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Abstract. Strait water quality is traditionally monitored and estimated based on in-situ data. Collecting and 
analyzing in-situ water quality data are expensive, time consuming and with large parts of the water body 
never sampled. In this study we utilize MODIS data to estimate the water quality of Taiwan Strait, and pro-
pose a nonlinear model which incorporates improved real-coded grammatical evolution (GE) with a genetic 
algorithm (GA). The GE, an evolutionary automatic programming type system, automatically discovers 
complex nonlinear mathematical relationships among observed salinity concentrations and remote sensed im-
ageries. The algorithm discovers significant input variables and combines them to form mathematical equa-
tions automatically. Utilizing GA with GE optimizes an appropriate type of function and its associated coef-
ficients. To enhance searching efficiency and genetic diversity during GA optimization, the macro-
evolutionary algorithm (MA) is processed as a selection operator. The results of this study indicate that the 
proposed GEMA yields an efficient optimal solution. GEMA has the advantages of its ability to learn rela-
tionships hidden in data and express them automatically in a mathematical manner.  Compared with linear 
regression (LR1), LN transform of linear regression (LR2), and back-propagation neural network (BPN), the 
performance of GEMA was found better than LR1, LR2 and BPN. 

Keywords: water quality, Taiwan Strait, MODIS, grammatical evolution, macro-evolutionary algorithm  

1   Introduction 

Salinity refers to the fresh water inputs from various resources and processes such as precipitation and river 
runoff, is used as an indicator of the sea and ocean density. It is one of the major factors affecting ocean water 
quality, which can produce changes in numerous physical and biochemical processes [1]. In addition, salinity 
has important role in circulation patterns and affects the distribution of several marine organisms [2]. The insta-
bility in ocean salinity may appear as a result of increased evaporation (resulted from increased temperature) and 
changes in ocean circulation or induced by climate change [3]. In the ocean researches, several scientists and 
researchers have employed in situ salinity data from buoys or commercial ships. These data can be used to quan-
tify temporal changes in sea surface salinity at specific points However, they remain sparse, irregular, expensive, 
time-consuming, and large parts of the global oceans have yet to be sampled. In recent years, satellite remote 
sensing provides the potential of estimating sea surface salinity because of its advantages of large spatial cover-
age within a short time [4, 5]. Satellite remote sensing provides the potential of estimating sea surface salinity 
across entire water bodies at the frequency of satellite overpass [2]. Effective efforts to estimate sea surface 
salinity by applying remote sensing have included Landsat Thematic Mapper (TM) data [6], Landsat Multispec-
tral Scanner (MSS) [7] and electronically scanned thinned array radiometer (ESTAR) [8]. 

Water quality assessment applying satellite remote sensing data has been performed since the first remote 
sensing satellite, the Landsat Multispectral Scanner (MSS) became operational [7, 9]. Distinct remote sensing 
data, such as data obtained using the Landsat TM [7], electronically scanned thinned array radiometer (ESTAR) 
[8], and microwave sensors [10] have been used for water quality assessment including salinity. The most com-
monly used data are obtained using the Landsat Thematic Mapper, a multispectral imaging sensor. This system 
supplies a highly continuous dataset of high-spatial-resolution images of global land and water surfaces and 
enables the synoptic monitoring of water quality problems. However, using this system to obtain quantitative 
results is difficult [11]. The Landsat TM sensor is calibrated for land use; thus, its signal-to-noise ratio for a low-
reflectance seawater surface is unsuitable for obtaining substantial data [12]. Recently, the Moderate Resolution 
Imaging Spectroradiometer (MODIS) has been recognized as major challenge for sea surface water quality as-
sessment including salinity. Notably, Moderate Resolution Imaging Spectroradiometer (MODIS) sensors aboard 
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the Terra and Aqua satellites are multispectral sensors with several wavebands designed for monitoring the 
Earth’s environment, including atmosphere, land, and ocean. Their data have been used for estimating water 
quality assessment including salinity. For example, Hu et al. [13] used MODIS data for estimating the water 
quality and proposed that the colored dissolved organic matter concentration (CDOM) is the only constituent 
with a linear and inverse relationship with sea surface salinity. Barbini et al. [14] used the light detection and 
ranging (LIDAR) fluorosensor for estimation chlorophyll-a concentration in transects between New Zealand and 
Italy and obtained a favourable agreement between MODIS and SeaWiFS datasets. Wong et al. [12] used Aq-
ua/MODIS data for estimating suspended solids and salinity in marine Hong Kong, where monitoring stations 
are few, and determined significant correlations between MODIS data and in situ data. Application of Ter-
ra/MODIS with 500 m images could be considerably useful because it frequently achieves high accuracies [12] 
and might help capture the variation in sea surface salinity of Taiwan Strait. Another valuable feature of Ter-
ra/MODIS is free archive access.  

