  is small enough. In addition, he has introduced the use of a space of 
functions, which is the dual of the BV space in some sense. In 2002, Vese et al. [17] have combined the total 
variation minimization in image restoration of ROF model with the ideas introduced by Meyer to model texture 
or noise. The model is described as: 

2
0( , ) (|| || | ( ( )) | || || pVO L

R R

E u g u dxdy u u div g dxdy gλ μ= ∇ + − + + 
  

. (4)

Vese et al. have developed a partial differential equation (PDE) based on iterative numerical algorithm to ap-
proximate Meyer’s weaker norm || ||G⋅  by using pL . However, this model is time consuming. To improve the 

computation efficiency, many models and methods have been proposed. Vese et al. have also proposed Osher-
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Sole-Vese (OSV) [18] model based on total variation (TV) and norm 1H − . Aujol et al. [19] have introduced 
dual norm to image decomposition. Chana et al [20] have proposed 1CEP H −−  model based on OSV. However, 
these models are still complicated. In 2008, Goldstein et al. [21] have proposed Split Bregman algorithm by 
combining the split method [22] with Bregman iteration [23]. This algorithm is easy to implement and has low 
computational complexity. This paper performs the image decomposition on the source images based on ROF 
model by using Split Bregman algorithm. 

Fig. 1 shows the decomposition results of source image ‘Clock’. It is obvious that the salient features of the 
cartoon and texture components of the source image are corresponding to the local features of the objects in 
focus. Thus, the cartoon and texture components can be used to build a robust fusion scheme to discriminate the 
focused regions from defocused regions. In this paper, both cartoon and texture components are used to detect 
the focused blocks. 

 

Fig. 1. Decomposition results of multi-focus image ‘Clock’ using image decomposition. (a) Source images I , (b) Car-
toon component U , (c) Texture component V . 

2.2   Quad Tree Decomposition 

QT is an important data structure where each internal node in the tree has exactly four children and each leaf 
node in the tree has no children. QT decomposition is an analysis technique which can partition an image into 
blocks that are more homogeneous than the image itself. In traditional QT decomposition, a square image can be 
partitioned into four equal sized blocks and then each block is evaluated by some threshold conditions of region 
homogeneity. The block that meets the threshold conditions will not be subdivided further, while the block that 
doesn’t meet the threshold conditions will be subdivided into four blocks. And then the blocks are evaluated 
again iteratively until each block meets the threshold conditions [9, 24]. An example of the subdivision of an 
image in a QT structure is depicted in Fig. 2 (a). The whole image is represented by a root node which is split 
into four blocks when its homogeneity doesn’t meet the threshold conditions. The image block whose homoge-
neity meets the threshold conditions is represented by leaf node. In Fig. 2 (a), 0I  is the image at level 0. After 

initial subdivision, ( 1, , 4)kI k = ⋅⋅⋅  are corresponding to regions at level 1. At level 1, the first and the third 

blocks, namely 1I  and 3I , are subdivided into smaller blocks 1kI  and 3 ( 1, , 4)kI k = ⋅⋅⋅  at level 2. According to 

the rule of QT decomposition, 1kI  and 3kI  are further subdivided if they meet the threshold conditions. Other 

quadrants will be subdivided similarly. 

 

Fig. 2. QT decomposition of an image.  (a) Subdivision of an image into quad tree structure, (b) Source image ‘Lena’, (c) 
QT decomposition result of ‘Lena’. 
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It has been proved that the QT decomposition has the advantages of self-adaptation and high speed [24]. It is 
obvious that the salient features such as edges and textures of Fig. 2 (c) are corresponding to the salient feature 
of Fig. 2 (b). One can see that the block size of the subdivision in Fig. 2 (c) is changing with the region homoge-
neity of Fig. 2 (b). It is obvious that the QT decomposition can adaptively control the block size of subdivision 
of image based on the region homogeneity. So QT decomposition can be used to determine the optimal subdivi-
sion of blocks. It is useful for eliminating the blocking artifacts of the fused image. In this paper, the maximum 
differences of the elements are used as the region homogeneity of the cartoon and texture components of the 
source images.  

