
A Transmission Control Protocol with High Throughput of Using Low
Earth-Orbit Satellite to Collect Data from the Floats on Sea Surface

Chia-Sheng Tsai1* Yu-Cheng Wang1 Hsin-Kai Wang2

1 Department of Computer Science and Engineering, Tatung University

Taipei 104, Taiwan, ROC

*Corresponding author: icstsai@gmail.com

starckwang@gmail.com

2 Research and Development Department, Group, Laboratory, Emerson Network Power (Taiwan) Co. Ltd.

Taipei 105, Taiwan, ROC

memorywang0809@gmail.com

Received 2 September 2014; Revised 20 September 2014; Accepted 11 October 2014

Abstract. For the sea surface salinity (SSS) applications, the data collected by the floats needs to be upload-
ed as a satellite passes through. The floats distributed on sea surface are equipped with sensors to measure in-
terested information to deliver to visible satellites passing through the sky. Also, a Low Earth-Orbit Satellite
use transmission control protocol (TCP) to collect data from the floats on sea surface. Hence, a Low Earth-
Orbit satellite communication is an important issue for SSS plan. TCP is a popular connection oriented
transport layer protocol used for reliable data transfer in the satellite communication. In the evolution of net-
work technology, the transmission control protocol is an important research topic. It is responsible for data
transmissions of end users, flow control, congestion control, and other tasks. The paper focuses on the con-
gestion control scheme. In TCP, the congestion control is used to maximize the data transmission without
causing network congestion. There exist different congestion control schemes, whose performance in
throughput and fairness varies. Some trade fairness for throughput and some vice versa. Our research goal is
to achieve good performance on both throughput and fairness in the satellite communication for SSS plan.
Through computer simulations, we are given to understand that our scheme can improve the throughput and
preserve the fairness.

Keywords: sea surface salinity (SSS), transmission control protocol (TCP), satellite communication, conges-
tion control

1 Introduction

Global warming is a tough challenge threatening the very existence of our civilization. Many research projects
are dedicated to study various aspects of this critical phenomenon. National Aeronautics and Space Administra-
tion (NASA) in the United States and its international partners started project Aquarius/SAC-D to study sea
surface salinity and its effects on global climate and ocean/ground water circulation [1]. In the Aquarius project,
many Argo float sensors capable of collecting and distributing measured data have been built and deployed by
voluntary participating countries around the world. In short, the architecture can be divided into three subsys-
tems [2], the satellite, the Argo floats and the data center in the Fig. 1.

In the satellite subsystem, a Low Earth-Orbit (LEO) satellite needs to be launched and put into place to col-
lect the data from the floats. The satellite uses two types of satellite-terrestrial communications [4][5]. One is
between the satellite and the Argo floats and another is between the satellite and the ground data centers. When
the satellite talks to the floats, the satellite is the sole source for the download channel. However, the upload
bandwidth is usually considered contentious. In order to send the measured data, the floats fight to get access to
the upload channel. In this paper, we will introduce a proposed scheme to improve the utilization of the upload
channel. The main function of Argo floats is to measure and store scientific data on board. Various sensors are
built into the float to sample or monitor the desired environmental parameters. Each Argo’s float will pump fluid
into an external bladder and rise to the surface over about 6 hours while measuring temperature and salinity at
typically 10-day intervals [6][7]. The satellite can around the earth three times to complete the data transmission.
In Fig. 2, the float descends and drifts for 10 days in around 1000 meters under the water. Then, it dives to
around 2000 meters and, then, starts to emerge to the surface. After 2010 year, 70% of floats profile to depths

Tsai et al.: A Transmission Control Protocol with High Throughput of Using Low Earth-Orbit Satellite

79

greater than 1500 meters. Besides, 20% profile to between 1000 meters and 1500meters. As it moves upward, it
measures the temperature and sea surface salinity.

Fig. 1. The Aquarius/SAC-D mission concept [3]

Fig. 2. The three subsystems architecture

Fig. 3. Positions of the floats [8]

It stays in the surface for about 6 to 12 hours and sends the collected data to the passing Aquarius satellite in
the sky [9][10]. In Fig. 3, while the Argo array is currently complete at 3627 floats, to be maintained at that level,
national commitments need to provide about 800 floats per year. This paper focuses on how to achieve good
performance on both throughput and fairness in the satellite communication for SSS plan. The overall perfor-
mance of most TCP versions is not satisfactory because some TCP schemes emphasize on throughput while

Journal of Computers Vol. 26, No. 2, July 2015

80

others focus on fairness. The goal of the paper is to suggest a new scheme that can enhance and balance
throughput for connections as segment losses occur or new connections join. Under these circumstances, the
resources assigned to the connections will be redistributed rapidly to adapt to the new network environment.
This redistribution may cause throughput to drop drastically or imbalance among the connections’ bandwidth.
Throughput is a measurement of how efficient the bandwidth is used. It is the quantity of correct data received
by the destination from the source per time unit. Fairness measures how equally the bandwidth is divided among
connections. In the ideal case, N connections share the same bandwidth in the network, each connection should
get 1/N of network capacity. In order to improve the performance on both throughput and fairness, we modify
congestion control and fast recovery mechanisms. We propose a new scheme, TCP Yam, to get better perfor-
mance in both throughput and fairness. These two performance indicators are adopted to compare the perfor-
mance of TCP Yam with other versions of TCP. We discuss how they behave under various traffic scenarios. It is
observed that many of these TCPs throughput and fairness varies issues. The paper is organized as follows.
Section 2 reviews some variations of TCP, such as Tahoe, TCP Reno, TCP Vegas, TCP for High-Speed Networks,
and TCP Satellite for Networks. We will also cover the associated network architecture if some TCP versions
assume unusual operation environments. The next Section describes our proposed TCP Yam scheme in detail.
We give discussion on the design motivation and justification. We will also provide the pseudocode for our pro-
posed scheme. Section 4 presents the performances evaluation of TCP Yam along with the comparisons with
other versions of TCP. It shows that TCP Yam achieves good characteristics in both throughput and fairness.
Finally, we conclude the paper in Section 5.

