
Digit-Serial Systolic Karatsuba Multiplier for Special Classes over GF(2m) 

Che Wun Chiou1*     Chiou-Yng Lee2     Jim-Min Lin3     Yun-Chi Yeh4  

Hung Wei Chang5     Liuh-Chii Lin4 

1 Department of Computer Science and Information Engineering, Chien Hsin University of Science and Technology 

Taoyuan City 32097, Taiwan 

cwchiou@uch.edu.tw  

2 Department of Computer Information and Network Engineering, Lunghwa University of Science and Technology 

Taoyuan City 33306, Taiwan 

PP010@mail.lhu.edu.tw 

3 Department of Information Engineering and Computer Science, Feng Chia University 

Taichung City 407, Taiwan 

jimmy@fcu.edu.tw 

4 
Department of Electronic Engineering, Chien Hsin University of Science and Technology 

Jhong-Li 32097, Taiwan 

{yunchi, chiilin}@uch.edu.tw 

5 SW Architect, Top Victory Electronics (Taiwan) Co., Ltd. 

New Taipei City 23553, Taiwan 

marvin1117@gmail.com 

Received  29 August 2014;  Revised  23 September 2014  ;  Accepted 20 March 2015  

Abstract. Finite field multiplication over GF(2m) is one of the most important arithmetic operations for Ellip-
tic Curve Cryptosystem (ECC). Polynomial basis multipliers over GF(2m) are widely applied in ECC due to 
its regular, modular, easily expansible benefits and the high suitability for VLSI implementation. This study 
will present a novel digit-serial polynomial basis multiplier using Karatsuba algorithm representation. To 
achieve efficient architectures, our proposed digit-serial architecture is different from existing digit-serial 
polynomial basis multipliers that use cut-set algorithm. The proposed digit-serial polynomial basis multiplier 
saves 90% space complexity as compared to existing similar studies. Existing digit-serial polynomial basis 
multipliers employ one dimensional array of digit cells, but our proposed digit-serial polynomial basis multi-
plier uses only one digit cell.  

Keywords: Karatsuba algorithm, elliptic curve cryptosystem, finite field multiplication, digit-serial multipli-
er, systolic. 

1   Introduction 

Finite field arithmetic operations have played an important role in many applications, e.g., error-correcting code 
[1], digital signal processing [2], and cryptography [3]. Public-key cryptosystems such as elliptic curve cryp-
tosystem (ECC) [4,5], hyperelliptic curve cryptosystem (HECC) [6], and pairing based cryptosystem [7] have 
become increasingly popular in the last few years. Elliptic curve cryptosystem was suggested in 1985 by Victor 
Miller [4] and Neil Koblitz [5] as an alternative mechanism for implementing public-key cryptosystem. Elliptic 
curve cryptosystem relies on the believed difficulty of the elliptic curve discrete logarithm for its security. Today, 
due to the high level of security with relatively small keys provided by ECC, ECC has gained increasing ac-
ceptance and has been the subject of several standards in the industry and the academic community. The perfor-
mance of these public-key cryptosystems are highly dependent on the efficiency of finite field arithmetic over 
prime field GF(p), characteristic two field GF(2m), and characteristic three field GF(3m). Due to advantages of 
low hardware cost and fast execution time, GF(2m) arithmetic is often chosen for realizing these public-key 
cryptosystems. Finite field arithmetic operations in GF(2m) may generally include addition, multiplication, mul-
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tiplicative inversion, division, and exponentiation. Addition is actually a simple bit independent XOR operation. 
The other operations, i.e., multiplicative inversion, division, and exponentiation, are much more sophisticated. 
Fortunately, these operations could be performed by repeating a multiply-square algorithm. Thus, finite field 
multiplication is actually the most critical arithmetic operation in GF(2m).  

