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Abstract. Focusing on the maintenance of important shape features during the mannequin simplification 
process, a new simplification method, driven by fuzzy partition of geometric information gain metric is 
proposed in this paper. The integration of distance, non-planarity, change of the normal has been defined as 
the geometric information gain metric to measure the geometric information content of each vertex. The 
geometric information gain metric is subsequently partitioned into three fuzzy sets to indicate the weak, 
moderate and strong geometry salience of vertices on the underlying mannequin in which thresholding values 
for fuzzy sets are selected by minimum fuzziness degree principle. The resulted fuzzy sets of geometric 
information gain metric are then introduced to the edge collapse operation to determine the vertices incident 
to candidate edges for contraction. The proposed approach is capable of reducing simplification error and 
maintaining mannequin’s feature dimensions as well. Simulation results show that the new algorithm 
facilitate better approximations with regard to both visual fidelity and geometric errors than Garland’s 
quadric error metric algorithm.  
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1   Introduction 

With the emergence of new 3D scanning techniques [1-4], detailed geometric mannequins acquired at a very 
high resolution are widely applied to many fields such as industry, arts and military. Models produced by the 3D 
scan data can often be very densly organized meshes with increasing complexity and  computational times. 
However, details of the reconstructed model actually vary considerably due to various acquisition and fitting 
schemes. A highly complex model capturing very fine surface details is not always necessary for applications. 
For the instance of  garment pattern generation, the surface geometry of a 3D garment protype is directly related 
to the individual human body sizes. In all these applications, there exists a compromise between the accuracy 
and computational efficiency. Simplification of surface meshes is an essential approach to trim large scale data 
of the mannequin to satisfy individual application requirements. 

Up to now, many contributions have been made to this field. Currently used object simplification  methods 
are roughly categorized into vertex clustering [5-7], region merging, mesh retiling, geometric primitives 
decimation, and progressive refinement . 

Vertex clustering methods exploit geometric proximity [5] to group object vertices into clusters, and then 
replace each cluster by a newly computed vertex, which is followed by a retriangulation process for all newly 
generated vertices. Since the position of a new vertex is calcuated using simple weighted mean regarding 
vertices within each cluster, it is incaple of maintaining topological structures of the object. To alleviate the 
disadvantages of vertex clustering,  Importance degree [6] is associated with each vertex, by which a floating-
cell clustering operation is proceeded, while in [7]  a 3D grid clustering technique together with quadric error 
metric is presented to deal with simplifying very large scale object. 

Region merging is conducted by combining the selected seed facet with its neighbouring facets satisfying 
given criterion (e.g. coplanarity ) to form a superfacet, and then by retriangulating the superfacet into fewer 
facets than those of the original object [8].  Region partition [9],  facets grouping with coincident normals [10] , 
and simplification envelopes [11] are alternatives to cope with emerging holes and high computational cost  
resulted by conventional region merging algorithms. 
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Mesh retiling methods [12] are characterized by a number of sequential operations such as randomly distrib-
uting a new set of  vertices over the initial object surface, retiling an intermediate mesh through connecting these 
newly inserted vertices one another,  removing each another, removing each original vertex, and finally re-
triangulating the surface in a way that matches the local geometry and  topology of the initial surface. A well-
established extension [13, 14] to mesh retiling methods is implemented by transforming the polygonal geometry 
into a 3D grid of voxels, to which a low pass filtering operation is subsequently applied for the removal of high 
frequency details. 

Guided by one of the decimation error measures such as geometry criteria [15-17], information-theoretic 
measure [18-20], visual similarity [21, 22] and  saliency metric [23-25], geometric primitives decimation 
methods operate on iteratively eliminating the constructional elements, i.e. vertices, edges  and triangles .  

In the case of vertex elimination [26, 27], multiple passes are exploited over all vertices on the object surface. 
Those vertices satisfying a user-specified distance or angle  criterion and all incidental triangles are 
progressively deleted, which is followed by a local re-triangulation process to fill the resulting holes. In the other 
cases, the simplification of a mesh is achieved either by iteratively collapsing edges into vertices [28, 29] or by 
collapsing triangles into vertices [17]. 

