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Abstract. Texture information is critical to the accuracy of image classification systems. In this paper, we 
propose a novel descriptor called weighted center symmetric local ternary pattern (WCS-LTP), constructed 
by using the CS-LTP variance of the local region as an adaptive weight to adjust the contribution of the CS-
LTP code in histogram calculation. Then, based on the proposed WCS-LTP descriptor, we introduce a new 
local WCS-LTP feature extraction approach. Compared with conventional local CS-LTP feature, our pro-
posed WCS-LTP feature, which exploits the complementary information of local spatial pattern and local 
contrast, can better characterize the image local texture. Finally, WCS-LTP feature based sparse coding spa-
tial pyramid matching (ScSPM) representation classification is proposed for image classification. Extensive 
experimental results demonstrate that the effectiveness of our proposed WCS-LTP feature based ScSPM rep-
resentation classification algorithm. 

Keywords: WCS-LTP feature, sparse coding spatial pyramid matching, image classification 

1   Introduction 

Image classification, which annotates an image with one or multiple labels corresponding to different semantic 
classes, is a highly useful yet still challenging task in the computer vision. It has attracted an increasing amount 
of attention over the past few decades as a result of its wide use in many applications such as human-computer 
interaction [1], video surveillance [2], robot path planning [3], and so on. 

In most studies, there are two main steps in an image classification system [4].The first step is to extract visu-
al image features for an effective representation of the image. And the second step is to classify the new image 
with a good classifier. For good classification, features should be descriptive and discriminative, and on the 
other hand, invariant to different transformations and robust enough to allow intra-class variation. In recent 
years, much effort has been invested in developing features that yield good classification and the focus in ex-
tracting features for classification has shifted from global features describing the object as a whole, to local 
features. 

Famous contributions include SIFT (Scale Invariant Feature Transform) [5], PCA-SIFT [6], SURF (Speeded-
up Robust Features) [7], HOG (Histogram of Oriented Gradient) [8], LBP (Local Binary Pattern) [9], CS-LBP 
(Center Symmetric Local Binary Pattern) [10], LTP (Local Ternary Pattern) [11], CS-LTP (Center Symmetric 
Local Ternary Pattern) [12] and so on.  Among them, the SIFT descriptor, proposed over a decade ago, is cur-
rently among the best quality descriptors for image classification. It has shown great success in object recogni-
tion and detection because it is invariant to a variety of possible image transformations, such as scale, rotation, 
blur, illumination and viewpoint changes. The basic idea is to detect the extreme points in Difference-of-
Gaussian (DoG) scale space, filter these extreme points to find the stable feature points known as interest points, 
and finally assign orientation and generate descriptor for interest points by vectors. Inspired by the high discrim-
inative power and robustness of SIFT, many researchers have developed varieties of local descriptors following 
the way of SIFT. The PCA-SIFT descriptor is an extension of the SIFT descriptor, which applies PCA (Principal 
Component Analysis) to reduce the dimensionality of the SIFT descriptor vector from 128 to 36. The SURF 
descriptor also relies on local gradient histograms and speeds up the gradient computations using integral images, 
while almost preserving the quality of SIFT. Varieties of existing texture operators have been used for describ-
ing interest regions so far.  The LBP operator, considered as one of the most popular texture features, has per-
formed very well in various computer vision problems such as background subtraction, face recognition and 
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texture classification. However, the LBP operator tends to produce a rather long histogram and is not that robust 
to flat image areas. To address these problems, Heikkila et al. [10] combined the strength of the SIFT descriptor 
and LBP texture operator to form the CS-LBP (Center Symmetric Local Binary Pattern) descriptor, which is 
reported to have better performance than SIFT, especially for matching image pairs with illumination changes. 
The LTP (Local Ternary Pattern) operator [11], which extends LBP to 3-valued codes, is more discriminant and 
less sensitive to noise in uniform regions. Therefore, the LTP descriptor has strong discriminative ability for 
describing texture structure. Unfortunately, the dimensionality of the LTP histogram is extremely high. To ad-
dress this problem, Gupta et al. presented the CS-LTP descriptor [12] which generalized the CS-LBP descriptor 
with a ternary coding style. 