The efficiency of finite field multiplication in GF(2m) is deeply relied on how elements are represented. There 
are three major basis representations: polynomial basis (PB) [8-22], dual basis (DB) [23-27], and normal basis 
(NB) [10, 27-35]. Each basis has its own features. DB multipliers have smaller chip area than that of the multi-
pliers of the other two bases. The major merit of NB architectures is that squaring could be simply performed 
just by cyclically shifting its binary form. Therefore, NB multipliers are effective and efficient for performing 
multiplicative inversion, squaring, and exponentiation operations. PB multipliers own the major features of sim-
plicity, regularity, and modularity. Thus, PB multipliers are particularly suited to VLSI implementation. 

Typically, multipliers in GF(2m) can be classified into four types: bit-serial [25,26], bit-parallel 
[10,12,14,23,27,35], hybrid [13,15], and digit-serial [16-19]. Bit-serial multipliers iteratively generate a result bit 
per clock cycle and thus have the advantage of low hardware cost. Bit-parallel multipliers generate all result bits 
in parallel in the same single clock cycle and therefore have higher hardware cost. Hybrid multipliers in [15] can 
be used to design subquadratic space complexity multipliers using various bases. Digit-serial multipliers give a 
designer the flexibility of making trade-offs between speed and space. Digit-serial multipliers are practical for 
resource constrained devices, like smart phones. However, existing digit-serial PB multipliers [16-19] realized 
digit-serial architecture with one dimensional array of digit cells. To overcome this problem, our proposed digit-
serial multiplier uses only one digit cell. Therefore, the proposed digit-serial multiplier has lower space com-
plexity than the existing similar multipliers. 

Karatsuba method [36] is a fast multiplication algorithm for multi-precision numbers with O(m1.58) asymptotic 
complexity as compared to the schoolbook multiplication method with O(m2) complexity [37]. Applying the 
concept of Karatsuba algorithm, finite field multiplications in GF(2m) were proposed in [20,38,39,40]. Zhou et 
al. [20] applied Karatsuba-Ofman algorithm to give efficient bit-parallel polynomial basis multipliers. Beuchat 
et al. [41] developed Karatsuba-Ofman multipliers over GF(3m) for accelerating the Tate Pairing in supersingu-
lar elliptic curves. Ghosh et al. [42] proposed a first 128-bit secure ηT pairing over GF(2m) for supersingular 
elliptic curves.  Morales-Sandoval [43] utilized linear feedback shift registers for designing digit-serial GF(2m) 
Montgomery multipliers. Chen et al. [44] employed Toeplitz matrix for developing scalable and systolic Mont-
gomery multipliers. These bit-parallel Karatsuba multipliers suffer from the problem of long gate delay. This 
study presents a novel systolic Karatsuba digit-serial PB multiplier with the features of low hardware cost and 
short gate delay. The proposed digit-serial PB multiplier will reduce a 2d×2d array to a d×d array by using the 
Karatsuba algorithm for further reduction of space complexity. 

 Kim et al. [17] proposed a systolic digit-serial multiplier for finite field GF(2m) by applying the cut-set sys-
tolization technique for obtaining less delay time than previously proposed similar multipliers. Talapatra et al. 
[19] presented an efficient digit-serial Montgomery multiplier for all-one polynomial over GF(2m). These exist-
ing digit-serial multipliers employ one-dimensional array of digit cells. However, low-hardware cost design of 
multipliers in GF(2m) is very important in resource-limited mobile devices such as smart phones for E-commerce. 
Thus, the motivation of this study is to develop a low-cost multiplier for resource-limited mobile devices. In this 
paper, the proposed digit-serial multiplier uses one digit cell other than one-dimensional array of digit cells in 
existing similar multipliers for achieving low hardware cost design.  

Two major contributions of this study are listed as follows: 
(a) It is the first digit-serial PB multiplier that uses only one digit cell, while the existing similar architectures 

employ one-dimensional array of digit cells. Obviously, the proposed digit-serial multiplier has lower space 
complexity. 

(b) It is the first digit-serial PB multiplier that uses the Karatsuba algorithm to reduce 2d×2d array to a d×d 
array.  

  The rest of this paper is organized as follows. Section 2 describes a systolic bit-parallel PB multiplier using 
Karatsuba algorithm. Section 3 proposes the novel systolic digit-serial PB multiplier using Karatsuba algorithm. 
The comparing results are then discussed in Section 4. A brief conclusion is finally made in Section 5. 