Progressive refinement methods are constructed by two sequences of dual mesh transformation, which are 
edge collapse and vertex split [30, 31]. As a result of successive edge collapse transformations, a base mesh is 
the most simplified version in approximating the initial object.  However, a  sequence of  vertex split 
transformations applied progressively to the base mesh result in a level-of-detail (LOD) representation of the 
initial object. 

Despite the high computational efficiency and  capability to simplify non-manifold meshes, vertex clustering 
methods are incapable of preserving topology and small-scale details of the original meshes. Although the facets 
merging process is topology tolerant and simplification maneuverable, it suffers from heuristic criteria, which 
result in unnencessarily optimal superfacets. Additionally, there probably exists holes in the face merging 
regions. Retiling approaches can present good simplification results on smooth surfaces. However, the accuracy 
and conciseness of the resulted meshes are counterbalanced to some extent by  substantial processing times. 
quadric error metrics [32] are devised to guide the simplifying process by iteractively contracting arbitrary 
vertex pairs, which  possess efficiency, quality and generality. Since this scheme depends merely on the sum of 
squared distances of each  vertex to its incident triangle planes disregarding local geometry and topology, it 
accordingly has exhibited limitations to the quality of geometric fidelity of simplified results. 

To attenuate the disadvantages of Garland’s quadric error metric, geometric information gain metric is 
proposed in this paper to measure the local geometry corresponding to each vertex, which are fuzzily partitioned 
into three priority sets. All edges to be collapsed are determined by priorities  of the geometric information gain 
of associated vertices. 

2   Definition of the Geometric Information Gain 

The definition of geometric information gain corresponding to every vertex of the object is dependent on the 
distance measure, the non-planarity measure, and the normal variation measure of the object’s surface. Let 

j i ij= +V V δ  for 1, 2, ,j k=   be the neighbours of  iV  . Suppose that jn and in  are the respective normal 

directions of  jV  and iV , which can be evaluated by averaging the normal vectors of the neighboring triangular 

meshes. Borrowing some notions from [33] , the distance measure ( )d iG V  (Ref. Fig.1 (a))) is given by.  
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And then the normal variation measure ( )c iG V  (Ref. Fig. 1 (c)) is represented by 
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( )p iG V  , and the normal variation measure ( )c iG V  results in  



Journal of Computers   Vol. 26, No. 1, January 2016 
 

26 

                                                      ( ) ( ) ( )( )
( )( ) ( )( )

min

max min
d i d i

d i

d i d i

G G
g

G G

−
=

−

V V
V

V V
,                                                  (4) 

                                                    ( )
( ) ( )( )

( )( ) ( )( )
min

max min

p i p i

p i

p i p i

G G
g

G G

−
=

−

V V
V

V V
,                                                    (5) 

and                                             ( ) ( ) ( )( )
( )( ) ( )( )

min

max min
c i c i

c i

c i c i

G G
g

G G

−
=

−

V V
V

V V
.                                                      (6) 

The definition of geometric information gain with respect to vertex iV  is hereby followed by 

                                                   ( ) ( ) ( )i c c i d d i p p ig g g gλ λ λ = + V V V ,                                                       (7) 

where coefficients dλ , pλ and cλ are assigned  0.3, 0.3, 0.4 respectively satisfying 1c d pλ λ λ+ + = . In the defini-

tion of geometric information gain, the normal variation measure is a dominant factor to provide every vertex 
with a significant geometry information content increment. Provided there is normal deviation between two 
vertices, local shapes of their incidental facets are much less similar to each other. Consequently, the normal 
variation measure is established to be the multiplier in (7). However, the individual contribution of the distance 
measure and the non-planarity measure to the geometric information gain is small relatively. The sum of the 
distance measure and the non-planarity measure is accordingly set to be the other multiplier. 