In recent years research efforts have been focused on optimization and predicting technique for solving large-
scale problems of various research fields [15, 16, 17, 18, 19]. For example in oceans research, statistical applica-
tions are traditionally used to establish algorithms for predicting various water quality variables. Regression 
analysis is widely used in formulating predictive models [20, 12]. However, nonlinear transfer functions are 
frequently observed when relating water quality variables to satellite imagery data [21]. In addition, the linear 
regression is too simple, it may generate inaccurate results. Generally, sophisticated regression models must go 
through time-consuming trial and error procedures so that the correct regression type can be obtained. Khorram 
[22] used satellite remote sensing data for estimating sea surface salinity and developed a multiple linear rela-
tionship between Landsat MSS bands and sea surface salinity. Xie, Zhang, and Berry [23] used Landsat TM data 
for sea surface salinity monitoring in Florida Bay by applying the geographically weighted regression (GWR) 
approach. Wong et al. [12] have developed multilinear retrieval algorithms to estimate sea surface salinity based 
on data of MODIS sensor. In recent studies, Urquhart et al. [2], Alabbadi et al. [24] and Geiger et al. [25] have 
used MODIS sensor data and applied different statistical methods to predict sea surface salinity. Urquhart et al. 
[2] developed eight statistical methods for predicting sea surface salinity in the Chesapeake Bay. Alabbadi et al. 
[24] used genetic algorithm combining operation tree to estimate sea surface salinity in Taiwan Strait. Geiger et 
al. [25] used neural network models to predict sea surface salinity in the Atlantic coastal. Therefore, sea surface 
salinity can be expressed as a function of remote sensing reflectance. Qing et al. [4] developed a simple multi-
linear regression model for sea surface salinity by using in situ measurements and medium-resolution imaging 
spectrometer (MERIS) visible band remote sensing reflectance along with sea surface salinity data in the Bohai 
Sea. 

Evolutionary algorithms, such as genetic programming, have been used with much success for the automatic 
generation of programs or equations between the inputs and outputs. It has an advantage over traditional statisti-
cal methods because it is distribution free, i.e., no prior knowledge is needed about the statistical distribution of 
the data like the back-propagation network (BPN) [26] and its abilities to learn relationships hidden in data and 
expresses them automatically in a mathematical manner [27]. Nevertheless, it is well known that the BPN is 
considered as a nonlinear black-box model, and it is not unusual for it to be criticized as not enhancing our un-
derstanding of the physical mechanisms because of its complex weighting coefficients and numerous other pa-
rameters. 

Chen [28] pointed out that constructing a tree-type data structure genetic programming is a difficult task for 
computer programming, because it is hard to choose the suitable size of a tree that can express a meaningful 
equation in advance. Recently, the newly developed grammatical evolution (GE) technique is a biologically 
plausible approach that performs evolutionary processes on a variable-length binary string. This new data struc-
ture is flexible and allows researchers to exploit the benefits of genetic algorithms (GAs) [29]. A mapping pro-
cess generates programs in any language using the binary strings to select production rules in a Backus–Naur 
form (BNF) grammar definition [30]. The result constructs a syntactically correct program or equation from a 
binary string, which can then be evaluated by a fitness function [30]. 

This paper is intended to improve the monitoring techniques of using remote sensing data to estimate strait 
salinity. Because of the complex nonlinear relationship between sensor bands and salinity concentration in a 
strait, a new system identified method called GEMA is used for salinity for the first time. 