2 Related Works

In this Section, we will introduce TCP Tahoe, TCP Reno, TCP Vegas, TCP for High-Speed Networks, and TCP
Satellite for Networks. We will give a rough comparison among these schemes before going to detail on each
method. TCP Tahoe is the original version of TCP and considered as the prototype for other TCPs. TCP Reno
adds a recovery scheme in TCP Tahoe. The recovery scheme enhances the system performance in the band-
width recovery when the segment losses occur. After TCP Reno, TCP Vegas improves the congestion avoid-
ance scheme. Yet, it suffers from the fairness problem. TCP for High-Speed Networks and TCP Satellite for
Networks are two relatively new TCP proposals. TCP for High-Speed Networks suggests a new congestion
avoidance scheme and aims to run in high-speed networks. In addition, TCP Satellite for Networks introduces
two new supportive schemes, i.e., sudden start and rapid recovery, for satellite networks. It mitigates the ill
effect of long propagation delay in the satellite network to improve throughput. But, when TCP Satellite for
Networks is applied to a general network, it may cause congestion easily due to some redundant segments gen-
erated by the scheme. Now, we will take a closer look at these TCP versions.

2.1 TCP Tahoe

TCP Tahoe is one of the earliest TCP [11]. It comprises of slow start mechanism, congestion avoidance mecha-
nism, duplicate ACK mechanism, time out mechanism, and fast retransmit mechanism [12]. They are discussed
one by one in the following.

1. Slow start: Slow start is the first phase of data transmission. After the connection is successfully set by
the three-way handshaking, the source sets cwnd to one. cwnd, denoting the congestion window size, is the
number of segments that the source can transmit at the moment. Since it is initially set to 1, the source can
transmit one segment to the destination. After transmitting one segment, the destination receives a segment and
returns an ACK. When receiving the ACK, the source adds one to cwnd (cwnd = cwnd + 1). Now, the source is
allowed to send out two segments since cwnd is equal to 2. In approximately one round trip time, two ACKs
from the destination reach the source and lead to doubling of the cwnd. This behavior continues cwnd is doubled
in every RTT. RTT, representing round trip time, is the time that the source transmits a segment to the destina-
tion and receives an ACK of the expected sequence number. The slow start scheme repeats until a segment loss
is detected.

2. Congestion avoidance: This scheme controls cwnd to avoid congestion. cwnd behaves differently in the
congestion avoidance phase than in the slow start phase. In congestion avoidance, cwnd is increased one per
RTT while it is doubled in slow start. It means that the source adds 1/cwnd for each received ACK (cwnd =
cwnd + 1 / cwnd). Furthermore, the cwnd segments that are allowed to be sent should be transmitted over a RTT
to maintain this linear increment of cwnd. The congestion avoidance scheme always follows the slow start
scheme. The transmission rate of the source increases exponentially in slow start. When it reaches a certain
level, the congestion avoidance scheme will be activated and conservatively grows the transmission rate. Spe-
cifically, once cwnd exceeds the threshold of ssthresh, the congestion avoidance scheme is triggered. ssthresh is

Tsai et al.: A Transmission Control Protocol with High Throughput of Using Low Earth-Orbit Satellite

81

initially set to infinity and later set to half of cwnd when a segment loss is detected. Hence, it represents the half
of maximum transmission rate previously achieved by the source without segment loss.

3. Duplicate acknowledgements (dup-ACKs): The mechanism uses repeated ACKs to detect the segment
losses. If the source receives three identical ACKs, the source understands that a segment may be lost. Then,
the source goes to the fast retransmit phase.

4. Time out: Time out is another method to detect the segment loss. In data transmission, the source sends a
segment to the destination and bootstraps the associated timer. When the timer of a segment counts down to
zero before receiving the ACK, the source detects a possible segment loss. The initial value of the timer is ac-
quired according to the past RTTs [11]. When there is a segment loss, the source enters into the fast retransmit
phase. On the other hand, the timer is terminated when the source receives the ACK of the corresponding seg-
ment before its expiration.

5. Fast retransmit: The scheme is used to retransmit the missing segment, set ssthresh to half of cwnd, and
reduce cwnd to avoid further segment loss. If the source transmits the segments continually when the segment
loss occurs, the network may result further segment loss easily. The fast retransmit phase is carried out in one
RTT after the segment loss is detected. Then, cwnd is reduced to 1 in the slow start phase.
TCP Tahoe begins with the slow start phase and adds cwnd exponentially. When the segment loss occurs, the
source goes into the fast retransmit phase. After the retransmission, the source proceeds with the slow start
phase. However, this time the source will perform an additional step of comparing cwnd with ssthresh. If cwnd
is greater than ssthresh, the source switches into the congestion avoidance phase. Otherwise, the slow start
phase continues. In the congestion avoidance phase, the source increases cwnd linearly until detecting the seg-
ment loss.

2.2 TCP Reno

TCP Reno is modified from TCP Tahoe. In TCP Reno, there are six mechanisms, slow start, congestion avoid-
ance, duplicate-ACK, time out, fast recovery, and fast retransmit. In these schemes, congestion avoidance and
fast recovery are different from TCP Tahoe [13]. We will outline the differences of TCP Reno and TCP Tahoe
in the following.

In TCP Reno, while a segment is lost, the source sets ssthresh to half of cwnd (ssthresh = cwnd /2) and cwnd
to ssthresh. Then, the value of cwnd is used in the next congestion avoidance phase. In other words, TCP Reno
accelerates the ramp-up of the segment transfer rate by setting a larger cwnd value in the beginning of the con-
gestion avoidance phase. In the congestion avoidance phase, cwnd starts from ssthresh and adds linearly. In
TCP Reno, the congestion avoidance phase follows on the fast recovery phase and the fast retransmit phase.
We explain the increment and decrement of cwnd in all phases of TCP Reno. First, in the slow start phase, the
value of cwnd increases exponentially. When losing a segment, the source enters into the fast retransmit phase
and the fast recovery phase. Then, the source transmits the segments according to cwnd until the segment loss
occurs in the congestion avoidance phase.

Now, we discuss the shortcoming in TCP Reno. TCP Reno increases cwnd continually except till the seg-
ment losses. It uses the segment losses as the indication of congestion. After the segment loss occurs, the
source decreases the segment transfer rate. This aggressive reduction in rate can result in lower system utiliza-
tion. If the source can reduce the transmission rate to avoid congestion and the subsequent rate volatility, the
overall throughput may be improved. We introduce those methods such as TCP Vegas and TCP Yam in the
later sections.

2.3 TCP Vegas

Lawrence S. Brakmo and Larry L. Peterson propose TCP Vegas in [14]. TCP Vegas modifies the slow start
scheme, improves the congestion avoidance scheme, and reforms the retransmission scheme from TCP Reno.
These enhanced schemes are overviewed in the following.

1. Slow start: The authors use a new way to expand the bandwidth of the connections. A threshold on
cwnd, γ, is added to switch from the slow start phase to the congestion avoidance phase. When cwnd reaches γ,
the network is believed to approach congestion. TCP Vegas slows the segment transfer rate. γ is defined by the
source according to the network environments.