2   Finite Field Multiplication and Systolic Bit-Parallel PB Multiplier Using Karatsuba 
Algorithm 

This section will briefly review the traditional finite field polynomial basis multiplication over GF(2m),  and  will 
propose a systolic bit-parallel PB multiplier using Karatsuba algorithm. Based on such bit-parallel PB multiplier, 
the proposed digit-serial PB multiplier will be introduced in the next section. 
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2.1 Finite Field Multiplication 

The finite field GF(2m) contains 2m elements. GF(2m) is an extension field of the ground field GF(2) of 2 ele-
ments, i.e., GF(2)={0,1}. GF(2m) is a vector space over GF(2). All arithmetic operations over GF(2m) are carried 
out by taking the results modulo 2. Suppose that the finite field GF(2m) is generated by the irreducible polyno-
mial mm

m xxpxpxppxP +++++= −
−

1
1

2
2

1
10 ...)(  of degree m over GF(2). 

Let A(x), B(x), C(x) be elements over GF(2m), where C(x) is the product of A(x) and B(x), i.e., C(x)=A(x)B(x) 
mod P(x). Then A(x), B(x), C(x) can be expressed as follows: 
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C(x) is the product of A(x) and B(x). Then, we have 
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For clarity, let us note that A(x), B(x), C(x), and P(x) are simplified to A, B, C, and P in the remaining of the 
paper.  Finite field multiplication over GF(2m) is different from standard integer multiplication. There are a lim-
ited number of elements in the finite field and all operations performed in the finite field result in an element 
within that field. Finite field multiplication is multiplication modulo P used to define the finite field. 

2.2 Systolic Bit-Parallel PB Multiplier Using Karatsuba Algorithm 

Using summation equation, A and B are expressed as 
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 Assume that, both elements A and B can be subdivided into two parts as follows. 
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By using Karatsuba algorithm, the product C is computed as follows. 
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where 

LLLL BAC = , 

( )( ) HHLLHLHLLH BABABBAAC ++++= , 
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The Reduction(H) operation denotes H mod P. According to Eq. (5), the Karatsuba algorithm for polynomial 
basis multiplication is described as follows: 

 
Algorithm KA(A(x),B(x),h) 
INPUT: Polynomials A(x), B(x), P(x) 
OUTPUT: C(x)=A(x)B(x) mod P(x) 
If  h<m/2 then return 0 
If h is even then h=h+1 
Let A(x)=AL(x)+AH(x)xh/2 and B(x)=BL(x)+BH(x)xh/2 
D1=KA(AL(x),BL(x),h/2) 
D2=KA(AL(x)+AH(x),BL(x)+BH(x),h/2) 
D3=KA(AH(x),BH(x),h/2) 
Return (D1+(D2+D1+D3)xh/2+D3xh) mod P(x) 
 
Algorithm KA(A(x),B(x),m) is applied for giving the product C(x).  Based on Eq. (5), an m×m multiplication 

can be performed by the following operations: 

(1) Two 
22

mm ×  multiplications for LLBA and HH BA . 

(2) Two XOR operations for ( )HL AA +  and ( )HL BB + . 

(3) One 
22

mm ×  multiplication for ( )HL AA +  and ( )HL BB + . 

(4) Five XOR operations for summing partial results. 
Three multiplications LLBA , HH BA , and ( )( )HLHL BBAA ++  can sequentially employ the same multiplier for 

saving hardware cost and area. The hardware architecture for Eq. (5) is shown in Fig.1. It is noted that only the 

22

mm ×  multiplier is used in bit-parallel PB multiplier using Karatsuba algorithm while the m×m multiplier is 

utilized in a traditional bit-parallel multiplier. The bit-parallel PB multiplier using Karatsuba algorithm requires 
seven XOR operations, but traditional bit-parallel multipliers do not need. However, XOR operation is much 
simpler than multiplication. Thus, bit-parallel PB multiplier using Karatsuba algorithm could have lower space 

and time complexities than traditional ones if systolic array architecture is used in the 
22

mm ×  multiplier in Fig.1. 

