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Abstract. This work investigates a bio-inspired immune optimization algorithm in noisy environments, 
solving a class of chance-constrained programming problems with continuous decision variables but without 
any a priori distributional information on random variables. In this stochastic optimization method, an 
efficient adaptive sampling detection scheme is developed to detect individual’s reliability, while those high-
quality individuals in the current population can be identified based on the reported sample-allocation scheme; 
a clonal selection-based dynamical evolving mechanism is established to ensure evolving populations strong 
diversity, noisy suppression and rapidly moving one such population toward the desired region. The 
comparative experiments show that the proposed algorithm can effectively solve multi-modal chance-
constrained programming problems with high efficiency and is of the potential for engineering application.  

Keywords: Chance-constrained programming, immune optimization, reliability detection, sample-allocation, 
multimodality. 

1. Introduction 

Chance constrained programming (CCP) is originally introduced by Charnes and Cooper [1], involving in at 
least one chance constraint or probabilistic inequality. Solving such type of problem involves how to tackle three 
crucial issues: (i) efficient computational models for chance constraints, (ii) effective optimizers for rapidly 
finding the optimal solution, and (iii) identification between superior and inferior individuals. Although CCP was 
intensively studied by many mathematical researchers [2-4], few applicable optimization approaches have been 
reported for real-world chance-constrained programming problems such as control system design and electric 
power system dispatching. The main difficulty includes: (i) identifying individual’s reliability becomes difficult 
when random variables are without any a priori distribution information, and (ii) the reliable region is generally 
non-convex.  

Since the difficulty of solving CCP, many researchers [5-11] concerned with how to handle chance constraints 
under some special restrictions, e.g., normal distribution. In this way, some valuable optimization methods were 
developed such as convexity approximation [5-6], reliability-based optimization [7], robust approximation [8-9] 
and mixed-integer programming approaches [10-11]. Convexity approximation is an optimization tool using 
convexity constraints to approach the chance constraints; conversely, the reported reliability-based optimization 
[7] is to analytically transform the constraints into deterministic optimization models solved by mathematical 
programming approaches with single or double loop structures. Robust approximation as a distribution-free 
approach [9] is another alternative technique, in which the chance constraints are converted into robustness 
constraints; the main idea is to restrict the constraints to lie in an uncertainty set that is contained in the support, 
by ignoring the distributions of random variables. Mixed-integer programming approaches are to equivalently 
change CCP as a mixed-integer programming problem, and solve it by integer programming methods. Although 
these studies are valuable for the rapid development of CCP, many shortcomings need to be overcome, such as 
applicable scopes, sophisticated transformation, high computational complexity.  

Recently, a great amount of theoretical work on CCP has concentrated on how to investigate the relation 
between solutions for CCP and approximate optimization models related, in which Monte Carlo simulation 
played an important role in problem transformation. Correspondingly, such sample estimation methods as sample 
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average approximation (SAA) [12-15] and scenario approximation (SA) [16-18] were acquired to decide the 
precision of an approximate solution to the theoretical optimal solution. These studies require that all candidate 
solutions share the same large sample size, while CCP is replaced approximately by a deterministic optimization 
model after the random variables produce lots of observations. It is pointed out that although the Monte Carlo 
simulation as a popular tool is usually adopted to handle such random variables, it requires their sample sizes be 
large enough. This brings about expensive computational cost. Consequently, it becomes crucial how to control 
such sample sizes. On the other hand, Monte Carlo simulation based intelligent optimization methods are 
gaining great attention to researchers from the field of intelligent optimization, in which an important task is to 
investigate adaptive sampling strategies to suppress noisy  influence to the process of optimization [19-20]. 

Immune optimization as an important branch of artificial immune systems has been popular since 1990s, for 
which many outstanding achievements were demonstrated to be superior to some classical intelligent 
optimization tools [21-23]. However, many of such achievements can only cope with static or dynamic 
optimization problems; few optimization techniques are specially designed to handle CCP problems.  
Consequently, from the angle of application, it is desired to explore high-efficiency immune optimization 
approaches to cope with CCP problems. In this work, we investigated an adaptive sampling detection-based 
immune optimization approach (ASDIOA) to find CCP’s optimal solutions, and especially an efficient adaptive 
sampling detection approach was proposed based on Hoeffding’s inequality [24]. Similar to other immune 
optimization approaches, ASDIOA bases on some bio-inspirations from the clonal selection principle. These 
methods, however, are different, due to different applications. In ASDIOA, a special sample-allocation method 
(OCBA) [25], suitable for expected value optimization without any constraint, is adopted to allocate the sample 
size of population to different empirical reliable solutions so as to estimate empirical objective values of such 
solutions. On the other hand, the proposed adaptive sampling detection method is used to dynamically determine 
the sample sizes of candidates and the estimate of probability of any chance constraint. Compared to our 
previous optimizers, ASDIOA is more efficient and can achieve effective solution search. To our knowledge, its 
characteristics do not appear in the existing optimization approaches. 