2   Grammatical Evolution 

Grammar evolution (GE) [31] has been applied to all manner of automatic programming problems, from sym-
bolic regression, to C programs, or generation of graphical objects. The common view of GE is that, given a 
particular problem statement, a program that satisfied the fitness function is to be generated. Grammatical evolu-
tion (GE) is an evolutionary automatic programming type system that combines of a variable length binary 
string genome and a Backus-Naur Form (BNF) grammar to evolve interesting structures. It presents a unique 
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method which exploits grammars in the process of automatic programming. Harrison [32] defined the grammar 
as a process to produce strings sets. Variable-length binary string genomes are used with several codons repre-
senting integer values where codons are consecutive8-bit groups. The integer values are used in a mapping func-
tion to select an appropriate production rule from the BNF definition; the numbers generated always represent-
ing one of the rules that can be used at that time [29]. 

2.1   Backus-Naur Form 

BNF is a notation for expressing the grammar of a language in the form of production rules [33], was originally 
developed by Niklaus Wirth [34]. BNF grammars consist of terminals, which are items that can appear in the 
language, e.g., +, -, etc., and nonterminals, which can be expanded into one or more terminals and nonterminals. 
A grammar can be represented by the tuple {N, T, P, S}, which N is the set of nonterminals, T is the set of ter-
minals, P is a set of production rules mapping the elements from N to T, and S is a start symbol that is a member 
of N. When there are a number of productions that can be applied to one particular N, the choice is delimited 
with the ‘|’ symbol. 
Below is an example BNF, where 
N = ｛expr, op, pre_op｝ 
T = ｛Sin, Cos, +, -, *,  /, Variable , Constant｝ 
S = <expr> 
And P can be represented as 
 
(1) <expr> :: = <expr><op><expr> ………………….rule 0 
                      | ( <expr><op><expr>)………………....rule 1 

                |<pre-op> (<expr>)……………………...rule 2 
                      | <var>………………………………..…rule 3 
(2)    <op> :: = + ……………………………………...rule 0 
                      | - ……………………………….……….rule 1 
                      | / ……………………………………......rule 2 
                      |* ………………………………….…….rule 3 
(3) <pre-op> :: = Sin ……………………………….... rule 0 
                      | Cos ……………………………….……rule 1 
                      | Log …………………………….……... rule 2 
(4) <var> :: = X  .……………………………….…….rule 0 
                      | 1.0 ………………………………….….rule 1 

2.2   Mapping Process 

The genotype is used to map the start symbol onto terminals by reading codons of 8 bits to generate a corre-
sponding integer value from which an appropriate production rule is selected by using the following mapping 
function: 
 

        Rule = (codon integer value) MOD (number of rules for the current nonterminal)                          (1) 
 

Considering the following rules, i.e., giving the nonterminal op, there are four production rules to be selected 
from:  

 
(2)    <op> :: = + ……………………………………….….rule 0 
                     | - ……………………………………………rule 1 
                     | / ……………………………………………rule 2 
                     |* ………………………………….………... rule 3 
 
If we assume that the codon which being read produces the integer 6, then 
 
6 MOD 4 = 2 
 
selects <op> as rule 2:  /. Each time a production rule has to be selected to map from a nonterminal, another 

codon is read. In this way, the system traverses the genome. An equation Sin(X)*Cos(X) +1.0, including two 
pre_ops; Sin and Cos, two ops: * and +, one Variable: X and one Constant: 1.0, is as a simple example. Fourteen 
8-bit binary codons in a string can represent this equation using the BNF defined above. Each 8-bit binary codon 
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in the GE represents 256 distinct integer values. The following describes the decoding process and summarized 
in (Table 1) [35]. 

First, concentrating on the start symbol <expr>, we can see that there are four productions to choose. To 
make a choice, we read the first codon from the chromosome “11001000” and use it to generate a number “200”. 
Because the standard decode of the binary 11001000 is 

7 6 5 4 3 2 1 01 2 1 2 0 2 0 2 1 2 0 2 0 2 0 2× + × + × + × + × + × + × + × , which equals to 200. This value will 
then decide which production rule to be used according to Equation (1) in BNF. Thus, we have 200 MOD 4 = 0, 
meaning we must take the zeroth production, rule (0), so that <expr> is now replaced with 

 
<expr><op><expr>. 
 