For local features, the Bag-of-Visual-Words (BoV) model [13], which has been very popular, is used in im-
age classification. The BoV method represents an image as an orderless collection of local features and its de-
scriptive ability is severely limited due to discarding the spatial information of features. By overcoming this 
problem, one popular extension of the BoV method, called the spatial pyramid matching (SPM) [14], is pro-
posed and has been shown to be effective for image classification. The SPM partitions an image into several 
segments in different scales, then computes the BoV histogram within each segment and concatenates all the 
histograms to form a high dimension vector representation of the image. For the purpose of reducing the training 
complexity and improving the scalability, sparse coding spatial pyramid matching (ScSPM) method [15] taking 
into account some aspects of the spatial layout of the image is proposed, which contribute to improving classifi-
cation performance. Csurka [16] proposed BoV-based method for image classification. The proposed method 
was based on BoV model, where a set of SIFT features is first extracted and then an image is represented by the 
BoV frequency histogram of SIFT features for image classification. Wang et al [8] developed a new method of 
image classification by using the Histogram of Oriented Gradient (HOG) features which is computed on a dense 
grid of uniformly spaced cells. In addition, Akata et al [17] applied Principal Component Analysis (PCA) to 
reduce the dimensionality of the SIFT descriptor from 128 to 64 for image classification. 

In modern days, the images on the website or computers generally contain complex background.  Although 
local features have been proven to be very effective in image classification, the accuracy of classification is 
often limited by the presence of uninformative local features typically extracted from background [18]. The 
SIFT feature is able to capture local edge or shape of an object with distributions of intensity gradients. For an 
image with simple background, the SIFT feature is capable of accurately representing the foreground object 
without noise interference. However, the SIFT feature will perform poorly when the image contains complex 
background because a portion of extracted features may come from the noisy background. On the contrary, the 
CS-LTP descriptor [12], which does not take into account shape information, can not only filter out background 
noise through local ternary patterns but also capture the texture information of images. In fact, texture infor-
mation is critical to the accuracy of image classification systems. However, the CS-LTP descriptor does not 
involve the information variance of the local region because it is obtained by building a histogram in which no 
matter what the CS-LTP variance of the local region, each CS-LTP pattern is assigned the same weight 1. Hence, 
the CS-LTP descriptor could not effectively characterize texture information of images to some extent due to the 
fact that the information variance of local regions is closely related to the texture feature.  It is worth noting that 
effective local feature extraction approaches, which could better characterize the image local texture, are still 
needed to be investigated for image classification. 

This paper investigates an effective algorithm based on sparse coding spatial pyramid matching representa-
tion of WCS-LTP feature for image classification. Our feature extraction scheme is first to construct a novel 
descriptor called weighted center symmetric local ternary pattern (WCS-LTP), which uses the CS-LTP variance 
of the local region as an adaptive weight to adjust the contribution of the CS-LTP code in histogram calculation. 
Then, based our proposed descriptor, we introduce a new local WCS-LTP feature extraction approach. Com-
pared with conventional local CS-LTP feature, our proposed WCS-LTP feature which exploits the complemen-
tary information of local spatial pattern and local contrast, can better characterize the image local texture. By 
using the proposed local features, WCS-LTP feature based sparse coding spatial pyramid matching (ScSPM) 
representation classification algorithm is proposed for image classification. The proposed algorithm treats the 
WCS-LTP features from all the training samples as the dictionary of our ScSPM representation, and then the test 
image is represented a sparse vector using SPM strategy. Extensive experimental results show that the proposed 
classification paradigm achieves much better classification performance. 

The rest of this paper is organized as follows. In Section 2, we describe our proposed WCS-LTP feature ex-
traction method. Section 3 presents details of the proposed WCS-LTP feature based ScSPM representation clas-
sification algorithm.  Experiments results are discussed in Section 4. Finally, we conclude this paper in Section 5. 



Huang et al.: Image Classification Based on Weighted Center Symmetric Local Ternary Pattern Feature 
 

41 

2   WCS-LTP Feature 

Before presenting in detail our proposed WCS-LTP feature, we briefly review of LTP and CS-LTP that form the 
basis for our work. 