2. Related Work 

2.1. Sampling Approaches 

In order to solve CCP problems, chance constraints should be well solved at first. There are two general ways to 
handle this kind of constraint. The first one is multi-dimensional integral which requires that we know their 
analytical formulations and distributional characteristics of random variables in advance. However, their 
analytical formulas are usually unknown in real world engineering applications. The second one is that those 
chance constraints are replaced by approximate models, for which the Monte Carlo simulation method is taken 
into account usually. However, it is difficult to decide the sample size of each random variable for a given 
candidate solution. To this point, many researchers made hard work under some special restrictions, and 
meanwhile some conclusions were drawn [12-18]. For example, after exhaustively discussing the relation 
between CCP and its related sample average approximation model, Luedtke and Ahmed [12] acquired an 
estimate of sample size under a high confidence level. One such estimate can guarantee that the sample average 
approximation model has a feasible solution close to the theoretical optimum. Campi and Calafiore [16] 
investigated the lower bound estimate of the number of convex constraints which replace the chance constraints. 
On the other hand, many other researches also tried to investigate how to dynamically decide sample sizes by 
means of special sampling techniques. Here, adaptive sampling [19-20] will become increasingly popular in the 
context of stochastic optimization, as different candidate solutions are attached different sample sizes. Such type 
of approach can heavily reduce computational cost and help for rapidly finding the optimum. For instance, Erick 
[19] studied an adaptive sampling technique that used a one-sided t-test to determine when to terminate the 
process of sampling; his experimental results suggested that such sampling method could adaptively determine 
the sample size of individual and thus might reduce computational cost. Higle and Zhao [20] examined 
experimentally the differences of adaptive and non-adaptive sampling schemes using two approaches of 
stochastic decomposition (SD) and SAA mentioned above. Their results show that there exists little difference 
between SD and SAA when only taking the quality of solution into account, but such two methods have different 
efficiencies, namely SAA results in high computational complexity but SD does not. In addition, ordinal 
optimization involves in an efficient sample estimation technique characterized by ordinal comparison. Chen [25] 
suggested an optimal computing budget allocation scheme (OCBA) for stochastic optimization but not for CCP, 
based on the Bayesian statistics. One such allocation scheme can allocate different sample sizes to different 
individuals, and especially better individuals can gain larger sample sizes. The experiments in such work showed 
that the approach was efficient. Subsequently, Lee et al. [26] proposed an extended version of OCBA for a class 
of stochastic optimization problems with stochastic constraints. 

In our previous work [22, 27], two kinds of adaptive sampling schemes were developed for stochastic 
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optimization problems. One is to decide the sample size of individual based on the hypothesis test, designed to 
emphasize that better individuals get larger sample sizes; the other is to control the sample size of individual by 
means of an a priori bound estimate, and meanwhile a reliability-dominance based adaptive sampling scheme 
allocates the sample size of population to different individuals.  

2.2 Intelligent Optimization Approaches Handling CCP 

From the viewpoint of optimization, although conventional numerical methods behave worse for nonlinear CCP, 
some advanced stochastic approaches have presented their potentials in the branch of intelligent optimization [15, 
28-31]. For example, Liu [15] investigated how artificial neural networks approached chance constraints, and 
used genetic algorithms to search the desired solution; Poojari et al.[28] developed two similar genetic 
algorithms (SSGA-A and SSGA-B) with the same static sampling scheme; He et al.[29] solved the chance-
constrained programming model of the vendor selection problem by an improved genetic algorithm; 
Udhayakumar et al.[30] utilized an extended genetic algorithm to handle the P-model of chance-constrained data 
envelopment problems; Luedtke [31] proposed a new branch-and-cut decomposition algorithm to deal with CCP 
problems with  discrete distributions, finite support and random polyhedral constraints. These achievements are 
valuable for CCP, but need to make some improvements on computational complexity. 