Second, continuing with the first <expr>, i.e., always starting from the leftmost nonterminal, a similar choice 

must be made by reading the next codon value 160 and again using the given formula we get 160 MOD 4 = 0，
i.e., rule 0. The leftmost <expr> will now be replaced with <expr><op><expr> to give  

 
<expr><op><expr><op><expr>. 
 
Third, Again, we have the same choice for the first <expr> by reading the next codon value 206, the result be-

ing the application of rule 2 to give 
 
<pre-op>(<expr>)<op><expr><op><expr>. 
 
Fourth, now the leftmost <pre-op> will be determined by the codon value 96 that gives us rule 0, which is 

<pre-op> becomes Sin. We have the following:  
 
Sin(<expr>)<op><expr><op><expr> 
 
Steps fifth to thirteenth are shown in (Table 1) 
Step fourteenth mapping continues until eventually we are left with the following expression: 
 
Sin(X)*Cos(X) +1.0 

Table 1. Example of each codon converted into corresponding BNF grammar 

No. 8-bit binary  
codon 

Mapping function BNF grammars 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

11001000 
10100000 
11001110 
01100000 
00011011 
01001000 
01101011 
00111110 
00010110 
00110111 
01011000 
01100100 
11001011 
00101001 

200 MOD 4 = 0 from <expr> 
160 MOD 4 = 0 from <expr> 
206 MOD 4 = 2 from <expr> 
96 MOD 3 = 0 from <pre-op>
27 MOD 4 = 3 from <expr> 
72 MOD 2 = 0 from <var> 
107 MOD 4 = 3 from <op> 
62 MOD 4 = 2 from <expr> 
22 MOD 3 = 1 from <pre-op>
55 MOD 4 = 3 from <expr> 
88 MOD 2 = 0 from <pre-op>
100 MOD 4 = 0 from <op> 
203 MOD 4 = 3 from <expr> 
41 MOD 2 = 1 from <var> 

<expr><op><expr> 
<expr><op><expr><op><expr> 

<pre-op>(<expr>)<op><expr><op><expr>
Sin(<expr>)<op><expr><op><expr> 
Sin(<var>)<op><expr><op><expr> 

Sin(X)<op><expr><op><expr> 
Sin(X)*<expr><op><expr> 

Sin(X)*<pre-op>(<expr>)<op><expr> 
Sin(X)*Cos(<expr>)<op><expr> 
Sin(X)*Cos(<var>)<op><expr> 

Sin(X)*Cos(X)<op><expr> 
Sin(X)*Cos(X)+<ex pr> 
Sin(X)*Cos(X)+<var> 

Sin(X)*Cos(X)+1.0 
 
Notice that if any extra codons exist, they shall be ignored during the genotype-to-phenotype mapping pro-

cess. It is possible for individuals to run out of codons and, in this case, we wrap the individual and reuse the 
codons. This technique of wrapping the individual draws inspiration from the gene-overlapping phenomenon, 
which has been observed in many organisms [29]. It is possible that an incomplete mapping could occur even 
after several wrapping events, and in this case the individual in our question gives the lowest fitness value [36]. 
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2.3   Improving GE: Real Coding Representations 

Since there is a problem that only integers can be presented by the binary coding scheme mentioned above, we 
revised it as a real-coded representation. The real numbers which imply that, each chromosome is a real-valued 
vector, as opposed to binary-coded GA, where chromosomes are 0-1 vectors. It is very useful and efficient to 
generate the real-number constants and coefficients shown in these output equations. When a codon is decoded 
as a constant, the real value of real-coded genome can be generated directly. It is the main difference between 
the improved real coded GE and original binary coded GE. Whereas mapping a codon to the BNF rule, just need 
to round it off as a non-negative integer within the range between 0~255 (8 bits) then choose one corresponding 
BNF rule. The same procedure was used to mapping a codon into a corresponding BNF rule via equation (1) as 
binary coded GE does described in section 2.2. This revision makes it easy for the GE to combine with a real-
coded GA and it is described as follows. 