3   Multi-focus Image Fusion Based on Image Decomposition and QT Decomposition 

3.1   Fusion Algorithm 

In this section, a novel method based on image decomposition and QT decomposition is proposed. The proposed 
fusion framework is depicted in Fig. 3 and the detailed design is described as follows. For simplicity, this paper 
assumes that there are only two source images, namely AI  and BI , here. The rationale behind the proposed 

scheme applies to the fusion of more than two multi-focus images. The source images are assumed to be pre-
registered and the image registration is not included in the framework. The fusion algorithm consists of the fol-
lowing 3 steps: 

 

Fig. 3. Block diagram of proposed multi-focus images fusion framework. 

Step 1: Perform the image decomposition on the source images AI , BI  to obtain cartoon and texture compo-

nents, respectively. The source image is decomposed as: 

I U V= + . (5)

For the source image AI , let AU , AV   denote the cartoon and texture components, respectively. For the source 

image BI ,  BU , BV  have the roles similar to AU  and AV .  

Step 2: Perform QT decomposition on the temporary fused component 0V  obtained by averaging AV  and BV .  

AU , BU , AV  and BV  are partitioned based on the split result of the temporary fused component, respectively. 

To overcome the disadvantages of the small block in traditional block-based image fusion method, the minimum 
block size is set for terminating the further QT decomposition when the region homogeneity of the block doesn’t 
meet the threshold condition. The region homogeneity is defined as: 

0( , ) 0( , )| max( ) min( ) |R R
i j i jV V T− < . (6)

where 0( , )
R
i jV  is the value of the pixel location ( , )i j  in temporary fused component 0V . T  is the threshold con-

dition. In this paper, the threshold condition is set as 0.005 and the minimum block size is set as 8 8× . 
Step 3: According to the fusion rules, the focused regions of the source images which corresponding to the 

focused regions of the cartoon and texture components are integrated to obtain the fused image F . 
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3.2   Fusion Rule 

There are two key issues [25] for the fusion rules. One is how to measure the activity level of the cartoon and 
texture components, respectively, which recognizes the sharpness of the source images. Fig. 4 shows the rela-
tionship between the multi-component of the source images ‘Clock’ and their 3D shapes. It is obvious that the 
portion of the red circle in Fig. 4 (a) is more salient than the corresponding portion in Fig. 4 (b). The portion of 
the red circle in Fig. 4 (b) is more salient than the corresponding portion in Fig. 4 (a). The portion of the red 
circle in Fig. 4 (a) and Fig. 4 (b) are corresponding to the salient regions of the two cartoon components, respec-
tively. Similarly, the portion of the red circle in Fig. 4 (c) is more salient than the corresponding portion in Fig. 4 
(d). The portion of the red circle in Fig. 4 (d) is more salient than the corresponding portion in Fig. 4 (c). The 
portion of the red circle in Fig. 4 (c) and Fig. 4 (d) are corresponding to the salient regions of the two texture 
components, respectively. The salient regions of the cartoon and texture components are corresponding to the 
focused regions of the source images, respectively. Thus, we use the total EOG of each block of the cartoon and 
texture components to measure the activity level. The EOG of each block can be calculated as: 

 

2 2( )

( 1, ) ( , )

( , 1) ( , )

i j
i j

i

j

EOG I I

I I i j I i j

I I i j I i j

 = +

 = + −
 = + −



. (7)

where ( , )I i j  denotes the value of the pixel location ( , )i j  in the block of  the cartoon or texture components. 

 

Fig. 4. The relationship between multi-component of the source images ‘Clock’ and their 3D shapes. (a) Cartoon compo-
nent of the far focused image, (b) Cartoon component of the near focused image, (c) Texture component of the far focused 

image, (d) Texture component of the near focused image. 