Recently, Zhao et al.[32] developed a hybrid immune optimization approach with a static sampling strategy to 
solve nonlinear CCP problems, in which the neural network was used to approach the expected value or 
probability functions, and meanwhile two operators of double cloning and double mutation were designed to 
accelerate the process of immune evolution. However, such approach needs an amount of runtime to simulate 
such functions. Our recent work [27, 33] also studied two adaptive sampling immune optimization algorithms 
and their theory for nonlinear joint and non-joint CCP. In such work, one of concerns is to investigate how to 
guarantee that all empirical individuals with different importance gain different sample sizes. However, some 
improvements need to be done, e.g., sampling efficiency and individual’s reliability detection.  

3. Problem Statement and Preliminaries 

Consider the following nonlinear chance-constrained programming problem: 
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with bounded and closed domain D in Rp, design vector x in D, random vector ξ in Rq and confidence levels αi in 
(0,1), where E [.] and Pr{.} are the operators of expectation and probability, respectively; f (x, ξ) and Gi (x, ξ) are 
the stochastic objective and constraint functions, respectively; gj(x) and hk(x) are the deterministic constraint 
functions. If a candidate solution satisfies all the above constraints, it is called a reliable solution, and an 
unreliable solution otherwise. Introduce the following constraint violation function to check whether candidate x 
is reliable: 
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  Obviously, x is reliable only when Γ(x) = 0. If Γ(x) <Γ(y), we prescribe that x is superior to y. 

Chen [25] developed a sample-allocation method (OCBA) to allocate a total sample size of population to 
different individuals so as to find the best solution. In the present work, OCBA is adopted to decide the sampling 
sizes of m empirically reliable candidates with a total sample size of T. More precisely, let A represent a 
population of the m candidates with sample size T, and N l 

j  the sample size of the j-th candidate at the moment l. 
l
iσ denotes the variance of observations for candidate i with sample size l

iN , and c stands for the best candidate 

whose empirical objective value is smallest in A. i,cδ is the Euclidian distance between candidates c and i in the 

design space. Thereafter, OCBA can be reformulated below: 

Step 1. Set 0←l . Each candidate in A creates m0 observations with == ll NN 21 ;... 0mN l
m ==  

Step 2. Decide the best candidate c through the empirical means of all candidates in A, and calculate ,, ,ici δσ  

;1 mi ≤≤  
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Step 3. If TN
m

1i

l
i > =

, this procedure ends, and outputs the empirical means of candidates in A; otherwise, go 

to Step 4;  

Step 4. Increase the computing budget by Δ , and decide miN l
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Step 5. If l
i

l
i NN >+1 , then },0max{ 11 l

i
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Theorem 1 (Hoeffding’s Inequality)[24]. If X1, X2,…, Xn are iid random variables with bXa i ≤≤  and 
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with probability at least 1-δ . 

4. Adaptive Sampling Detection for Chance Constraints 

Sample average approximation is a usual approach handling chance-constrained programming [10], in which 
Monte Carlo simulation is used to estimate the probability of a chance constraint under a given sample size. 
However, when intelligent optimization approaches solve an approximate model of such kind of problem, it is 
impossible to avoid identifying whether a candidate is reliable or not. If the candidate is empirically reliable, it is 
desired to attach a large sample size, as its empirical objective mean is expected to approach the theoretical mean 
as possible; conversely, it is not necessary to provide an empirically unreliable candidate with a large sample size. 
To this point, we develop a Hoeffding's inequality-based sampling detection scheme to decide the sample size for 
a candidate, and meanwhile detect whether such candidate satisfies a given chance constraint. More precisely, let 
T be a maximal sampling size of candidate x; α denotes the confidence level of a given chance constraint, 
satisfying Pr{g(x,ξ)≤0}≥α; pn(x) represents the probability estimate at the moment n  through Monte Carlo 
simulation. Thereafter, the sampling scheme, simply say adaptive sampling detection, is formulated as follows:  

Step 1. Input parameters: initial sample size m0, sampling amplitude λ, maximal sampling size T; 
Step 2. Set m=m0, s=m0; calculate the probability estimate pn(x) with m0 observations of candidate x; 
Step 3. End this procedure only when m>T or ( ) )m(ln)x(p n 2//2 δα >− ; 

Step 4. Set s←λs; 
Step 5. Create s observations of the candidate, and decide the successful rate, rn←w/s, where w denotes the 

number that the inequality, g(x,ξ)≤0, is true for the observations; 
Step 6. Update the probability estimate, i.e., pn(x)←(pn(x)×m+rns)/(m+s); 
Step 7. Set m←m+s, and return to Step 3. 