3   GE Combined with the Macro-Evolutionary Algorithm 

3.1   Genetic Algorithm 

The genetic algorithm (GA), originated in the mid-1970s [37], is an iterative procedure, which includes a popu-
lation of individuals that are candidate solutions to specific domain. During each generation, the individuals in 
the current population are related to their effective evaluations, and a new population of candidate solutions is 
formed by specific genetic operators like reproduction, crossover, and mutation. These steps are repeated until 
the convergence criterion is satisfied or a predetermined number of generations are achieved. A macro-
evolutionary algorithm (MA) is presented as a selection scheme [28] which is introduced as follows. Blend 
crossover (BLX-α) uniformly picks values that lie between two points contain the two parents, but may extend 
equally on either side determined by a user specified GA-parameter α [38]. 

The use of MA improves the capability of searching global optimum solutions and avoids premature conver-
gence because the genetic diversity can be maintained. The model exploits the presence of links between species 
that represent candidate solutions to the optimization problem. Because of the connection matrix, the whole 
population is able to obtain a rather accurate map of the relative importance of the solutions being explored in 
the landscape [39]. 

3.2   Algorithms of MA 

For connection matrix, each individual gathers information about the rest of the population through the strength 
and sign of its couplings Wi,j as 
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,

ji
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=                                                                            (2) 

 
Where pi = are the input parameters of the ith individual, and ),( ji ppdis means the Euclidean distance be-

tween pi and pj.  
The selection operator allows calculating the surviving individuals through their relations, i.e., as a sum of 

penalties and benefits. The state of a given individual Si will be given by 
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Where t is generation number and Wij = ( )ji ppW ,  is calculated according to (2).  
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3.3   GEMA  

Fig. 1 shows a combination of the GE and MA, called the GEMA, which is able to generate the optimal relation-
ship among inputs and outputs automatically. First, a GE was employed to transfer the real-coded string to 
mathematical function mapping the input onto output. Several ahead steps of inflow data were implemented as 
inputs in the GE to forecast current inflow. Furthermore, a real-coded GA including blend crossover and uni-
form mutation was incorporated with the GE in order to optimize objective value of the functions. Blend crosso-
ver (BLX-α) uniformly picks values that lie between two points that contain the two parents, but may extend 
equally on either side determined by a user specified GA-parameter α. Recently, the non-uniform mutation is 
usually used to produce offspring for the real-coded GA. The GA was regarded as a search strategy to determine 
the most proper relationship among the salinity data. Moreover, MA was applied to improve the searching effi-
ciency and prevent the premature convergence during the period of the optimization. The basic algorithm begins 
to choose an initial population randomly. Then it continuously runs from one generation to the next. 

 

Fig. 1. The flowchart of GE combined with MA 

These steps are repeated until the terminal condition is satisfied; an optimal equation which is capable of mini-
mizing the objective function (root mean square error, RMSE) will be obtained. 
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4   Salinity Estimation Using GEMA 

The purpose of this application was to utilize MODIS sensor data to evaluate sea surface salinity concentration 
in a strait. Whenever the relationship was made, the sea surface salinity concentration in strait may be computed 
in time. Whereas the relationship between salinity concentration in straits and corresponding image data was 
constructed through the GEMA. This system identification problem may be viewed as a search for a function 
type, which maps input values of MODIS onto an output value of sea surface salinity. The correlation coeffi-
cient, CC, value and root mean squared errors (RMSEs) are used as the criteria in this study. 

4.1   Study Area Taiwan Strait 

The Taiwan Strait is a shallow passage, about 350 km long, 180 km wide and 60 m -deep, between the China 
mainland and the Taiwan Island connecting the South China Sea to the East China Sea in the western North 
Pacific and its orientation is approximately southwest to northeast as shown in Fig. 2. The strait lies in mon-
soonal regions: Southwest monsoon (June-August), Northeast monsoon (December- February), fall inter-
monsoon (September-November) and spring inter-monsoon (March-May) [40]. The three major water masses 
identified in the Taiwan Strait are the Kuroshio Branch Water with high temperature and high salinity, the China 
Coastal Water with low temperature and low salinity, and the South China Sea Water with intermediate tempera-
ture and salinity [41, 42]. This variation in salinity affects the temporal and spatial variations of chemical and 
biological factors.  