Due to the accessibility of the geometric information gain of mannequin at a given vertex, the diverse values 
of geometric information gain can provide us with an approach to guide the simplification process 

ijδiV jV  
(a) Position change 

ijδ

in

iV jV  
(b) Planarity variation 

ijδ

in

iV jV

jn

 
(c) Normal deviation 

Fig. 1. Illustration of geometric information gain 

3   Fuzzy Partitioning of Geometric Information Gain 

According to fuzzy set theory, a geometric information gain can be deemed to a fuzzy event. The range of geo-
metric information gain is partitioned into three intervals corresponding to weak, moderate, and strong cases of 
the geometric information gain in which triangular membership functions are employed to determine the mem-
bership grade for each geometric information gain value, as illustrated in Fig. 2. 

Suppose that the underlying fuzzy domain is constructed by geometric information gain values in ascending 
order as  { }1 2Ω , , , ,med Ng g g g=   , where medg is the median value of  Ω , and N is the number of total geo-

metric information gain values. The fuzzy sets indicating weak, moderate, and strong cases of the geometric 
information gain are denoted by AΩ , BΩ  and cΩ . Membership functions corresponding to AΩ , BΩ  and cΩ  

are designed as [34]  
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where Ωg ∈ , are the thresholds of fuzzy sets AΩ , BΩ  and cΩ . 

Fuzzy entropy [35] is introduced to measure the fuzziness of the presented partition as follows: 
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In (12), ( )igμ  is one of the membership function ranging at ig g= . Optimal thresholds can be obtained by 

solving the following optimizing problem. 
                                                                             ( )
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Fig. 2. Membership functions for evaluating the membership grade of each value of the geometric information gain. 

 
Notice that there are only two thresholds regarding the fuzzy sets to be determined (Ref. Fig. 2). The fuzzy 

partition of  Ω  is equivalent to a fuzzy 2-partition [36] with a minimum fuzzy entropy. It is feasible to apply 
enumerated search in finding the optimal thresholds of 1thg and 2thg . Below is the algorithm description: 

Step 1. According to (7), compute the values of geometric information gain for all vertices and then sort the 
computed results in ascending order to form Ω  with medg  located at its center. 

Step 2. Initialize the minimal fuzzy entropy minH  as the computed result of ( ), ,A B CH Ω Ω Ω  in the case of 

1 1thg g= , 2 1th medg g += . 
Step 3. Perform the search procedure to find the optimal 1thg  and 2thg : 

    for 1 1th =  to 1med −  
       for 2 1th med= +  to N  
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ⅰ) For the known 1thg and 2thg , compute new membership functions ( )A gμ , ( )B gμ and ( )C gμ  according 

to (8) , (9) and (10) , for Ωg ∈ . 

      ⅱ) Compute the fuzzy entropy of the partition of Ω  using 1thg and 2thg  according to (11). 

      ⅲ) Determine wheteher ( ), ,A B CH Ω Ω Ω  is less than minH ; if ( ) min, ,A B CH HΩ Ω Ω <  holds,  Update minH  

with the computed value of ( ), ,A B CH Ω Ω Ω  at  present. 

       end for 2th  
end for 1th  
Step 4. Use the return values of 1th and 2th  from the previous step to obtain optimal 1thg  and 2thg , denoted 

by 1_th optg  and 2_th optg . 

Step 5. Partition Ω  into fuzzy sets { }1 2, , , medg g g , { }1_ 1_ 1 2 _, , ,th opt th opt th optg g g+  and { }1, , ,med med Ng g g+  . 

4   Fundamental Edge Collapse Operation 

Edge collapse operation [32] is designated to delete a vertex such as 1V or 2V  and all the elements (i.e. edges and 

faces) around the edge, ( )1 2,E V V , and to retriangulate the remaining elements, as demonstrated in Fig. 3. 

Quadric error metric is currently employed to measure the cost of a collapse during a given iteration. To do 

this, by associating a symmetric 4 4×  matrix Q with each vertex, the error at vertex [ ]T
, , ,1i x y z=V is defined as 

the quadric form ( ) T
i i iΔ =V V QV . For a given collapse ( )1 2,E →V V V , a new matrix Q , which approximates 

the error at V  is calculated by a simple addition, 1 2= +Q Q Q . The optimal position for V can be derived by 

minimizing ( )Δ V .This is equivalent to solving equations / / / 0x y z∂Δ ∂ = ∂Δ ∂ = ∂Δ ∂ = . 