When all the candidates in a given population are attached the same maximal sample size T, the above 
procedure follows that different candidates get different sample sizes. Worse candidates gain smaller sample 
sizes. Here, candidate x is called empirically reliable if pn(x)≥α and the above deterministic constraints are 
satisfied; otherwise , it is said to be empirically unreliable. 

5. Algorithm Formulation and Design 

The clonal selection theory explains a biological phenomenon which antibodies respond to an antigen. It also 
hints a learning mechanism that the antigen can be gradually eliminated by some antibodies. To utilize such 
theory to design ASDIOA for CCP, a real-coded candidate is regarded as an antibody; the problem itself is 
viewed as the antigen. Based on the above OCBA, adaptive sampling detection and bio-immune inspirations, 
ASDIOA can be described in detail below: 
Step 1. Input parameters: population size N, initial sample size m0, sampling amplitude λ, computing budget Δ 

and maximal clonal size Cmax; 
Step 2.  Set n←1. Generate an initial population An of N random antibodies; 
Step 3. Calculate the probability estimate of each chance constraint in the above CCP for each antibody in An 

through the adaptive sampling detection with a maximal sample size, T=m0[(n+1)1/2+1]; detect whether 
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each antibody in An is empirically reliable through equation (1); 
Step 4. Divide An into empirically reliable sub-population Bn and unreliable sub-population Cn; 
Step 5. Allocate the sample size of population, T=m0|Bn|log(n+2), to each antibody in Bn through the above 

OCBA, and calculate the empirical objective values of all the antibodies; 
Step 6. Each antibody in Bn and Cn proliferates cl(x) clones with cl(x)= round (Cmax/(Γ(x)+1)+1), which creates a 

clonal population Dn, where round(z) is a maximal integer not beyond z;  
Step 7. Each clone in Dn shifts its genes through the conventional Gaussian mutation with a mutation rate 

pm=1/(Γmax-Γ(x)+1), where Γmax denotes the maximal of constraint violations for all the clones in Dn; 
thereafter, all mutated clones constitute En and execute evaluation through Steps 3 to 5 with n=1; 

Step 8.  Execute comparison between antibodies and their clones in An∪En. If some antibody in An is inferior to 
the best of its clones, such antibody is replaced by the best clone. This creates a new population An+1; 

Step 9.  If the termination criterion is not satisfied, then set n←n+1 and go to Step 3; otherwise, output the best 
antibody viewed as the optimal solution. 

In the above algorithm, after checking reliability for each antibody in An in step 3, two sub-populations evolve 
respectively toward different directions through steps 6 to 8. The empirical objective values of antibodies in step 
5 are decided through dynamically allocating a time-dependent population sample size to empirically reliable 
antibodies. Steps 6 and 7 urge high-quality antibodies to produce multiple clones with small mutation rates. 
Obviously, those survival and better antibodies can gain larger sample sizes when gradually increasing the 
iteration number n. Therefore, ASDIOA is a dynamically sampling optimizer.  

Theorem 2. ASDIOA’s computational complexity is )).log1(( maxmax0 CCnImNO ++  

  Proof. For a given population An with size N and maximal sample size T as in ASDIOA,  step 3 executes at most 
I×T times to create samples in the worst case, and hence the complexity is O(IN m0 (n+1)1/2) because of small J 
and K as in section 3; step 4 divides An into two sub-populations through N executions; step 5 computes the 
empirical objective means of empirically reliable antibodies in Bn with a total of evaluations, m0|Bn|log(n+2), and 
hence the complexity is O(Nm0log(n+2)) in the worst case. In addition, step 7 executes mutation with at most 
N(1+Cmax). In step 8, each clonal sub-population needs to execute comparison between antibodies with at most 
CmaxlogCmax times, and thus the complexity is (NCmaxlogCmax). Summarily, ASDIOA’s computational complexity 
in the worst case is decided by 
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6. Numerical Experiments 