2.1    LTP and CS-LTP 

The LTP operator extends LBP to 3-valued codes, in which the gray values in a zone of width  T around the 
center pixel are set to one, ones above this are set to two and ones below it to zero, as illustrated in Eq. (1). For-
mally, the LTP operator takes the form as 

                              ( ) ( ) ( ),

,
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where cn denotes the gray value of the center pixel of a local neighborhood, in corresponds to the value of N 

neighboring pixels equally located on a circle of radius R, and T is a user-specified threshold. Obviously, the 
LTP operator produces 3N distinct values, resulting in 3N-dimensional histogram. Fig. 1 presents an example of 
calculating the CS-LTP code with eight neighboring pixels. 
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Fig. 1. Calculation of the LTP operator with eight neighboring pixels 

To reduce the histogram size of LTP, the CS-LTP operator [12], which only compares the intensities of cen-
tral symmetric neighboring sample points, is a powerful texture operator which characterizes the spatial structure 
of the local image texture. Formally, the CS-LTP operator is represented as 
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where in and i Nn + 2 represent the gray value of center-symmetric pairs of pixels of N equally spaced pixels on a 

circle of radius R and T is a user-specified threshold. Fig. 2 shows an example of calculating the CS-LTP code 
with eight neighboring pixels. 

Suppose the image patch is W × H. In general, the CS-LTP histogram can be computed as 

                     ( ) ( )( ) ( ) ,
, , , ,
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where [ ],k K∈ 0 , K  is the maximal CS-LTP pattern value. 

2.2   WCS-LTP Feature 

For varieties of existing texture operators, the final feature will be obtained by building a histogram based on the 
code for each pixel within the image such as LBP, CS-LBP and LTP. Calculation of the CS-LTP histogram does 
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not involve the information variance as shown in Eq. (2). That is to say, no matter what the CS-LTP variance of 
the local region, each CS-LTP pattern is assigned the same weight 1 for the histogram calculation. Actually, the 
variance is closely related to the texture feature. Generally, the high frequency texture regions will have higher 
variance and they contribute more to the discrimination of texture images [19]. 
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CS-LTP=
s(n0-n4)30 +
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s(n3-n7)33

 

Fig. 2. Calculation of the CS-LTP operator with eight neighboring pixels 

In this paper, we propose a new method of construction the WCS-LTP descriptor, in which the CS-LTP vari-
ance of the local region is used as an adaptive weight to adjust the contribution of the CS-LTP code in histogram 
calculation. Our proposed weighted histogram is computed as 
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In comparison with conventional CS-LTP descriptor, our proposed WCS-LTP descriptor is constructed by us-
ing the CS-LTP variance of the local region as an adaptive weight to adjust the contribution of the CS-LTP code 
in histogram calculation. It can better characterize the image local texture. In this paper, the WCS-LTP de-
scriptor related parameters, N, R, T are fixed as 2, 8, 0.01. 

Based on the proposed WCS-LTP descriptor, our proposed WCS-LTP feature is built. First, image patches, 
, , ,...,ip i n= 1 2 , with size of 16 × 16 pixels are densely sampled from an image on a grid with stepsize 6 pixels 

and the image is reprocessed into gray scale. Then the WCS-LTP descriptors of each image patch pi are generat-
ed. Finally, WCS-LTP features of an image are obtained. Compared with conventional CS-LTP feature, the 
proposed WCS-LTP feature, which exploits the complementary information of local spatial pattern and local 
contrast [20], can better characterize the image local texture. The whole process of the WCS-LTP feature extrac-
tion of an image is presented in Algorithm 1 below. 

 
Algorithm 1  WCS-LTP features extraction of an image 
 
Input:  an image I(z)=I(x, y). 
 
Output:  WCS-LTP features of the image I(x, y). 
 
Step 1.  Reprocess the image into gray scale and densely sample image patches with size of 16 × 16 pixels on 

a grid with stepsize 6 pixels. 
 
Step 2.  Generate the WCS-LTP descriptors of each patch , , ,...,ip i n= 1 2 , denoted as WCS-LTPi. 

 
    Step 3.  Define all WCS-LTPi of the image I(x,y) as WCS-LTP features. 

3   WCS-LTP Feature based ScSPM Representation Classification 

ScSPM proposed by Yang [15] has shown its effectiveness in image representation [21]. Standard ScSPM 
framework consists in four key parts: (1) local features, (2) codebook representation, (3) sparse coding of local 
features and (4) Spatial Pyramid Matching model. The details of the four key concepts are as follows. 
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Local features. The essential aspect of the ScSPM model is to extract a set of local features, such as SIFT 
descriptors in an image. 