/BaseRTTWindowSizeExpected = (1)

)
TMeasuredRT

mittedBytesTrans
-

BaseRTT

WindowSize
 (- Actual Expected Diff == (2)

2. Congestion avoidance: In TCP Vegas, the authors use some parameters to measure congestion. They are
shown in Equation 1 and 2 [14]. First, Expected is a parameter that stands for the expected sending rate and is

Journal of Computers Vol. 26, No. 2, July 2015

82

defined by the ratio of WindowSize/BaseRTT. WindowSize is specified in bytes. The authors use it to represent
the number of bytes that the source will be allowed to transmit. In other words, WindowSize contains the total
number bytes of the next cwnd segments. WindowSize is calculated by the current sequence number minus the
last ACK number. BaseRTT is the minimum among all measured RTTs. Hence, Expected indicates the maxi-
mum sending rate in the following RTT estimated by the source. In Equation 2, Diff is the difference between
the expected and actual sending rates. TCP Vegas calculates Actual as the ratio of BytesTransmitted to Meas-
uredRTT. Actual represents the sending rate in bytes/second measured from the latest RTT. BytesTransmitted is
the size in bytes of the successfully transmitted segments which are sent and their associated ACKs are received
by the source. It is calculated by the current sequence number minus the final sequence number of the last RTT.
Diff can be considered as an indicator for the level of congestion. When Diff is positive or zero, the source uses
two thresholds for Diff, α and β to control its sending rate. α is the lower bound of Diff while β is the upper
bound. α and β are set by the source according to the network environments. If Diff is smaller than α, the
source increases 1/cwnd to use the available bandwidth in the next RTT. Or, the source decreases 1/cwnd to
prevent the segment loss in the next RTT when Diff is greater than β. If Diff is between α and β, the source
remains unchanged in the value of cwnd. In the congestion avoidance phase, the appropriate size of cwnd is to
keep between α and β. This modification leads to a stable segment transfer rate, avoids rate fluctuation, achieves
higher throughput, and seems to prevent congestion more effectively [14]. However, the source resets BaseRTT
to the latest MeasuredRTT when Diff is negative. In addition, BaseRTT is smaller than MeasuredRTT because it
is the smallest RTT among all measured RTTs.

3. Retransmission: The retransmission mechanism of TCP Vegas uses the timestamp to achieve more accu-
rate RTT estimation. When receiving a repeated ACK, the source calculates the RTT according to the
timestamp and checks it against the timeout value of the ACK. If the RTT is greater than the timeout value, the
source retransmits the segment without waiting for three duplicated ACKs.
TCP Vegas has the fairness problems. When a new connection joins into the network, the segment loss of the
existing connection may be resulted from the sudden change of network situation. Then, the existing and new
connections need to compete for bandwidth and their segment sending rate will change based on the computa-
tion of their cwnd values. Hence, some of the TCP versions drastically cut the cwnds of the existing connections
to ensure fair competition. We will revisit this problem and give a former definition of fairness in Section 4.
TCP Vegas depends on the accurate calculation of BaseRTT. In Equation 2, the value of WindowSize may be
close to BytesTransmitted. It is because cwnd increases or decreases rather slowly as we explained in the TCP
Vegas’ congestion avoidance scheme. When MeasuredRTT is much greater than BaseRTT, we may conclude
that the network approaches congestion. The bandwidth available to the source when the BaseRTT is measured
may be exhausted by other sources when the current MeasuredRTT is estimated. Thus, cwnd has to be reduced
as we explained above. On the contrary, when MeasuredRTT is too small, TCP Vegas increases cwnd slowly.

We think it is the strength of the TCP Vegas to control cwnd according to the level of congestion. However,
the adjustment is gradually made and may result in the wasteful use of the network resources. Another im-
portant property of TCP Vegas is that when it coexists with other TCP versions like TCP Reno, its own
throughput may degrade. TCP Vegas reduces its sending rate according to Diff when it enters the congestion
avoidance phase. That is, TCP Vegas starts to curb its segment transfer rate while other TCP versions still try to
get the most out of the network.

2.4 TCP for High-Speed Networks (FAST TCP)

In TCP Tahoe and TCP Reno, the value of cwnd can go through rapid and drastic changes when a segment loss
is detected. FAST TCP was designed to slow down the segment transfer before suffering from the segment loss.
Cheng Jin, David X. Wei and Steven H. Low propose FAST TCP in [15]. FAST TCP has a new congestion
avoidance scheme for the high-speed network. It uses queueing delay instead of the segment losses as conges-
tion signal while TCP Tahoe and TCP Reno employ the segment losses as the signal. FAST TCP separates the
congestion avoidance mechanism of TCP Reno into four components, data control mechanism, window control
mechanism, burstiness control mechanism, and estimation mechanism. The data control mechanism selects the
next segment to transmit from the new segments or the segments that are considered to be lost. The window
control decides the number of segments that can be bursted out. The burstiness control mechanism determines
when to transmit these segments. These decisions are based on information which is provided by the estimation
mechanism. The estimation mechanism collects information of network environments such as RTTs and queue-
ing delay.

 { }tcwnd,Weighcwnd 2min← (3)

 ++−= lay)κ(cwnd,qdecwnd

TMeasuredRT

BaseRTT
ww)cwnd(Weight 1 (4)

Tsai et al.: A Transmission Control Protocol with High Throughput of Using Low Earth-Orbit Satellite

83

FAST TCP solves two problems in TCP Reno. One of the problems is that the source relies only on one in-
dication, i.e., the segment losses, to detect congestion. On the other hand, FAST TCP uses the queueing delay to
estimate the level of congestion. The queueing delay, qdelay, is the time that the segments wait in a queue until
they can be transmitted by the source. Equation 3 and Equation 4 represent the computation of new cwnd value
that depends on BaseRTT, MeasuredRTT, and the queueing delay [15]. In Equation 3, the smaller value between
the double cwnd and the weighted value is selected as the new cwnd value. Twice of the original cwnd value
imposes an upper bound for the new cwnd value. In other words, FAST TCP prevents cwnd from increasing
exponentially. In Equation 4, the computation of Weight can be divided into two parts. They are based on the
current cwnd value and the traffic and congestion levels. A predefined parameter w, ranging between 0 and 1, is
used to determine the impact of these two parts toward the final result of Weight calculation. If w is equal to 1,
then the Weight will ignore the current cwnd value and decide on Weight entirely based on the traffic level of the
source and congestion level of the network. In contrast, if w is close to 0, the Weight becomes insensitive to the
collected information regarding the traffic and network conditions and heavily depends on the current cwnd
value.
In the second part of Weight calculation, the authors use the ratio of RTTs and the function κ(cwnd,qdelay) to
assess the network condition. qdelay is a positive value which is calculated as that the average RTT decreases
the minimum RTT. The network condition can be considered as the congestion and non-congestion. In the
network congestion, the MeasuredRTT is larger than BaseRTT and the qdelay is nonzero. If qdelay≠0,
κ(cwnd,qdelay) is set to n, the number of segment in the queue at the source [15]. Otherwise, it is set to n*cwnd.
Then, the calculation bases on the multiple cwnd plus n. The multiple cwnd may be a small value because Bas-
eRTT/MeasuredRTT is close to 0.