In this experimental study, four representative intelligent algorithms suitable for CCP, i.e., one neural network-
based particle swarm optimization (HPSO) [35-36], two competitive steady genetic algorithms (SSGA-A and 
SSGA-B) [28] and one recent noisy immune optimization approach (NIOA) [33], are picked up to compare to 
ASDIOA by means of the following test examples. Our experiments are executed on a personal computer with 
CPU/3GHz and RAM/2 GB and also VC++. Especially, the three approaches of HPSO, SSGA-A and SSGA-B 
are static sampling optimization approaches with the same fixed sample size for each individual, whereas NIOA 
is an adaptive sampling optimization approach with a dynamic sample size for each individual. Their parameter 
settings are the same as those in their corresponding literature except their evolving population sizes. All the 
above algorithms take their population sizes 40, while respectively executing 30 times on each test problem. 
Their same termination criterion is that the total of evaluations of individuals during evolution is 107. Especially, 
HPSO is a BP neural network-based optimization approach, in which the total training sample size is set as 107. 
In ASDIOA, after experimental tuning we take m0=30, λ=1.5, Δ=20 and Cmax=2. In order to effectively execute 
comparison between the algorithms, each of those solutions, gotten by them is required to re-evaluate with the 
sample size 106. Here, we give a test criterion to examine whether the solutions satisfy the chance constraints; in 
other words, let Λ denote a solution set with size M and )( l

ip x  the probability estimate of the i-th chance 

constraint as in Section 2 for xl in Λ. The test criterion is designed as follows:  
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Example 1. Uncertain Feed mixer design [28] 
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Although this is a linear CCP problem with 4 decision variables, the five random variables influence the process 
of solution search seriously. It can be transformed into a deterministic optimization problem with the theoretical 
minimum 30.30 at the point (0.002, 0.733, 0.056, 0.209). However, in order to examine the performances of the 
above algorithms, we directly solve such problem. After respectively running 30 times, the algorithms can get 
their solution sets which provide us with some statistical results listed in Table 1. Figure 1 below shows the box 
plot of the results; Figure 2 displays their average search curves. 

Table 1. Comparison of statistical result for examp1e 1. 

Algorithm Max Min Mean Std.Dev CI IAE FR AR(s) 

HPSO 35.85 23.23 32.87 2.99 [31.80,33.94] 0.44 0% 15.5 

SSGA-A 30.71 30.24 30.45 0.13 [30.41,30.50] 0.05 0% 7.2 

SSGA-B 30.75 30.14 30.41 0.13 [30.36,30.45] 0.05 3% 7.3 

NIOA 30.36 30.02 30.24 0.08 [30.21,30.27] 0.07 7% 7.3 

ASDIOA 30.51 30.17 30.33 0.09 [30.30,30.36] 4.18×10-4 97% 6.7 
CI represents the confidence interval of empirically objective means for the 30 solutions acquired; IAE is computed through equation (3) for 
unreliable solutions gotten by a given algorithm; FR stands for the rate of reliable solutions among all the gotten solutions; AR is the average 
runtime after 30 runs for a given algorithm. 
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               Fig. 1. Example 1: Box-plot.                                           Fig 2. Example 1: Average search curves. 

In Table 1, the values on FR, listed in the eighth column hint that HPSO and SSGA-A can not find reliable 
solutions and that SSGA-B and NIOA can only get a few reliable solutions, whereas the solutions gotten by 
ASDIOA are almost reliable. On the other hand, the values on IAE in the seventh column show that ASDIOA 
only causes the smallest constraint violation for the chance constraints, which indicates that the adaptive 
sampling detection as in section 3 can effectively handle the chance constraints. However, those compared 
approaches are difficult in solving such kind of constraint. It seems to be true that all the algorithms but HPSO 
have almost the same solution quality through the values as in columns 4 and 6. In fact, as associated to their 
constraint violations (IAE) and the theoretical minimum, ASDIOA has the best solution quality obviously; 
especially, the values on CI hint that the minimum, 30.30, is included in the narrow confidence interval obtained 
by ASDIOA, but other algorithms are difficult. In addition, apart from HPSO, the other three algorithms can also 
gain better solution qualities.  

Through columns 2, 3, 5 and 6, we can get the conclusion that all the algorithms but HPSO have relatively 
stable search performances. The statistical box-plots of the empirical objective values in Figure 1, acquired by 
the algorithms after 30 executions illustrate a fact that NIOA and ASDIOA can obtain similar effects superior to 
those gained by other algorithms, and meanwhile their objective values cover small scopes. By Figure 2, we also 
note that ASDIOA is convergent, and HPSO can only achieve local solution search; relatively, ASDIOA is a 
rapid search procedure. Lastly, the values on AR, listed in the ninth column present clearly that all the algorithms 
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but HPSO have high search efficiencies; HPSO spends much more than runtime to solve the above problem than 
each of other algorithms.  