Codebook representation. The codebook is a way which images can be represented as a set of local features. 
A codebook is learned offline in a training phase. Let X be a set of local features in a D dimensional feature 

space, i.e. [ ]T
, ,..., M1 2=X x x x , where M is the total number of local features. Let [ ]T

, ,..., K1 2=V v v v  be the 

codebook which needs to be learned and [ ]T
, ,..., M1 2=U u u u  be the set of sparse reconstruct coefficients, where 

K is the number of visual words in the codebook. Then codebook learning can be formulated as follows: 

                              ,
min
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where λ is a regularization parameter and normally the codebook V is an overcomplete basis set, i.e. K > D. A 
unit L2-norm constraint on vk is typically applied to avoid trivial solutions. 

Sparse coding of local features. After obtaining the codebook, each local feature is quantized to one “visual 
word” by sparse coding. In a nutshell, every local feature is to be assigned a small number of visual words. 

Spatial Pyramid Matching model. The SPM partitions an image into several segments in different scales, 
then computes the histogram within each segment and concatenates all the histograms to form a high dimension 
vector representation of the image. 

Inspired by ScSPM, we firstly extracted WCS-LTP features from every training sample. Now X is a set of 
WCS-LTP features in a D dimensional feature space. Then the codebook V needs to be learned. We set the 
sparsity of the sparse codes λ = 0.1 in our paper. 

The Eq. 5 is not convex for U and V simultaneously, but it is convex for U when V is fixed and it is also con-
vex for V when U is fixed. Consequently, our way to solve Eq. 5 is to solve it iteratively by alternatingly opti-
mizing over U or V while fixing the other. Fixing V, the optimization can be solved by optimizing over each 
coefficient um individually: 

                              min
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Fixing U, the problem converts to a least square problem with quadratic constraints: 
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In fact, ScSPM image representation has a training phase and a coding phase. At first, a set of WCS-LTP fea-
tures from a random collection of image patches is used to solve Eq. 5 with respect to U and V, where V is re-
tained as the codebook; In the coding phase, for all features of each image are obtained by optimizing Eq. 5 with 
respect to U only. Finally all sparse reconstruct sparse coefficients of an image are concatenated to a high di-
mension sparse vector using SPM strategy. 

In this article, we use 50000 WCS-LTP features extracted from random patches to train the dictionary, by it-
erating the steps of Eq. 6 and Eq. 7. When we get the dictionary in this off-line training, we can do on-line 
sparse coding efficiently as in Eq. 6 on each feature of an image. We use Multi-class linear SVM [15] for image 
classification. The proposed WCS-LTP feature based ScSPM representation classification approach is shown in 
Fig. 3. As illustrated in Fig. 3, the WCS-LTP features of training images are extracted by our proposed feature 
extraction approach. Then a ScSPM model is trained on these features. And the obtained image representation 
will work with linear SVM trained using the one-against-all rule: a classifier is learned to separate each category 
from the rest. Given a testing image, it is classified into the category with the maximum SVM output decision 
value. 

4   Experiments and Results 

As a local feature description method, our proposed WCS-LTP feature can tend to extract more precise texture 
information. Therefore, we propose to use WCS-LTP features extracted from random patches of all the training 
images to train the codebook of our proposed WCS-LTP feature based ScSPM representation classification 
model.  
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Fig. 3. The workflow of our proposed method. The training process is along the solid arrow while testing process is along the 
dotted arrow 

In this Section, we will investigate our proposed WCS-LTP feature based ScSPM representation classifica-
tion algorithm for image classification. Extensive experiments are carried out on SIMPLIcity dataset, Caltech 
101 dataset and 15-Scene dataset to validate the claims of the previous sections. 

4.1   Image Classification on SIMPLIcity Database 

SIMPLIcity database [22] is used in the experiment to evaluate the performance of our proposed algorithm for 
image classification. This database is a subset of COREL image database, which contains totally 1000 images 
equally divided into 10 different categories: African people, beach, building, bus, elephant, flower, food, horse, 
dinosaur, and mountain. Some example images are shown in Fig. 4. 