In contrast, if the network is non-congestion, qdelay may be zero or nonzero. Thus, if qdelay=0, the calcula-
tion consists of the multiple cwnd and n*cwnd. Otherwise, the calculation is a value of the multiple cwnd plus n.
The multiple cwnd may equal to the last cwnd due to BaseRTT/MeasuredRTT is close to 1. Another problem is
that the variation of cwnd is frequently. The frequent fluctuation of cwnd may not acquire the better throughput.
Therefore, the source changes cwnd according to the minimum RTT and the queueing delay. It provides more
information to support data control mechanism, window control mechanism, and burstiness control mechanism.
It seems that FAST TCP may run into the problem of using outdated data to determine the segment transfer rate.
In other words, when the network environment goes through sudden changes, the source may not acquire the
correct queueing delay immediately. It may choose an obsolete value of cwnd. When the segments arrive at a
router, they have to be processed and transmitted. A router can only process one segment at a time. If the seg-
ments arrive faster than the router can process them, i.e., in a burst transmission, the router puts them into the
queue until it can transmit them.

2.5 TCP for Satellite Networks (TCP Peach)

TCP Reno has poor throughput in the satellite network [16]. In such a network, we need to consider two charac-
teristics uncommon in other network environments, i.e., the long propagation delay and the high link error rate.
The long propagation delay results in longer RTT. The longer RTT decreases the growing speed of cwnd that is
used to get the available bandwidth in the slow start phase. In slow start, cwnd grows exponentially per RTT. If
RTT is long, then cwnd will not increase as fast as we desire. It is particularly true in the beginning of a connec-
tion. Also, the high link error rate can easily lead to segments discard at the destination. When there is no ACK
to a segment, the segment loss is detected. The source must reduce the sending rate. Thus, the high link error
rate brings the unnecessary fluctuation of sending rate and degradation of throughput. Ian F. Akyildiz, Giacomo
Morabito, and Sergio Palazzo propose TCP-Peach in [16].

TCP Peach consists of sudden start, congestion avoidance with timeout and duplicated ACKs detection, and
fast retransmit and rapid recovery as shown in Fig. 4. Some of these schemes are borrowed from other TCP
versions. Two of them are actually first suggested in TCP Peach. The two new schemes are based on the novel
concept of dummy segments. Dummy segments are the low priority segments that are generated by the source
as a copy of the last transmitted data segment. And, it is used to increase cwnd in a short period of time. The
source sets one or more of the six unused bits in the TCP header to distinguish the dummy segments from the
real data segments. The type of service (TOS) field is set by the source in the IP header to indicate the type or
quality of service that should be provided by the network. For example, in the three-bit precedence subfield of
the TOS field, 001 can be set to indicate dummy segments [17]. Thus, the router can discard the dummy seg-
ments when a router receives a segment beyond its queue capacity.

However, the source sends the dummy segments to the destination in the sudden start phase and the rapid re-
covery phase regardless of the network being congested or not. If the network is not congested, the dummy
segments are used to quickly increase the bandwidth of the source. Even if the network is congested, the routers
can use TOS in the IP header to drop out the dummy segments. When the source receives the ACK of a dummy
segment, the congestion window is increased by one. The behavior of sending a great deal of dummy segments

Journal of Computers Vol. 26, No. 2, July 2015

84

is to increase cwnd dramatically for the ACKs of dummy segments. Next, we describe the specifics of the sud-
den start scheme and the rapid recovery scheme. Sudden start is carried out only in the first RTT in the begin-
ning of connection. At the initiation of sudden start, the source transmits the dummy segments as fast as possi-
ble in a RTT. The destination window size is the segments that the receiver can receive.

The source obtains the window size from the widow field of the ACK message. This window size imposes a
hard upper bound for the number of segments that can be bursted by the source. In other words, if cwnd is
greater than the destination window size, the source is allowed to transmit a number of segments as specified by
the window size. Rapid recovery solves the serious throughput degradation problem due to the link errors. The
rapid recovery scheme uses the parameter, allowed dummy segment number (adsn), to raise throughput quickly.
adsn is the number of dummy segments that the source is allowed to transmit into the network. The source sets
the initial value of adsn to the unreduced value of cwnd right before the segment loss occurs. adsn is different
from cwnd. The difference between adsn and cwnd is the type of segments that the source transmits. It should
be noted that cwnd tracks the maximum number of segments that may be bursted by the source.

Fig. 4. The TCP Peach Scheme

The source obtains the window size from the widow field of the ACK message. This window size imposes a
hard upper bound for the number of segments that can be bursted by the source. In other words, if cwnd is
greater than the destination window size, the source is allowed to transmit a number of segments as specified by
the window size. Rapid recovery solves the serious throughput degradation problem due to the link errors. The
rapid recovery scheme uses the parameter, allowed dummy segment number (adsn), to raise throughput quickly.
adsn is the number of dummy segments that the source is allowed to transmit into the network. The source sets
the initial value of adsn to the unreduced value of cwnd right before the segment loss occurs. adsn is different
from cwnd. The difference between adsn and cwnd is the type of segments that the source transmits. It should
be noted that cwnd tracks the maximum number of segments that may be bursted by the source.

These segments are regular uses data and do not include the dummy segments. In short, the source uses dif-
ferent quota, adsn, to send the dummy segments. When the source transmits a dummy segment, it decreases one
of adsn until the value of adsn is zero. However, the source receives ACKs of the dummy segment in the next
congestion avoidance phase to increase cwnd rapidly. There are several drawbacks concerning TCP Peach when
it is applied to the network with a better operating environment. The most glaring one is the extra traffic of the
dummy segments. It may cause network congestion. In particular, if a segment loss is caused by a congestion
instead of link errors, then the additional dummy segments sent in the rapid recovery phase will make the con-
gestion even worse. In some TCP versions such as TCP Tahoe and TCP Reno, they decrease the bandwidth in
the fast recovery phase.