The other is how to integrate the focused pixels or regions of the source images which corresponding to the 
focused pixels or regions of the cartoon and texture components into the counterparts of the fused image. In 
order to eliminate the blocking artifacts, QT decomposition is applied to the cartoon and texture components. 
Let ( )k

AU  and ( )k
BU denote the k  th block of cartoon components AU  and BU  , respectively.  Let ( )k

AV  and 
( )k

BV denote the k  th block of texture components AV  and BV  , respectively. Let AU
kEOG  and BU

kEOG  denote 

the EOG of ( )k
AU  and ( )k

BU , respectively. Let AV
kEOG  and BV

kEOG  denote the EOG of ( )k
AV  and ( )k

BV , respective-

ly.  The total EOG of each block is calculated as: 

A A

B B

U V
A k k

U V
B k k

EOG EOG EOG

EOG EOG EOG

 = +
 = +

. (8)

The total EOG of corresponding blocks are compared to determine which block is in focus. A decision matrix 
M NH ×∈  is constructed for recording the comparison results according to the fusion rule as follows:  

1
( , )

0
A BEOG EOG

H i j
otherwise

≥



= . (9)

where  “1”  in H  indicates the pixel location ( , )i j  in image AI  is in focus while  “0”  in H  indicates the pixel 

location ( , )i j  in image BI  is in focus. 
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( , ) ( , ) 1
( , )

( , ) ( , ) 0
A

B

I i j H i j
F i j

I i j H i j

=
 =

= . (10)

However, judging by EOG alone is not sufficient to distinguish all the focused regions. There are thin protru-
sions, narrow breaks, thin gulfs, small holes, etc. in H . To overcome these disadvantages, morphological opera-
tions [26] are performed on H . Opening, denoted as H Z , is simply erosion of H  by the structure element 
Z , followed by dilation of the result by Z . This process can remove thin gulfs and thins protrusions. Closing, 
denoted as H Z• , is dilation followed by erosion. It can join narrow breaks and thin gulfs. To correctly judge 
the small holes, a threshold is set to remove the holes smaller than the threshold. Thus, the final fused image F  
is constructed with Eq. (10). In this paper, the structure element Z  of the proposed method is a 5 5× matrix with 
logical 1’s and the threshold is set to 1000. 

4   Experimental Results 

In order to evaluate the performance of the proposed method, the experiment is performed on a set of 2 pairs of 
multi-focus source images [27] vary in content and texture, as shown in Fig. 5. The two pairs are all grayscale 
images with size of 640 480×  pixels. In this paper, all the source images are assumed to have been registered. 
Experiments are conducted with Matlab in Windows environment on a computer with Intel Xeon X5570 and 
48G memory. For comparison, besides the proposed method, some existing multi-focus image fusion methods 
are also implemented on the same set of source images. These existing methods include discrete wavelet trans-
form (DWT), nonsubsumpled contourlet transform (NSCT), SF (Li’s method [4]), principal component analysis 
(PCA) and RPCA (Wan’s method [10]). Due to the lack of original source code, the Eduardo Fernandez 
Canga’s Matlab image fusion toolbox [28] is used as the reference for LAP, DWT, SF and PCA. Specifically, 
the Daubechies wavelet function ‘bi97’ is used in the DWT. The decomposition level of DWT is 4. The NSCT 
toolbox [29] is used as the reference for NSCT. The RPCA toolbox [30] is used as the reference for RPCA de-
composition. The pyramid filter ‘9-7’ and the orientation filter ‘7-9’ with {4, 4, 3} levels of decomposition are 
set for the fusion method based on NSCT. The Split Bregman toolbox [31] is used as the reference for the pro-
posed method. In order to quantitatively compare the performance of proposed method and that of the others 
mentioned above, two metrics are used to evaluate the fusion performance. They are: (i) Mutual information (MI) 
[32], which measures the degree of dependence of the source images and the fused image. (ii) /AB FQ  [33], 

which reflects the amount of edge information transferred from the source images to the fused image. A larger 
value for them means a better fusion result. 

 

Fig. 5. Multi-focus source images. (a) Near focused image ‘Disk’, (b) Far focused image ‘Disk’, (c) Near focused image 
‘Lab’, (d) Far focused image ‘Lab’. 