3   Proposed Systolic Digit-Serial PB Multiplier Using Karatsuba Algorithm 

Considering the trade-offs between area and speed, digit-serial PB multiplier gives a proper solution for imple-
menting cryptosystem in a hardware resource constrained environment, such as handheld devices. Traditional 
digit-serial PB multipliers can be further reduced on both space and time complexities by using Karatsuba algo-
rithm. This novel digit-serial PB multiplier using Karatsuba algorithm will be presented in this section. 

3.1   The Proposed Multiplier Using Karatsuba Algorithm 

Elements A and B are represented in digit-serial form as follows. If each digit is represented with 2d bits and 
thus n (n=  m/2d ) digits are obtained. 
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AL 
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XOR 
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XOR XOR
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m/2-bit Reduction Table 

XOR

C3 C4C1 C2 

Multiplier PB Systolic 
22
mm ×

CLH

Fig.1. Systolic bit-parallel PB multiplier using Karatsuba algorithm 

AL,AH,BL,BH: m/2 bits 
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where jiij BAC = . 

Eq.(7) can be rewritten as follows. 
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Each sub-product term ABj ( 10 −≤≤ nj ) in Eq.(8) can be computed in same way as follows. 
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Subsequently, the computation form of ijC  can be simplified by the Karatsuba algorithm as follows. Firstly, 

both Ai and Bj are subdivided into two parts, 

,

,
d

jHjLj

d
iHiLi

xBBB

xAAA

+=

+=
 

(10)

. and ,, , where
1

0
2

1

0
2

1

0
2

1

0
2 

−

=
++

−

=
+

−

=
++

−

=
+ ====

d

k

k
kdjdjH

d

k

k
kjdjL

d

k

k
kdidiH

d

k

k
kidiL xbBxbBxaAxaA  

( )( )
( )( )( )

,2321

2

d
ij

d
ijij

d
jHiH

d
jHiHjLiLjHjLiHiLjLiL

d
jHjL

d
iHiL

ji

ij

xCxCC

xBAxBABABBAABA

xBBxAA

BA

C

++=

++++++=

++=

=

 

(11)

where ,1
jLiLij BAC =  ( )( ) ,312

ijijjHjLiHiLij CCBBAAC ++++= and .3
jHiHij BAC =  

  One systolic bit-parallel d×d multiplier is then designed for implementing Eq.(11). Let BA  and  be d-bit el-

ements and C  be their 2d-bit product. Therefore, this systolic bit-parallel d×d multiplier could be designed 
according to the following equations.  
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where 
1

1

−

−=
i

k

i

k bb  for dk ≤≤1 . 

Based on Eqs. (12) and (14), the semi-systolic d×d bit-parallel PB multiplier is shown in Fig.2. The circuit for 
realizing U cell is drawn in Fig.3. By employing d×d bit-parallel PB multiplier in Fig.3, the proposed systolic 
2d×2d bit-parallel PB multiplier based on Eq.(11) is shown in Fig.4. According to Eqs. (8) and (9), the proposed 
systolic digit-serial PB multiplier using 2d×2d bit-parallel PB multiplier is depicted in Fig.5.  The Feedback 

barrel shifter in Fig.5 performs multiplication-summation-shift operation such as KHx d +2  and is shown in 
Fig.6. The Mod Function in Fig.6 has 2d inputs and obtains m outputs after carrying out the function: 

( ) Pxcxcxc dm
dm

m
m

m
m  mod  ... 12

12
1

1
−+

−+
+

+ +++ . The Mod Function depends on P. Based on the multiplier in Fig.5, 

the digit-serial PB multiplication algorithm using Karatsuba algorithm is illustrated in the Algorithm-DSMK. 
The multiplication operation A[i]×B[j] is carried out on the systolic 2d×2d PB multiplier in Fig.4. The Shift 
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function performs the operation dx2×  appeared in Eqs. (8) and (9), and is applied to the Feedback barrel shifter 
in Fig.6. The calculation of mod P is carried out by the Mod Function. 