Yet, TCP Peach measures the bandwidth to replace the decrease of bandwidth in the rapid recovery phase.
Then, the source transmits the segments continually. Understandably, the rapid recovery scheme may usually be
carried out due to the link errors in the satellite network. However, such assumption does not hold for other type

Tsai et al.: A Transmission Control Protocol with High Throughput of Using Low Earth-Orbit Satellite

85

of networks. Thus, if the network is congested, the endless increment of cwnd may result in congestion fre-
quently and reduce the utilization of network.

3 A High Throughput, Fairness, and Stability Transmission Control Protocol in the
Satellite Communication for Sea Surface Salinity Plan

In the Section, we propose a novel scheme TCP Yam. TCP Yam improves the congestion avoidance phase and
fast recovery phase from TCP Reno. In Section 2, we discuss several TCP improvements in either throughput or
fairness. Or, it spends a cost with the addition of some supporting mechanisms. Hence, we may make a balance
between throughput and fairness for no additional cost. TCP Yam combines TCP Reno and TCP Vegas. We
use the average congestion window to be the signal when the network is getting congested, not the segment
losses.

3.1 TCP Yam’s Scheme

TCP Yam contains the slow start scheme, the congestion avoidance scheme, the fast retransmit scheme, the fast
recovery scheme, the duplicated ACKs mechanism, and the time out mechanism. The scheme is shown in Fig. 5.
The congestion avoidance scheme and the fast recovery scheme are different from TCP Reno. They are modi-
fied to balance throughput and fairness.

Fig. 5. The TCP Yam Scheme

Firstly, we introduce the problems that we want to resolve in the congestion avoidance scheme. One of the

problems is that the source measures congestion by the segment losses such as in TCP Reno. The source may
waste the utilization of bandwidth due to bandwidth fluctuation resulted from the segment loss. Another prob-
lem is that the source uses the delay-based parameters to be the signal of congestion, i.e., the queueing delay in
FAST TCP. Yet, the source may adopt an improper cwnd which depends on the obsolete queueing delay or fast

Journal of Computers Vol. 26, No. 2, July 2015

86

changing network conditions. In some cases, the source may result in a terrible congestion when it calculates a
large cwnd as the network situation quickly starts to deteriorate. Therefore, we adopt two parameters, RTTs and
awnd, as the representation of congestion level. We believe these two problems can be addressed by the intro-
duction of these two parameters.

Secondly, the source recovers the bandwidth from the segment loss in the fast recovery. It is reasonable to
assume that when cwnd is above ssthresh the network tends to reach to a congestion state. Of course, ssthresh
may be changed according to various network conditions. However, the congestion avoidance scheme and the
fast recovery scheme are independent with their different objectives. They cooperate with each other to accom-
plish higher throughput. We can promptly adjust the cwnd value according to the ever changing network condi-
tion. Once cwnd becomes stable or accommodated to a network condition, its value should remain until the
network condition changes again.

TCP Yam begins with the slow start phase. The source adds cwnd exponentially until losing the segments.
In the fast recovery phase, the source sets ssthresh to χ. After our experiments, TCP Yam can reach a higher
throughput when χ is greater than 1/2 of cwnd. When this phase ends, the value of cwnd is replaced by ssthresh.
Then, the source prevents congestion according to awnd and the measured RTTs in the congestion avoidance
phase. Next, we introduce the details in the fast recovery scheme and the congestion avoidance scheme.

3.2 Fast Recovery

Our fast recovery phase is used to moderate congestion. And, it allows the higher value of cwnd to be used in
the next congestion avoidance phase. As mentioned earlier, the fast recovery phase is cooperated with the con-
gestion avoidance phase to prevent congestion and raise the throughput. If we can prevent the congestion, we
won’t need to go through the severe bandwidth reduction in the fast recovery phase, especially for large cwnd.
We raise the sending rate as high as we can in the congestion avoidance scheme. Now, the fast retransmit and
fast recovery schemes are implemented together in the following.

1. Initiation: When detecting the implicit negative ACKs, which are signaled by three duplicated ACKs or
timeout, the source sets ssthresh to χ, a constant set by the source. According to our experiments, the protocol
has good throughput when χ is larger than half of cwnd. As shown in Section 4, χ is equal to 3/4*cwnd seems an
attractive choice. However, the initial value of cwnd is 1 in the slow start phase. When the network confronts
heavily congestions, ssthresh may be reduced to a lower value after repeated detection of segment losses. After
that, the lower ssthresh will be the initial value of cwnd in the congestion avoidance phase. The value of cwnd
increases linearly over time so that the source may not use the bandwidth efficiently. Thus, we define that if
ssthresh is not greater than 2, TCP Yam must restart from the slow start scheme. As explained previously, the
value of cwnd increases exponentially in the slow start process.

In the retransmission, we transmit the missing segments according to the ACKs. When retransmitting the
missing segments, the source sets cwnd to ssthresh plus the number of missing segments. We inflate cwnd to
assure that all the missing segments will be sent in one RTT. If the sum is greater than the cwnd value prior to
the detection of the segment loss, then the value of cwnd remains unchanged even the segment loss is detected.
In the next step, we describe how the source reacts to the segment losses when it is in the retransmission phase.

2. Retransmission: After ssthresh is correctly set in the previous step, the source only transmits the missing
segments excluding any new data segments in this step. In the retransmission, the source may receive the nega-
tive ACKs or explicit positive ACKs. If the source receives a negative ACK, the source has to restart the fast
recovery phase until a positive ACK arrives. However, if there are three duplicated segment losses, the process
compulsively restart from the slow start scheme. We use three duplicated segment losses to detect the excess
segment losses that results in the heavily congestion. Then, we describe how the protocol reacts when a positive
ACK is received by the source in the next step.

3. Fast Recovery: When a positive ACK arrives, the source sets the value of new cwnd to ssthresh. The
positive ACK can indicate that all the transmitted segments are received by the destination and the network may
be in a relatively uncongested state. In other words, this ACK tells the source that all the previously missed
segments are sent successfully. When comparing to TCP Reno and Tahoe, TCP Yam is more aggressive in the
fast recovery phase since it does not reduce cwnd as much when a segment loss is detected. If the congestion
avoidance scheme can effective prevent the segment loss, we can use more bandwidth.