Example 2. Uncertain multi-modal optimization 
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This is a multimodal chance-constrained programming problem gotten through modifying a static multimodal 
optimization problem [34], where 3 decision variables and 4 random variables are included. The main difficulty 
of solving such problem involves two aspects: (i) the original static problem has multiple local optima, and (ii) 
the above problem involves in multiple kinds of random variables. Like the above experiment, the approaches 
can get their statistical results (Table 2) and performance curves (Figures 3 and 4) after 30 runs. 

Table 2.  Comparison of statistical result for example 2. 

Algorithm Max Min Mean Std.Dev CI IAE FR AR(s) 

HPSO 11.09 -4.41 3.11 4.20 [1.60,4.61] 0.06 0.80 10.0 

SSGA-A 10.08 7.51 9.07 0.59 [8.86,9.28] 0.03 0.80 7.1 

SSGA-B 10.10 6.47 8.85 0.74 [8.58,9.12] 0.03 0.87 7.1 

NIOA 9.88 9.23 9.55 0.15 [9.50,9.61] 0.06 0.67 7.1 

ASDIOA 10.08 9.47 9.82 0.18 [9.75,9.86] 2.17×10-3 0.93 6.3 

Following Table 2, the values on FR show that the above algorithms can all find some reliable solutions after 
30 runs; relatively, ASDIOA is more effective. As related to the values listed in the seventh column, we notice 
that the approaches can almost handle the above chance constraints; especially, ASDIOA’s adaptive sampling 
detection has presented its prominent performance with the aspect of dealing with the chance constraints. On the 
other hand, we can acquire significantly different solution qualities for the algorithms by means of the statistical 
results given in columns 2 to 6. In other words, ASDIOA’s solution quality is significantly superior to those 
acquired by other approaches; NIOA is secondary, and HPSO is worst (see Figure 3). We also observe that 
ASDIOA has presented its strong and stable evolving ability of searching the optimum (see Figure 4), as it can 
get the largest objective value and the narrowest confidence interval.  
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                             Fig 3. Example 2: Box-plot.                                        Fig 4. Example 2: Average search curves. 

Figure 4 indicates that NIOA and ASDIOA are convergent but other algorithms get into local search. This 
illustrates that the adaptive sampling schemes presented in NIOA and ASDIOA can help these two algorithms 
improve their solution qualities. Additionally, we can get the same conclusion on performance efficiency as that 
given in Example 1, namely ASDIOA spends the least time to execute the process of solution search but HPSO 
is worst when doing so.  

Example 3. Uncertain Multi-modal optimization 
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This is a multimodal chance-constrained programming problem gotten by inserting random variables into a static 
multimodal optimization problem [37], where 2 decision variables and 3 random variables are included. Like the 
above experiment, the five approaches acquire their respective experimental results listed in Table 3 below, and 
meanwhile their performance curves are drawn in Figures 5 and 6. 

Table 3.  Comparison of statistical result for example 3. 

Algorithm Max Min Mean Std.Dev CI IAE FR AR(s) 

HPSO 28.82 4.52 18.01 6.02 [15.86,20.17] 0.0 1.0 6.1 

SSGA-A 15.57 15.46 15.52 0.02 [15.51,15.53] 0.0 1.0 4.3 

SSGA-B 19.07 15.49 16.25 1.34 [15.77,16.73] 0.0 1.0 4.3 

NIOA 15.70 15.57 15.63 0.03 [15.62,15.64] 0.0 1.0 4.1 

ASDIOA 4.74 4.41 4.58 0.08 [4.55,4.61] 0.0 1.0 2.9 

Relying upon Table 3, the values on FR illustrate that all the algorithms can find reliable solutions during 30 
runs. As a result, the values on IAE, listed in the seventh column illustrate that the approaches can all handle the 
above chance constraints. However, only depending on the values on FR and IAE, it is impossible to distinguish 
the performances between the five algorithms. In fact, these approaches have significantly different solution 
qualities through the statistical results given in columns 2 to 6. In other words, ASDIOA’s solution quality is 
superior to those obtained by other algorithms, since its solutions are close to the global optimal solution; other 
algorithms can only find local optimal solutions, since they get easily into local search. Consequently, from the 
viewpoint of solution quality, ASDIOA is best; NIOA is secondary, and HPSO is worst (see Figure 5). On the 
other hand, the values on AR, listed in the ninth column show clearly that ASDIOA has the highest search 
efficiency; NIOA, SSGA-A and SSGA-B have similar efficiencies; HPSO spends the more time to solve the 
problem than each of other algorithms. 
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Fig 5. Example 3: Box-plot.                                                Fig 6. Example 3：Average search curves. 