 

African people Beach Building Bus

Dinosaur Elephant Flower Food

Horse Mountain
 

Fig. 4. Examples images of SIMPLIcity dataset 

We randomly choose 30 images per category for training and the other for test. For all compared method, the 
codebook size is fixed as 256. The average of per-class recognition rates is computed based on the percentage of 
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all test images classified correctly. And the mean of the average of per-class recognition rates is reported. We 
compare our approach with conventional CS-LTP features and SIFT features. The experiments results are shown 
in Tab. 1. From Tab. 1, we observe that our proposed WCS-LTP feature achieves the performance of 85.0%, 
which is better than SIFT and CS-LTP. 

Table 1. Classification results on the SIMPLIcity dataset 

Accuracy (%) WCS-LTP SIFT CS-LTP 

People 66.43 64.26 65.71 

Beach 64.29 70.71 58.57 

Building 81.43 71.43 70.0 

Bus 100.0 100.0 100.0 

Elephant 82.86 79.86 82.86 

Flower 94.29 80.71 95.71 

Food 87.14 68.0 87.14 

Horse 95.71 93.57 98.57 

Dinosaur 100.0 100.0 100.0 

Mountain 77.86 72.86 60.0 

Mean 85.0 80.14 81.86 

4.2   Image classification on Caltech 101 database 

We also evaluate the performance of our proposed algorithm on Caltech101 dataset [23] commonly used to 
evaluate the image classification. This dataset holds 9144 images in 101 categories including flowers, animals, 
vehicles, etc., with high shape variability. The number of images per class varies from 31 to 800. Most images 
are medium resolution, i.e. about 300×300 pixels. Caltech-101 is probably the most diverse object dataset avail-
able today, though it is not without shortcomings. In other words, most images feature relatively little clutter, 
and the objects are centered and occupy most of the images. Some example images are shown in Fig. 5. 

 

 

Fig. 5. Examples images of Caltech 101 dataset 
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In fact, if the number of the training samples is required to be sufficiently large, the classification algorithm 
could more accurately determine the identity of the test sample. Therefore, different numbers of training samples 
will affect the performance of our proposed algorithm. In this experiment, we randomly train on 15 and 30 im-
ages per category and test on the rest. And the codebook size is fixed as 1024. In order to get reliable results, 
this experimental process is repeated by 5 times with different training and testing images which are random 
selected. And the average of per-class recognition rates for each run is recorded. We compare our approach with 
conventional CS-LTP features. Detailed comparison results are shown in Tab. 2 in which our final results are 
reported by the mean and standard deviation of the average of per-class recognition rates. From the results de-
scribed in Tab. 2, we can see that our proposed WCS-LTP feature outperforms the CS-LTP feature. When the 
number of images per category used to train is 30, the average accuracy of our proposed WCS-LTP outperforms 
CS-LTP by more than 4 percent; while the standard deviation of our proposed WCS-LTP is somewhat higher 
than that of CS-LTP. Even when the number of images per category used to train is 15, our proposed WCS-LTP 
can still achieve an average accuracy of 58.74%, outperforming CS-LTP by more than 6 percent; and the stand-
ard deviation of our proposed WCS-LTP is the same as that of CS-LTP. 

When the codebook size is fixed as 1024, Tab. 2 has shown the performance of our proposed WCS-LTP. 
However, the codebook size plays an important role in our proposed WCS-LTP feature based ScSPM represen-
tation classification algorithm. Intuitively, the WCS-LTP feature may lose discriminative ability when the code-
book size is too small; and the feature from the same class of images will not match when the codebook size is 
too large. Therefore, we investigate the effects of codebook size on our proposed algorithm. Inspired by Ref. 15, 
we tried three sizes: 256, 512 and 1024. And the final result is reported as the mean of the average of per-class 
recognition rates. The experimental results are illustrated in Tab. 3. For all the cases, our proposed WCS-LTP 
based ScSPM representation classification outperforms conventional CS-LTP based ScSPM representation clas-
sification. The performance of WCS-LTP based ScSPM representation classification increases as the codebook 
size grows further. 