3.3 Congestion Avoidance

In the congestion avoidance scheme, we use two parameters, awnd and the measured RTTs. These parameters
reflect the current situation of the network and can be used to control cwnd to prevent congestion. awnd, the
size of average congestion window, is computed by the three latest values of cwnd and refreshed when the posi-
tive segment is received. Then, we show the movement of cwnd to prevent the segment loss accurately. If the

Tsai et al.: A Transmission Control Protocol with High Throughput of Using Low Earth-Orbit Satellite

87

network approaches congestion gradually, such as the current RTT is greater than the last RTT, we decrease
cwnd to avoid network congestion. In contrast, we increase cwnd carefully so that a new congestion is not pro-
duced easily. Therefore, we explain the network situation from the value of awnd, cwnd, and ssthresh. If the
source receives a positive ACK, the value of awnd is refreshed. In contrast, the source updates the value of
ssthresh and replaces the new cwnd by ssthresh in the fast recovery phase. Furthermore, cwnd is constantly
adjusted according to the measured RTTs and the difference between itself and awnd. The congestion avoid-
ance algorithm operates in the following.

1. In the congestion avoidance phase, the initial value of cwnd is set in the fast recovery phase. As men-
tioned above, when the source receives a positive ACK, the new value of awnd is computed according to three
latest values of the past cwnd.

2. After awnd and cwnd are set in the previous step, the source transmits the segments according to cwnd and
compares the value of RTT with the last RTT and awnd with cwnd. The result of this comparison will deter-
mine the adjustment made to cwnd. The basic idea is the following. When the source believes an imminent
congestion, the value of cwnd will start to be reduced. Otherwise, the value of cwnd will try to be linearly
grown. This is an important feature of TCP Yam since no other congestion avoidance scheme allows reduction
in the cwnd.

(1)、 If current RTT ≧ last RTT,
i. If cwnd ≧ awnd, cwnd ＝ cwnd － 1 / cwnd.

ii. If cwnd＜ awnd, cwnd ＝ cwnd － 1.
(2)、 If current RTT ＜last RTT,

i. If cwnd ≧ awnd, cwnd ＝ cwnd ＋ 1 / cwnd.
ii. If cwnd＜ awnd, cwnd ＝ cwnd ＋ 1.

The details of the above procedure are discussed in the following. First, we consider that the variation of
RTTs can represent the current network situation. Therefore, we compare the current RTT with the last RTT.
awnd is summaries the recent average use of bandwidth by the source. When the value of the current RTT is
greater than the last RTT, it is considered that the network is gradually congested. Thus, we reduce cwnd to
avoid congestion. The decrement of cwnd is 1 or 1/cwnd which bases on the comparison between cwnd and
awnd. If the current RTT is less than the last RTT, the source increases cwnd to utilize more bandwidth. And,
when cwnd is smaller than awnd, the source increases cwnd by one. The network has more bandwidth to be
utilized than the past network condition according to awnd. Or, the value of cwnd is added by 1/cwnd.

In conclusion, TCP Yam exploits the awnd to directly reflect the current trend of cwnd. And, it cooperates
with the measured RTTs. In one segment loss case, the congestion window reduces for one time. However, in a
multiple segment losses situation, the value of cwnd reduces over two times. It changes the degree of congestion
window is heavier than one segment losses. Hence, we may prevent the segment losses as possible as we can.

4 Performance Evaluation

This Section reports the simulations of TCP Yam and a number of other TCP protocols in different network
environments. We use Network Simulation, version 2 (NS2), to be the simulation tool [18] . NS2 is developed
by University California Berkeley. We use NS2 with the queue management mechanism that we describe in the
next section to simulate the different network environments.

4.1 Simulation Environment and Parameters

We introduce two types of queue management mechanism. First, we apply Drop Tail on the queue of all routers
[18]. Drop Tail is a queue management algorithm that is used by the routers to decide when to drop the seg-
ments. With Drop Tail, when the queue is filled to the maximum capacity, the newly arriving segments are
dropped until the queue has enough capacity to receive.

Another queue management mechanism is random early detection (RED) which is also known as random
early drop. This mechanism is used to detect congestion before the queue overflows by dropping the segment
with a probability. RED is fair for all the segments in the queue.

After introducing the mechanism that we use in our simulation, we explain the computation of fairness. The
fairness problem happens in the networks that have over two connections. The fairness among the connection
flows is affected when a new connection arrives. This affect may reduce throughput and change fairness among
the connections. According to the other researches, we use Jain’s fairness index to calculate the fairness [15].
The parameter bi is the throughput of each connection flow. In Equation 5, n is the number of connection flows
in the network. The range of fairness index is from 1/n to 1. However, the best value of fairness index is 1

Journal of Computers Vol. 26, No. 2, July 2015

88

when each connection flow has the same throughput. Otherwise, when the difference among their throughputs
is dramatic, the fairness index is growing worse to 1/n.

×

=

=
n

i
i

n

i
i

bn

b

x:rness indeJain's fai

1

2

2

1
 (5)

4.2 Static Traffic Scenarios

In the section, we show the performance when TCP Yam and other TCP versions coexist in a network. We set
the same executing time for every connection. Specifically, we examine the throughput and fairness among the
connections with the same TCP version and difference.

First, we observe the case where there is only one TCP Yam connection. The TCP Yam connection and oth-
er relevant network parameters are illustrated in Fig. 6. The bandwidth capacity is 10 Mbps between the two
end users. The propagation delay is 1ms for the two links connecting the routers to the two end users. The bot-
tleneck link located between the two routers has the bandwidth capacity of 1 Mbps and the propagation delay of
4ms. The queue sizes are the same for both routers and they contain 18 segments. The queue size of the desti-
nation is set to 20 segments. When the destination queue is empty, 20 segments are the number of segments
allowed to be received by the destination.

Fig. 6. Single TCP Connection

Fig. 7. The Congestion Window of Single TCP YAM Connection

Fig. 7 and Fig. 8 show the charts of cwnd and the average throughput. They demonstrate that TCP Yam ex-
hibits stable characteristic in a single connection case and owns a high throughput. In Fig. 7, the x-ray is the
time of seconds and y-ray is cwnd. Next, Fig. 8, the x-ray is the time of seconds and y-ray is the average
throughput of kilo-bits. We record the process per 0.01 second. In Fig. 7, between 0 and 1 there has a falloff

Tsai et al.: A Transmission Control Protocol with High Throughput of Using Low Earth-Orbit Satellite

89

which presents the segment losses. This falloff affects the throughput as Fig. 8. After that, adding the increment
dramatically because of the RTT is small.

Fig. 8. The Throughput of Single TCP YAM Connection

Fig. 9. Two TCP Connections

Secondly, we discuss how two TCP connections interfere with each other in Fig. 9, Fig. 10, Fig. 11, Fig. 12,
and Fig. 13. First, we discuss one TCP Yam connection. The network topology is illustrated in Fig. 9. The
bandwidth capacity is 10 Mbps between two end users. The propagation delay is 1ms for the two links connect-
ing the routers to two end users. The bottleneck link located between two routers with the bandwidth capacity
of 1 Mbps and the propagation delay of 4ms. The queue size of routers is 18 segments. The destination’s queue
size is set to 24 segments that is the number of segments allowed to receive by the destination.