As associated to Figure 5, we can see that only ASDIOA can find some solutions close to the global optimal 
solution, while NIOA, SSGA-A and SSGA-B can only converge to the local optimum, and HPSO can not 
converge. Through the average search curves (see Figure 6), it is clear that ASDIOA displays its fast and stable 
ability of searching the optimum. Figure 6 also hints that ASDIOA is convergent, but other algorithms can only 
get into local search. 

Example 4. Car side-impact problem [7] 
The car side-impact problem is described by a stochastic programming model. It includes 7 decision variables (x1, 
x2,…, x7),  4 random variables (ξ1, ξ2, ξ3, ξ4) and 10 stochastic constraints. Such programming model is given by 
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We transform the ten stochastic constraints into chance constraints with the same confidence level α . In this 
experiment, we take 8.0=α . Similar to the experiments above, the five approaches obtain their respective 
statistical results listed in Table 4, and correspondingly their performance curves are given in Figures 7 and 8. 

Table 4.  Comparison of statistical result for example 4. 

Algorithm Max Min Mean Std.Dev CI IAE FR AR(s) 

HPSO 13.75 10.45 12.01 0.79 [11.73, 12.30] 0.80 0.00 9.8 

SSGA-A 24.71 24.51 24.58 0.04 [24.57, 24.59] 0.03 0.00 5.1 

SSGA-B 24.64 24.50  24.58 0.04 [24.56, 24.59] 0.03 0.00 5.1 

NIOA 24.76 24.54 24.66 0.06 [24.64, 24.68] 0.06 0.13 5.2 

ASDIOA 28.02 25.82 27.03 0.54 [26.83, 27.22] 2.75×10-4 0.93 5.1 
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Fig 7. Example 4: Box-plot.                                             Fig 8. Example 4: Average search curves. 

As is shown in Table 4, the values on FR, displayed in the eighth column present that 93% of the solutions 
gotten by ASDIOA are reliable, and meanwhile only 13% of the solutions gained by NIOA are reliable. 
Unfortunately,  NPSO, SSGA-A and SSGA-B can not find reliable solutions. Especially, the values on IAE as in 
the seventh column illustrate that the solutions obtained by all the algorithms but HPSO are almost located at the 
boundary of the reliable region. It seems that ASDIOA can only find worse solutions and has the inferior search 
performance than each of NIOA, SSGA-A and SSGA-B, since it can only obtain a larger objective mean. In fact, 
as associated to the values on FR, we see that ASDIOA can get the better solution quality than each of them. 
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Thereby, we can draw the conclusion that with respect of solution quality, ASDIOA is best and HPSO is worst. 
On the other hand, we also observe that NIOA, SSGA-A, SSGA-B and ASDIOA are of the almost same 
efficiency, whereas HPSO needs much more than runtime to solve the above problem. In addition, it seems that 
the same conclusion can be drawn by means of Figures 7 and 8, namely ASDIOA can only acquire the worst 
solution quality and get easily into local search. This is not right basically, as the solutions by all the approaches 
but ASDIOA are almost unreliable solutions.  

7. Conclusions 

In real-world engineering optimization, lots of problems can be described by CCP models. With the increasing 
requirement of handling uncertain optimization problems, solving CCP will become popular in the field of 
intelligent optimization. Thus, inspired by the dynamic characteristics and mechanisms of the immune system, 
this work focuses on probing into a bio-inspired immune optimization algorithm in noisy environments for a 
class of CCP problems without any a priori noisy information. Especially, an efficient adaptive sampling 
detection scheme is developed to handle chance constraints, while the existing OCBA is used to make high-
quality individuals gain large sample sizes. Such algorithm is an optimizer capable of effectively executing noisy 
suppression, adaptive sample-allocation and chance constraint handling. The experimental results hint that the 
proposed approach is a competitive, effective and efficient optimizer.  
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