Table 2. Classification rate (%) on the Caltech 101 dataset 

 
 

 
 

Table 3. The effects of codebook size on WCS-LTP and CS-LTP respectively on Caltech 101 dataset 

 Codebook size 256 512 1024 

30 training 
WCS-LTP 63.17 63.47 66.32 

CS-LTP 59.12 60.22 61.63 

15 training 
WCS-LTP 53.96 57.99 58.74 

CS-LTP 51.04 53.05 53.58 

4.3   Image classification on15-Scene database 

To further evaluate our proposed algorithm, we also tried our algorithm on 15-Scene dataset [24]. This dataset 
contains totally 4485 images falling into 15 categories, with the number of images each category from 200 to 
400. The 15 categories vary from living room and kitchen to street and industrial. Some example images are 
shown in Fig. 6. Following the same experiment procedure of Yang et al. [15], we randomly choose 100 images 
per class for training and use the left for testing. And the codebook size is fixed as 1024. The average of per-
class recognition rates is computed based on the percentage of all test images classified correctly. And the mean 
of the average of per-class recognition rates is reported. The experiments results are shown in Tab. 4. From Tab. 
4, we observe that our proposed WCS-LTP feature based ScSPM representation classification algorithm 
achieves the performance of 80.52%, which is better than CS-LTP based ScSPM representation classification 
algorithm. Furthermore, additional contrast measures are added to the pattern histogram by using of WCS-LTP 
and this usually produces significantly better results than using CS-LTP. However, our proposed WCS-LTP is 
sensitive to illumination change. As can be seen in Tab. 4, the classification performance of WCS-LTP is worse 
than CS-LTP for some categories greatly affected by illumination variation. For example, the performance of 
WCS-LTP is 5% worse on MITcoast and MITstreet. 

 

Algorithm 15 training 30 training 

WCS-LTP 58.74 ± 0.004 66.32 ± 0.014 

CS-LTP 53.58 ± 0.004 61.63 ± 0.009 
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Fig. 6.  Examples images of 15-Scene dataset 

Table 4. Classification rate (%) comparision on 15-Scene dataset 

Accuracy (%) WCS-LTP CS-LTP 

CALsuburb 98.58 100.0 

MITcoast 81.54 86.92 

MITforest 93.86 93.86 

MIThighway 88.13 83.75 

MITinsidecity 80.52 81.25 

MITmountain 86.50 74.45 

MITopencountry 76.13 67.10 

MITstreet 86.46 90.10 

MITtallbuilding 82.81 85.16 

PARoffice 96.52 96.52 

bedroom 68.10 62.93 

industrial 61.14 58.29 

kitchen 66.36 71.82 

livingroom 63.49 64.55 

store 77.67 79.53 

Mean 80.52 79.75 

 
In Section 4, we evaluate the performance of our proposed algorithm on SIMPLIcity dataset, Caltech 101 da-

taset and 15-Scene dataset. First, we compare our proposed WCS-LTP feature with SIFT and CS-LTP on SIM-
PLIcity dataset. Results show that the average of per-class recognition rates of WCS-LTP is greater than that of 
SIFT and CS-LTP. For Caltech 101 dataset, our proposed WCS-LTP performs better than CS-LTP. Meantime 
we investigate the effects of codebook size on our proposed algorithm. And results show that our proposed 
WCS-LTP based ScSPM representation classification outperforms conventional CS-LTP based ScSPM repre-
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sentation classification in different codebook sizes. Finally, we also evaluate the performance of our proposed 
algorithm on 15-Scene dataset. The performance of our proposed WCS-LTP based ScSPM representation classi-
fication is better than the CS-LTP based ScSPM representation classification. In a word, the experiments in three 
different datasets - SIMPLIcity dataset, Caltech 101 dataset and 15-Scene dataset- show the effectiveness of the 
proposed WCS-LTP. 

4   Conclusions 

In this paper, WCS-LTP feature based sparse coding spatial pyramid matching representation classification 
algorithm is proposed. The proposed WCS-LTP feature employs the CS-LTP variance of the local region as an 
adaptive weight to adjust the contribution of the CS-LTP code in histogram calculation. Compared with conven-
tional CS-LTP feature, the proposed WCS-LTP feature, which exploits the complementary information of local 
spatial pattern and local contrast, can better characterize the image local texture. Experimental results on SIM-
PLIcity, Caltech 101, and 15-Scene database demonstrate the effectiveness of our proposed WCS-LTP feature 
based sparse coding spatial pyramid matching representation classification algorithm. In our future work, we are 
willing to extend our proposed WCS-LTP feature which can not only extract more precise texture information 
but also capture the shape information of images. 
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