Fig. 10. The Congestion Window of Two TCP YAM Connections

Journal of Computers Vol. 26, No. 2, July 2015

90

We observe the change of congestion window to present the situation of network and throughput in our sim-
ulation. As depicted in Fig. 10 and Fig. 11, TCP Yam achieves fairness between two similar YAM connections.

Fig. 11. The Congestion Window of Two TCP YAM Connections

Then, we measure throughput and fairness between TCP Yam and other TCP versions. We compare a TCP

Yam connection with a TCP Reno connection. It is shown in Fig. 12 and Fig. 13 that Yam will not be fair
against Reno. In fact, the TCP Yam connection will enjoy much higher throughput. This unfairness is caused
by TCP Reno’s strong focus in reducing cwnd dramatically after the segment losses. In the period of 0.3 to 0.7
seconds, there are segment losses. Then, TCP Yam restores the congestion window rapidly and gets a better
throughput than TCP Reno. And then, TCP Yam smoothly increases cwnd and throughput.

Fig. 12. Congestion Windows of TCP YAM and TCP Reno Connections

Fig. 13. Throughput of TCP YAM and TCP Reno Connections

Tsai et al.: A Transmission Control Protocol with High Throughput of Using Low Earth-Orbit Satellite

91

Fig. 14. Congestion Windows of TCP YAM and TCP Vegas Connections

Fig. 15. Throughput of TCP YAM and TCP Vegas Connections

In Fig. 14 and Fig. 15, we compare cwnd and throughput between TCP Yam and TCP Vegas connections.
TCP Yam and TCP Vegas change the bandwidth immediately by the congestion avoidance mechanism. It is
shown that in Fig. 14 and Fig. 15 that Yam has a better fairness to Vegas. In fact, the Yam connection will en-
joy much higher throughput. It is unfairness is caused by Vegas’ segment avoidance. In the period of 0.3 to 0.7,
there are segment losses. We can find that the TCP Vegas’ recovery ability is bad. TCP Yam recovery the
congestion window quickly and get a high throughput. This behavior confirms the TCP Yam’s competitive
ability is good.

Fig. 16. Numbers of TCP YAM Connections

For the next scenario, the topology of network and implement results are Fig. 16, Fig. 17, and Fig. 18, we
change the number of connection flows and prolong the implement time to observe the variation of throughput
and fairness. The execution time is one hundred seconds. We record the throughput and the congestion window
per 0.01 seconds. Fig. 16 is the topology of structure with some parameters. The bandwidth capacity is 10

Journal of Computers Vol. 26, No. 2, July 2015

92

Mbps between two end users. The propagation delay is 1ms for the two links connecting the routers to two end
users. The bottleneck link located between two routers with the bandwidth capacity of 1 Mbps and the propaga-
tion delay of 4ms. The queue size of routers is 18 segments. The destination’s queue size is set to 24 segments
that is the number of segments allowed to receive by the destination.

Fig. 17. The Throughput of Different Connections

Fig. 18. The Fairness of Different Connections

From Fig. 17, TCP Yam has the similar throughput with TCP Reno. And, FAST TCP has the low through-
put in the network environment with the low bandwidth capacity. In Fig. 18, TCP Yam has a lower fairness
with number of flows from three to five than TCP Reno and FAST TCP. It may make an unstable situation.
However, along with the increase of connection flows, TCP Yam’s fairness backs to be similar to TCP Reno and
Fast TCP.

4.3 Dynamic Traffic Scenarios

In this session, we show the dynamic network that is along with the different delay time, start time, and the end
time among connections. We separately simulate the short implement time and the long implement time to ob-
serve the variation of throughput and fairness in these scenarios. And, we change the parameters of network to
imitate the real networks. In the experiments, the fairness and throughput of networks may change dramatically
for the mix of different propagation delay.

For the next scenario, the topology of network and implement period is Fig. 19 and Fig. 20. It is observed
that the three connections behave as expected. There are three connection flows with the same propagation de-
lays of 4 ms. They started and terminated at different times, as Fig. 20. We set the bottleneck capacity as 1
Mbps with the propagation delay of 20 ms. And, the other connections are 10 Mbps. The router’s queue size is
18 segments. In Fig. 20, the first and second connections overlap in time and compete for bandwidth. When the
first connection terminates, the throughput of the second connection takes off. It ends right before the third
connection starts.

The Fig. 21 and Fig. 22 present the situation and throughput of network, this express TCP Yam may con-
form to the dynamic of network. This experiment shows the movement of congestion window and throughput
in short time. Between 5 seconds and 11 seconds, the green flow joins into the network but the red flow cannot
reduce immediately in the short time. It results the green flow cannot get enough throughput in early. Before 15
seconds, there is just green flow in the network. And, the green flow has not utilizes the throughput complete.
At 15 seconds, the blue flow joins into the network and the green flow leaves the network.

Tsai et al.: A Transmission Control Protocol with High Throughput of Using Low Earth-Orbit Satellite

93

Fig. 19. Dynamic Traffic TCP Connections

Fig. 20. Dynamic Traffic Pattern

Fig. 21. The Congestion Window of Three TCP YAM Connections

Fig. 22. The Throughput of Three TCP YAM Connections

TCP Yam may have a good throughput whatever the new connections connected or old connections discon-
nected. We may find that TCP YAM is more suitable on dynamic network than static network. The dynamic
network is more satisfy to the real network.

Journal of Computers Vol. 26, No. 2, July 2015

94

Next, we prolong the implement time and increase the bandwidth capacity, propagation delay, and queue
size. The topology of network and implement period is Fig. 23 and Fig. 24. We implement our scheme in high-
speed network to observe that the three connections behave as expectation. There are three connection flows
with propagation delays of 100, 150, and 200 ms. They started and terminated at different time, as Fig. 24. We
set the bottleneck capacity as 400 Mbps. And, the other connections are 1 Gbps. The router’s queue size is
2000 segments. The destination’s receive window is 3000 segments.