 
Algorithm-DSMK 
C1=0; 
For j=n-1 To 0 Do 
  Begin 
    C2=0; 
    For i=n-1 To 0 Do 
      Begin 
        C2=(Shift(C2)+ A[i]*B[j]) mod P; 
      End; 
    C1=(Shift(C1)+C2) mod P; 
  End; 
 
  The computation of Mod Function is dependent on the module, P. Inputs of the Mod Function are weighted 

with the coefficients: 
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+ . Three popular irre-

ducible polynomials for P: all one polynomial (AOP), trinomial, and pentanomial, will be discussed in the fol-
lowing subsection. 

 

 
 

 

 

U0,0 U0,1 U0,2 U0,d-1

U1,0 U1,1 U1,2 U1,d-1 

U2,0 U2,1 U2,2 U2,d-1 

Ud-1,0 Ud-1,1 Ud-1,2 Ud-1,d-1 

00 0 0 0b  1b 2b  1−db

0a

1a  

0c  1c
2c 1−dc dc 1+dc 22 −dc  

2a

1−da

D D

Fig.3. The detailed circuit of U cell 
Note: D represents D flip-flop 

Fig.2. The proposed semi-systolic d×d bit-parallel PB multiplier. 
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The semi-systolic d×d bit-parallel PB multiplier (Fig.2)

XOR

REG

REG 

REG

XOR XOR
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AiL BjL 

AiH BjH 

AiL AiH

AiL+AiH

AiL+AiH BjL+BjH

Cij

Fig.4. The proposed systolic 2d×2d PB multiplier 

XOR

BjL+BjH 

BjL BjH 

The systolic 2d×2d PB multiplier (Fig.4)

Feedback barrel shifter 

An-1 Bn-1

An-2 Bn-1

A0 Bn-1

An-1 Bn-2

An-2 Bn-2

A0 Bn-2

An-1 B0

An-2 B0

A0 B0

C 

Fig.5. The proposed systolic digit-serial PB multiplier with each digit 2d bits. 
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3.2 The Mod Function for AOP, Trinomial, and Pentanomial Classes 

Three cases are discussed separately.  
(1) AOP 

If P has the form: mm xxxxP +++++= −12 ...1 , it is termed all one polynomial. In this case, one has the fol-
lowing properties: 

(a) 12 ...1 −++++= mm xxxx , 
(b) xm+1=1. 
Based on the above properties, the outputs ( 1-mi0for   ≤≤if ) and the inputs ( 1-2di0for   ≤≤it ) will hold 

the following relations: 
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The circuit for realizing the above equation is drawn in Fig.7. It requires 2d-1 XOR gates. 

 
(2) Trinomial  

  The P with the form: ( ) 1++= km xxxP ( 11 −≤≤ mk ) is called trinomial. In this case, one has the following 

properties: 

(a) 1+= km xx , 

(b) iikim xxx += ++  for 120 −≤≤ di . 
Depending on value of k, the following cases will be discussed. 
(i) dk 2<  
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Fig.6. Feedback barrel shifter 
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t0 t1 
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t0 t1 t2 t2d-1 

f0 f1 f2d-2 f2d-1 f2d fm-1 

Fig. 7. Circuit of the Mod Function for AOP 
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The circuit for the Mod Function in this case is shown in Fig.8(a). 
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The circuit of the Mod Function in this case is depicted in Fig.8(b). 

 
 (iii) 12 −<≤− mkdm  
Let kmh −−= 1 , two sub-cases will be further discussed. 

(a) iikim xxx += ++  for hi ≤≤0  
hi0for   ≤≤= ii tf , and hi0for   ≤≤=+ iik tf . 

(b) ikim xxx += ++ 1  for 121 −≤≤+ dih , and 111 ++++++++ += hihikhim xxx  for 1120 −−−≤≤ hdi . 
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f2d-k-1 
f2d-k 

t2d-k+1

f2d-k+1 f2d+1
fk+2d-1

0 0 0 

fk+2d 
fk+2d+1 

Fig. 8(a). Circuit of the Mod Function for trinomial with k<2d 

t0 t1 

f0 f1 fm-1

t2d-1 

0 0 0

fk+2d+1 f2d-1 f2d f2d+1 fk-1

0 0 0

fk fk+1 fk+2d-1 fk+2d 

Fig. 8(b). Circuit of Mod Function for trinomial with 122 −−≤≤ dmkd  
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−
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−+
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2
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i

kmii

i

t

tt
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tt

f  

(18)

The circuit of the Mod Function in case (iii) is shown in Fig.8(c). 