 

Fig. 2. Taiwan Strait with sampling locations 

4.2   Salinity Data Set 

In this study, the actual data of sea surface salinity for 13/8/2009, 13/8/2010 and 13/8/2011 as shown in Fig. 2, 
are used and it is expected to have a high correlation with MODIS reflectance data. These data are used to vali-
date the salinity distributions which derived from MODIS data. Actual data are selected at same time of 
MODIS/Terra Satellite data overpass. 

The MODIS images were acquired from the Level 1 and Atmosphere Archive and Distribution System 
(LAADS Web) for 13/8/2009, 13/8/2010, and 13/8/2011. The level 1 can be obtained every day for all earth 
parts. It consist: level 1A scans raw radiance measurements, level 1 geolocation, level 1B calibrated radiance 
(MODIS at 250m, 500m. and 1 km resolution), atmospheric profiles and cloud mask. MODIS 500m resolution 
data with 7 bands covering the spectral range 459-2155 nm, was selected in this study.  

Geometric corrections of the MODIS images data were performed in order to compare the images data with 
salinity monitoring locations. The geometric correction was applied by using the “Georeferenced MODIS” func-
tion in ENVI 4.5. Then data band for each image was obtained by using ERDAS Imagine (2010). Seventy seven 
entries are used as training data and twenty five as predictive data; the total number of data entries is 102.  
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4.3   Estimation the Salinity of Taiwan Strait 

Using LR1 and LR2. To estimate the spatial variation of salinity in the Taiwan Strait using remotely sensed 
images, empirical relationship between digital numbers of the pre-processed image bands and salinity was estab-
lished using the linear regression (LR1) and LN transform of linear regression (LR2) methods initially. These 
models, LR1and LR2, utilized MODIS bands 1 to 7 were given by the following equations, respectively: 
 

LR1 1 2 3 4 5 6 7Salinity 0.00022X  0.00015X  0.0045X 0.0040X 0.000031X  0.000055X  0.00072X  23.40= − + + − − + + +      (4) 

 

LR2 1 2 3 4 5 6 7LN (salinity) 0.000029X 0.000012X 0.00038X 0.00032X 0.0000047X 0.0000064X 0.000027X 2.73= − + + − − + + + (5) 

 
where X1= band1, X2 = band2, X3= band3, X4= band4, X5= band5, X6 = band6 and X7= band7. In equation (4), the 
weight of X1 (-0.00022) is similar with those of X2 (0.00015) and X7 (0.00072), which are all less than those of 
X3 (0.0045), X4 (-0.0040), and much higher than the weight of X5(-0.000031) and X6 (0.000055). In equation 
(5), the weight of X1 (-0.000029) is similar with those of X2 (0.000012) and X7 (0.000027), which are all less 
than those of X3 (0.00038), X4 (-0.00032), and much higher than the weight of X5 (-0.0000047) and X6 
(0.0000064). The two models were applied on MODIS image and the results show on Fig. 3 and 4, respectively. 

 

 

 

 

 

 

 

Fig. 3. Taiwan Strait salinity-LR1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Taiwan Strait salinity-LR2 
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The CCs of equation (4) are 0.59 and 0.56 for training set and testing set, respectively. The CCs of equation 
(5) are 0. 55 for training set and 0.39 for testing set. The RMSEs of equation (4) are 4.45 and 2.06 for training 
set and testing set, respectively. The RMSEs of equation (5) are 5.34 for training set and 4.55 for testing set as 
shown in Table 2. Since nonlinear relationships may exist between the inputs and outputs, it is necessary to use a 
more advanced automatic programming and optimization model, such as GEMA to fit the complex nonlinear 
transfer function between the MODIS bands and salinity parameter. 