4.1   Qualitative Analysis 

For qualitative comparison, the ‘Disk’ and ‘Lab’ fused images of different methods are shown in Fig. 6 and Fig. 
7, respectively. The difference images between the far focused source image ‘Lab’ and its corresponding fused 
image obtained by different methods are shown in Fig. 8. Inspecting the book and the clock in Fig. 6, there are 
some obviously blurry regions between the white books and the bookcase in the fused images of DWT, NSCT 
and SF. Moreover, the obvious blocking artifacts appear on the upper edge of the clock in the fused image of SF. 
The left edge of the clock in the fused image of RPCA is incomplete. The contrast of the fused image of PCA is 
worse than that of the other methods. Inspecting the student and the clock in Fig. 7, the student’s head in the 
fused images of DWT, NSCT shows obvious misregistration. The upper edge of the student’s head of the fused 
image of RPCA has a narrow prominent. In Fig. 8, distortions are obviously observed in the difference images 
of DWT and NSCT. Mis-registration is also shown in the difference image of PCA. In addition, there are some 
obvious blocking artifacts in the difference image of SF. There are some obvious image residual in the right 
region of the difference image of RPCA. Thus, the fused image of proposed method achieves superior visual 
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performance by containing all the focused contents from the source images. But it should be noted that there are 
also some blocking artifacts in the edge of the clock in Fig. 6 (f). We attribute this to the fixed size of the struc-
ture element Z . To eliminate the thin protrusions, narrow breaks, thin gulfs, small holes, etc. in the decision 
matrix H , the morphological operations are performed on the decision matrix H  by using the structure ele-
ment Z  with fixed size. The morphological operations lack adaptability for the fixed size of the structure ele-
ment Z , which affects the fusion result. It cannot eliminate the thin protrusions, narrow breaks, thin gulfs, small 
holes, etc. in the decision matrix H  completely. 

4.2   Quantitative Analysis 

For quantitative comparison, the quantitative results in two quality measures are shown in Table 1. The proposed 
method gains higher MI and /AB FQ  values than the other methods. The running times are also shown in Table 1. 

One can see that the proposed method needs longer running time than the other methods except for NSCT and 
RPCA, due to the computation of total EOG of the cartoon and texture components of the source images ac-
counts for the majority of the computational load.  
 

 

Fig. 6. The fused images ‘Disk’ obtained by DWT (a), NSCT (b), SF (c), PCA (d), RPCA (e), Proposed (f). 

 

Fig. 7. The fused images ‘Lab’ obtained by DWT (a), NSCT (b), SF (c), PCA (d), RPCA (e), Proposed (f). 
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Fig. 8. The difference images between the right focused source image ‘Lab’ and the corresponding fused images obtained 
by DWT (a), NSCT (b), SF (c), PCA (d), RPCA (e), Proposed (f). 

Table 1: The performance of different fusion methods for multi-focus image ‘Disk’ and ‘Lab’ 

Method  
Disk Lab 

MI 
/AB FQ Run-time (s) MI 

/AB FQ Run-time (s) 

DWT 5.36 0.64 0.64 6.47 0.69 0.59 

NSCT 5.88 0.67 463.20 6.95 0.71 468.51 

SF 7.00 0.68 1.01 7.94 0.72 1.03 

PCA 6.02 0.53 0.11 7.12 0.59 0.08 

RPCA 8.12 0.72 60.38 8.50 0.75 60.80 

Proposed 8.39 0.74 1.76 8.68 0.78 1.50 

5   Conclusion and Future Work 

In this paper, a novel multi-focus image fusion method is proposed to enhance the validity of focused regions 
extraction and blocking artifacts inhibition. The qualitative and quantitative evaluations have demonstrated that 
the proposed method can produce better fused image and significantly inhibit the blocking artifacts. But the 
proposed method is time-consuming for the computation of total EOG. In the future, we will consider optimiz-
ing the proposed method to reduce the computational cost and extending the developed method to the fusion of 
medical images. 
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