 
(3) Pentanomial  

If 1123 ++++= kkkm xxxxP  ( 0123 >>> kkk ), it is called pentanomial. In this case, the proper-

ty: 1123 +++= kkkm xxxx  is held. For saving space complexity, proper selection of k3 with m-k3<2d is em-
ployed in this study. The relations between outputs and inputs of the Mod Function are described as follows. 
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 k3,i and 2d,k2ik2 k1,i 2d,i if    

2d,k3ik3 and 2d,k2ik2 2d,k1ik1 2d,i if      

 k3,i and 2d,k2ik2 2d,k1ik1 2d,i if                

 k2,i and 2d,k1ik1 2d,i if                          

    2d,k3ik32d,k2ik2 and 2d,k1ik1 2d,i if 

k3i and 2d,k2ik2 2d,k1ik1 2d,i if           
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  k1,i and 2di if                               

3
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                                    2
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kii
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t
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(19)

To illustrate the circuit of the Mod Function in this case, an example with the proper P=x16+x5+x3+x+1 and 
2d=4 is selected. The circuit for this example is shown in Fig. 9. 

 

t0 t1 

f0 
f1 

fm-1 

t2d-1 

0 0

f2d-1
f2d

f2d+1

fk-1 

0

fk+1 f2d+2k-m 

t0 tm-k 
t1 
tm-k+1 

t2d+k-m-1 
t2d-1 

f2d+k-m-1 
f2d+k-m 

t2d+k-m 

f2d+k-m+1

t2d+k-m+1 

t2d-1 

fk f2d+2k-m-1 

t2d+k-m

t2d+k-m+1 

f2d+2k-m+1 

tm-k-1 

Fig. 8(c). Circuit of the Mod Function for trinomial with 12 −<≤− mkdm . 

t0 t1 

f0 f1 

t2 

Fig. 9. Circuit of the Mod Function for the pentanomial P=x16+x5+x3+x+1 and 2d=4 

t3 

f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15
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4 Comparison Results 

For comparison with other similar studies, the following transistor-count assumptions were made for VLSI im-
plementation: w-input AND gate, D flip-flop, 2-to-1 multiplexer, and 2-input XOR gate are composed of 2w+2, 
18, 6, and 12 transistors, respectively [45]. The w-input XOR gate (w>2) is assumed to be realized by a binary 
2-input XOR tree.  

  Comparing results of our proposed multiplier with similar studies for space complexity are listed in Table 1. 
Comparisons for the m values suggested by NIST for space complexity are depicted in Table 2. Results show 
that our proposed digit-serial PB multiplier can save 90% space complexity in average while comparing with the 
Talapatra multiplier in [19]. Comparison of time complexity is illustrated in Table 3. The proposed multiplier is 
simulated on Stratix II F1508 ASIC Prototyping Board which uses Altera EP2S180F1508 FPGA chip. The sim-
ulated results are listed in Table 4. Due to the limited resource of EP2S180F1508C5 chip, only cases of m=163 
and m=233 have been completed, other cases are failed to compile. The simulated results show that our pro-
posed multiplier saves about 58% space complexity but has same time complexity. Fig.10 shows the numbers of 
consumed ALUTs and pins of EP2S180F1508C5 for Talapatra multiplier [19] and our proposed multiplier. The 
total pin number of EP2S180F1508C5 is 1171 and the proposed multiplier saves about 20% pins as compared to 
the Talapatra multiplier [19]. Figure 11 shows that our proposed multiplier has lower space complexity than 
Talapatra multiplier [19] as m is ranged from 55 up to 955 for digit size being16 bits. 