Table 2. The results of LR1, LR2, BPN and GEMA on the training and testing data 

 
Models 

LR1 LR2 BPN GEMA 
CC   RMSE CC   RMSE CC   RMSE CC    RMSE 

Training  
Testing 

0.59   4.45  
0.56   2.06  

0.55   5.34 
0.39   4.55 

0.71   3.94 
0.61   2.11 

0.81    3.25 
0.68    0.87 

Using BPN. The same data were used to run back-propagation neural network (BPN). The results show on Fig. 
5. The CCs of BPN are 0.71 and 0.61 for training set and testing set, respectively, which are better than LR1 and 
LR2 as shown in Table 2. The RMSEs are 3.94 and 2.11 for training set and testing set, respectively, which are 
lower than RMSEs of LR1 and LR2. BPN was found better than the traditional LR1 and LR2 models for salinity 
estimation for both training and testing sets as indicated by the higher CC and lower RMSE. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Taiwan Strait salinity-BPN  

Using GEMA. The GEMA model is implemented in C++ Language. The function library types in BNF that 
apply several sets of the terminals including mathematical operators such as { +, -, × , /, LN, EXP, POWER}. 
During the training stage, the GEGA model is built up through predefined 1000 generations with a population 
size of 100. After 700 generations, the final converged solution obtained from GEMA is shown as equation (6). 
After ten experiments, the objective values of different final solutions from 3.253 to 3.725 were obtained 
between 700 and 800 generations.  

3 4 2 4 6 5 3 6 533 4.4 * X / [X X X * (X X ) / (X X X )]GEMASalinity = − + + − + −             (6) 

The result shows that only six input variables X1, X2, X3, X4, X5 and X6 were chosen automatically from total 
seven input variables by GEMA to form equation (6) through a lot of generations’ evolutions and competitions. 
It shows the six input variables have most strong effects on the predicted salinity. Fig. 6 shows the salinity map 
using GEMA model.  

In Table 2, the result indicates that the CC = 0.81 and RMSE = 3.25 for training data, and CC = 0.68 and 
RMSE = 0.87 for testing data of GEMA are better than those of LR1, LR2 and BPN. GEMA was found better 
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than the traditional LR1, LR2 and BPN for salinity estimation for both training and testing sets as indicated by 
the higher CC and lower RMSE. 

In order to realize the performances of these three models, their diagrams are depicted and compared with 
each other. The horizontal axis is the actual value salinity, and the vertical axis is the predicted value salinity. 
Fig. 6 shows that the predicted values for GEMA are closer to ideal line (45°) than LR1 and LR2 and BPN, Fig. 3, 
4 and 5.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Taiwan Strait salinity-GEMA  

5   Conclusions 

This paper provides an improved real-coded grammatical evolution combined with the macroevolution algo-
rithm (GEMA), to predict strait salinity and compared with the conventional linear regression (LR1), LN trans-
form of linear regression (LR2) and back-propagation neural network (BPN). GEMA deals with nonlinear trans-
fer problems among several input and output data to generate a fittest mathematical equation. Few significant 
variables can be chosen from all input variables automatically. The result shows that GEMA used real number 
coding as an efficient and robust model. Although, using of the GEMA was not as simple as the basic formula, it 
provided an appropriate model to predict strait salinity using the five input variables. The response figure 
demonstrates that the relationship between predicted salinity and actual salinity generated by GEMA was rea-
sonable. The result of this case study indicates that the CC = 0.81 and RMSE = 3.25 for training data, and CC = 
0.68 and RMSE = 0.87 for testing data of GEMA are better than those of LR1 (CC = 0.59 and RMSE = 4.45 for 
training set, and CC = 0.56 and RMSE = 2.06 for testing set), LR2 (CC = 0.55 and RMSE = 5.34 for training set, 
and CC = 0.39 and RMSE = 4.55 for testing set), and BPN (CC = 0.71 and RMSE = 3.94 for training set, and 
CC = 0.61 and RMSE = 2.11 for testing set) as shown in Table 2. The results confirms that GEMA would be the 
better option than linear regression (LR1), LN transform of linear regression (LR2) and back-propagation neural 
network (BPN), because it models salinity without the limitation of linear property which conventional linear 
regression (LR1), LN transform of linear regression (LR2), and cannot conquer. The current study shows a suc-
cessful application of GEMA on salinity predicting and can be effectively used for Taiwan Strait salinity pre-
dicting. Further researches of water quality parameters of lakes, reservoirs and oceans can be improved to use 
the real-coded expression of grammatical evolution combined with the macroevolution algorithm.  
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