Fig. 23. Dynamic Traffic TCP Connections

Fig. 24. Dynamic Traffic Pattern in High-Speed Networks

Table 1. The Fairness of Dynamic Traffic

Time #Sources YAM FAST Reno

1800-3600 2 0.95 0.96 0.68

3600-5400 3 0.971 0.972 0.90

5400-7200 2 0.95 0.96 0.71

From the Table 1, we get a summary result of fairness for three connections. The fairness of TCP Yam is

good as FAST TCP in all time period. Fig. 25 presents the average throughput for three connection flows. This
express TCP Yam may conform to the dynamic of high-speed network for long time. The first connection, red
line, exists for all time. The second connection and third connection, green line and blue line, enter into the
network at different time and compete bandwidth with the first connection. Between 3600 seconds and 5400
seconds, it makes heavy transmission for the competition of three connections. However, the green flow gets
enough throughputs in competition with other connections. And, the red flow has and blue flow does not influ-
ence their average throughputs.

When one connection joins into the network, the order connection may influence the throughput and fairness
to let the new connection get the enough throughputs. The average throughput shows the integration of network.
Next, we present the throughput per fifty seconds and per twenty seconds. The results are similar to the average
throughput but the wave by cycle.

In conclusion, we analyze the implementation cost and performance for some TCP versions. We know that
TCP Yam has the lower cost such as TCP Tahoe, TCP Reno, and TCP Vegas. In TCP Peach, it needs the mech-
anism of telling the lower priority segment apart the data segment. And, it adds the load of processing the seg-
ments for the routers. However, FAST TCP separates the mechanism of congestion control into four compo-

Tsai et al.: A Transmission Control Protocol with High Throughput of Using Low Earth-Orbit Satellite

95

nents for individual upgrade. This behavior may result in the more waiting time of selecting the information
from the network.

In the performance aspect, TCP Yam’s throughput is similar to FAST TCP and higher than TCP Tahoe, TCP
Reno and TCP Vegas. However, TCP Yam has the current best fairness such as TCP Reno.

Fig. 25. The Throughput of Three TCP YAM Connections

5 Conclusions and Future Work

There are many existing researches regarding TCP improvements. In this paper, we propose TCP Yam, a fair
and high throughput TCP version. We aim to raise the throughput and maintain the fairness among the connec-
tions. To achieve these two objectives, we rely on two parameters, awnd and the past RTTs, to estimate the
level of congestion. Our approach reaches attractive performance with reasonable cost. In other words, it does
not require the special schemes or mechanisms to support and other modification of the existing segment header.
However, we simulate the results that show the good performance in throughput and fairness.

For this paper, TCP Yam has the both advantages of fairness and throughput. We may reduce cwnd to avoid
a segment loss and recover to a higher bandwidth when the segment loss occurs. In other word, TCP Yam may
effectively decrease the segment losses and availably control cwnd to avoid congestion. In our simulations, TCP
Yam’s throughput is higher than TCP Vegas and TCP Reno. And, it has a fair transmission such as TCP Reno.
Therefore, we believe that TCP Yam has the ascendency of using on the networks.

Acknowledgement

This research was partially supported by Tatung University, Taiwan, R.O.C., under grant B103I01031.

References

[1] Argo website. Available: http://www.argo.ucsd.edu/How_Argo_floats.html 2007.

[2] T. W. Yue, Y. C. Wang, W. Yen, “Fast Sensor Identification Technology for Sea Surface Salinity Measurement,” in

Proceedings of the 2008 IEEE International Conference on Systems, Man, and Cybernetics, pp. 2700-2705, 2008.

[3] G. Lagerloef, F.R. Colomb, D. L. Vine, F. Wentz, S. Yueh, C. Ruf, J. Lilly, J. Gunn, Y. Chao, A. Decharon, G. Feld-

man, C. Swift, “The Aquarius/SAC-D Mission: Designed to Meet the Salinity Remote-Sensing Challenge,” Oceanog-

raphy, vol. 21, pp. 69-81, 2008.

Journal of Computers Vol. 26, No. 2, July 2015

96

[4] M. Muhammad, B. Matteo, D. C. Tomaso, “A Simulation Study of Network-Coding-Enhanced PEP for TCP Flows in

GEO Satellite Networks,” in Proceedings of the 2014 IEEE International Conference on Communications, pp. 3588-

3593, 2014.

[5] Y. Sun, Z. Ji, H. Wang, “TFRC-Satellite: A TFRC Variant with a Loss Differentiation Algorithm for Satellite Net-

works,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 49, pp. 716-725, 2013.

[6] J. Boutin and N. Martin, “ARGO Upper Salinity Measurements: Perspectives for L-Band Radiometers Calibration and

Retrieved Sea Surface Salinity Validation,” IEEE Geoscience and Remote Sensing Letters, Vol. 3, pp. 202-206, 2006.

[7] Y. S. Chang, H. T. Cheng, H. J. Lai, “Metadata Miner Assisted Integrated Information Retrieval for Argo Ocean Data,”

in Proceedings of IEEE International Conference on System, Man, Cybernetics, pp. 2930-2935, 2009.

[8] Argo website. Available: http://www.argo.ucsd.edu/index.html 2014.

[9] Aquarius project website. Available: http://aquarius.nasa.gov 2014.

[10] C. S. Tsai and G. F. Yang, “Research on an Assistant Ad Hoc Network to Aid the Measurement of Salinity-

Temperature-Depth,” in Proceedings of IEEE International Conference on System, Man, Cybernetics, pp. 2689-2693,

2008.

[11] J. Postel, Transmission Control Protocol – DARPA Internet Program Protocol Specification, Internet RFC 793, 1981.

[12] M. Allman, V. Paxson, W. Stevens, TCP Congestion Control, Internet RFC 2581, 1999.

[13] T. R. Henderson, E. Sahouria, S. McCanne, R. H. Katz, “On Improving Fairness of TCP Congestion Avoidance,” in

Proceedings of 1998 Global Telecommunications Conference: The Bridge to Global Integration, pp. 539-544, 1998.

[14] L. S. Brakmo and L. L. Peterson, “TCP Vegas: End to End Congestion Avoidance on a Global Internet,” IEEE Journal

on Selected Areas in Communication, Vol. 13, pp. 1465-1480, 1995.

[15] R. K. Jain, D. W. Chiu, W. R. Hawe, A Quantitative Measure of Fairness and Discrimination for Resource Allocation

in Shared Systems, DEC Research Report TR-301, 1984.

[16] I. F. Akyildiz, G. Morabito, S. Palazzo, “TCP-Peach: A New Congestion Control Scheme for Satellite IP Networks,”

IEEE/ACM Transactions Networking, Vol. 9, pp. 307-321, 2001.

[17] J. Postel, “Internet Protocol,” Internet RFC 791, 1981.

[18] The Network Simulator – ns-2 website. Available: http://www.isi.edu/nsnam/ns/ 2008.