 
 

Table 1. Comparisons on space complexities of various systolic digit-serial PB multipliers with digit size=2d. 

Multipliers Kim et al. [17] Talapatra et al. 
(Figs.4 & 5 in [19])

The proposed multiplier (Fig.5)

One-dimensional array Yes Yes No 
Generating polynomial General poly-

nomial 
Special polyno-

mial:AOP 
Special polynomials: AOP, tri-

nomial, pentanomial 
Number of digit cells n n 1 

Array type of digit cell Systolic Systolic Semi-systolic 
Number of bit cells in dig-

it cell 
2d×2d 2d×2d d×d 

Space complexity of  digit 
cells 

8nd2 AND2 4nd2 AND2 d2 AND2 

8nd2 XOR2 4nd2 XOR2 (d2+4d) XOR2+ d XOR3 

12nd2 D F-Fs (8nd2+n) D F-Fs (2d2+7d) D F-Fs 

 4nd MUX2  

Space complexity 

(8nd2+2nd) 
AND2 

4nd2 AND2 d2 AND2 

8nd2 XOR2 4nd2 XOR2 (d2+4d) XOR2+ 
(m+d) XOR3 

12nd2 D F-Fs (8nd2+n) D F-Fs (2m+2d2+7d) D F-Fs 
4nd MUX2 4nd MUX2 1 Mod Function: 

AOP: (2d-1) XOR2 
Trinomial: d2≤ XOR2 

Pentanomial: 2)1( −≤ d XOR2 

Transistor count 

376nd2+40nd 224nd2+24nd+18n AOP: 56d2+60m+222d-12 
Trinomial: 56d2+60m+222d 
Pentanomial: 
68d2+60m+174d+12 
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Table 2. Space complexity comparisons for the m values suggested by NIST. 

Multipliers Talapatra et al.  
(Figs.4 & 5 in [19])

The proposed multi-
plier (Fig.5) 

Comparing 
results 

m 2d Transistors (a) Transistors (b) (b)/(a) 
163 8 77658 11576 15% 

16 160006 15536 10% 
32 346476 29984 9% 

233 8 110940 15764 15% 
16 218190 19340 9% 
32 461968 31868 7% 

283 8 133128 18776 15% 
16 261828 22736 9% 
32 519714 37184 8% 

409 8 192296 26324 14% 
16 378196 29900 8% 
32 750698 42428 6% 

571 8 266256 36056 15% 
16 523656 40016 8% 
32 1039428 54464 6% 

Average 10% 
Saved space complexity by the proposed multiplier as com-
pared to Talapatra multiplier 

90% 

 

Table 3. Comparisons on time complexity of various systolic digit-serial PB multipliers with digit size=2d. 

Multipliers Kim et al. [17] Talapatra et al. 
(Figs.4 & 5 in 

[19]) 

The proposed multiplier 
(Fig.5) 

Latency 
(One product) 

3n 2n-1 n 

Cell delay TA+TX+TL TA+TX+TL TA+TX+TL 
Digit cell delay 2d× 

(TM+TA+TX+TL)
2d× 

(TM+TA+TX+TL)
(d+2)×(TA+TX+TL)+ 

2TX +TL 
Latency 

(one multiplication) 
(n2+3n-1) (n2+2n-2) n2

 

Note: TA, TX, TM, TL denote the propagation delays of a 2-input AND gate, a 2-input XOR gate,  
a 2-to-1 Multiplexer, and a 1-bit Latch, respectively.  

 

Table 4. Simulation results for space complexity 

Multipliers Talapatra et al. 
(Figs.4 & 5 in [19]) 

The proposed multiplier (Fig.5) 

m 2d ALUTs  pins tpd/ fmax ALUTs pins tpd/fmax 

163 32 26569 816 25.229 ns/ 
263.57MHz 

11307 655 24.249 ns/ 
263.57 MHz 

233 32 54290 1166 30.822 ns/ 
141.60 MHz 

22716 935 30.812 ns/ 
141.60 MHz 

Saved space complexity as compared to [19] in average 58.5%
Saved pins as compared to [19] in average 20%

Saved time complexity as compared to [19] in average 1.5%
Note: ALUTs: Adaptive look-up tables in Altera chips. tpd: pin-to-pin delay. 
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ALUTs:11,307/143,520 (8%)  
Pins: 655/1,171(56%) 

 
(a) Proposed multiplier, m=163 

ALUTs:26,569/143,520(19%) 
Pins: 816/1,171(70%) 

 
(b) Talapatra et al. [19], m=163 

ALUTs: 22,716/143,520 (16%)
Pins: 935/1,171(80%) 

 
(c) Proposed multiplier, m=233 

ALUTs: 54,290/143,520(38%) 
Pins: 1,166/1,171(100%) 

 
(d) Talapatra et al. [19], m=233 

Fig. 10. Used ALUTs and pins of EP2S180F1508C5 for various multipliers. 
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Fig.11. Space complexity comparisons for various m values with digit size=16 bits 

5 Conclusions 

Traditional digit-serial polynomial basis multipliers employ one-dimensional systolic array architecture, such as 
Guo-Wang multiplier [16], Kim multiplier [17], and Talapatra multiplier [19]. The proposed digit-serial poly-
nomial basis multiplier uses only one digit cell to realize the multiplier. Furthermore, the Karatsuba algorithm is 
employed for reducing a digit cell size from 2d×2d bits to d×d bits. Analysis results show that our proposed 
digit-serial polynomial basis multiplier saves 90% space complexity as compared to existing similar studies. 
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Appendix: Abbreviations and Symbols 

Abbreviations/Symbols Definitions 
DB Dual Basis 
PB Polynomial basis 
NB Normal basis 
ECC Elliptic curve cryptosystem 
GF Galois Field/Finite Field 
mod Modulo, find a remainder of a number 
NIST National Institute of Standards and Technology, USA 
GF(2m) Extension binary field of GF(2) with m-bit strings. 
ASIC Application-specific integrated circuit 
VLSI Very-large-scale integration 
FPGA Field-programmable gate array 
P(x) An irreducible polynomial of degree m over GF(2) 
A(x), B(x), C(x) Elements over GF(2m) generated by P(x) 
AL (BL) Denotes low half part of A (B) with degree lower than m/2,  −

=
= 1

0

2
m

i

i
iL xaA  

(  −

=
= 1

0

2
m

i

i
iL xbB ) 

AH (BH) Denotes high half part of A (B) with degree larger than or equal to m/2, 

 −

=
−= 1

2

2
m

i

i
iH m

m

xaA  (  −

=
= 1

2

m

i

i
iH m
xbB ) 

CLL The product of AL and BL 
CLH Denotes ( )( ) HHLLHLHL BABABBAA ++++  

CHH The product of AH and BH 
Reduction(H) Denotes H mod P 
REG Register 
AOP  All one polynomial, for example,  =

= m

i

ixP
0

 

Trinomial The polynomial has the form: 11 ,1 −≤≤++= mkxxP km  

Pentanomial The polynomial has the form: 

13211 ,1123 −≤<<≤++++= mkkkxxxxP kkkm  

d Each digit with 2×d bits 
n Each element with n digits 
Ai (Bj) The (i+1)th digit of A with 2d bits 
Cij The product of Ai and Bj 
AiL (BjL) The low half part of  Ai (Bj),  −

= += 1

0 2

d

k

k
kidiL xaA  (  −

= += 1

0 2

d

k

k
kjdjL xbB ) 

AiH (BjH) The high half part of  Ai (Bj),  −

= ++= 1

0 2

d

k

k
kdidiH xaA  (  −

= ++= 1

0 2

d

k

k
kdjdjH xbB ) 

1
ijC  The product of AiL and BjL 

2
ijC  Denotes ( )( ) 31

ijijjHjLiHiL CCBBAA ++++  

3
ijC  The product of AiH and BjH 

BA  ,  Any element with d bits 

C  The product of BA  and   
TA The delay of a 2-input AND gate 
TX The delay of a 2-input XOR gate 
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TL The delay of 1-bit Latch 
TM The delay of 2-to-1 multiplexer 
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