1V

2V

                

V

 
before collapse                                                  after collapse 

Fig. 3. Fundamental edge collapse operation 

 In Fig.3, the edge ( )1 2,E V V  is collapsed into a single point V . As a result, the shaded triangles become de-

generate and are removed during the collapse. 

5   Modified Simplification Algorithm 

The proposed simplification algorithm in this paper is built on egde collapsing operation and geometric infor-
mation gain metric, which is partitioned by fuzzy rules. The edge collapsing cost and the position of a newly 
generated vertex depend on both the distances from a vertex to its neighbours and the local geometric constraints. 
Since the introduction of geometric information gain metric is aiming at measuring the geometric variation of 
local surface instead of the vertex error, the edge collapsing operation for a planar region or a region of less 
curvature is prior to that for a region of drastic variations in curvature. As a result, the newly generated vertices 
are intensively distributed in the regions of lower geometric information gain values. The modified simplifica-
tion algorithm is described in detail as follows. 

Step 1. Compute the geometric information gain metrics for all the initial vertices and sort them into a numer-
ical order with the maximum at the front. 

Step 2. Compute the fundamental error quadric vK  for each triangulated mesh of the original mannequin. 

Step 3.  Associate a certain set of triangulated planes with their concurrent vertex. Then calculate the vertex 
error matrix with respect to this set by summing up all the corresponding fundamental error quadrics 'svK . 

Step 4.  According to (13), perform fuzzy partition to yield three fuzzy sets corresponding to weak, moderate, 
and strong cases of the geometric information gain respectively  
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Step 5. Select all valid vertex pairs just among the vertices of less geometric information gain metrics in the 

relevant fuzzy set.  For each selected pair ( ),i jV V , determine a new matrix Q  which approximates the error at 

V  by simply choosing to use the additive rule i j= +Q Q Q . 

Step 6.  Compute the contraction cost TV QV of vertex pair ( ),i jV V and put all the selected pairs in a heap 

keyed on cost with the minimum cost pair at the top. 

Step 7. Contract the pair ( ),i jV V of least cost from the heap to obtain a newly emerged vertex V . 

Step 8.  Search the vertices adjacent to both iV  and jV , which are denoted by 1P  and 2P  (only one vertex ad-

jacent to both iV  and jV  in the case of boundary edge ). 

Step 9.  If the geometric information gain of a newly emerged vertex V  is larger than the threshold, undo 

any collapse operations for edges involving the new vertex V  ; otherwise, update the costs of all valid edges 

involving the new vertex V  followed by the collapse operation. 
Step 10.  Under the circumstance that the geometric information gain of 1P  is equivalent to the threshold, 

check whether one among the edges set involving 1P  satisfies the least error. If a certain edge is in according 

with the least cost error, perform collapse operation on it. The same consideration is applied to 2P . 

Step 11. Iteratively proceed this process from step 1 to step 10 until the desired simplification ratio is met 

6   Simulation Experiments 

To compare the simplification results obtained using the fuzzy partition of geometric information gain metric 
based algorithm with those using Garland’s algorithm, three mannequins are presented in this paper which are a 
Chinese adult obese woman (#1), a Chinese adult thin woman (#2) and a Chinese adult obese man (#3), as 
shown in Fig. 4. The adult obese woman model is with the mesh size of 23310 triangles. The adult thin woman 
model is with the mesh size of 6542 triangles. The adult obese man model is with the mesh size of 13052 trian-
gles 

Starting from the simplification process, it is essential to select appropriate thresholds of geometric infor-
mation gain metric for the fuzzy sets. This can be obtained by resolving the optimization problem of (13). Re-
sults of optimal thresholds 1t and 2t  are listed in Table 1. 

Table 1. Optimal thresholds 1t and 2t  of the fuzzy sets.  

Mannequin #1 #2         #3 

1t  0.0000124 0.001699 0.0000136 

      2t  0.02705 0.1046 0.01078 

 
In order to explore the simplification effect, experiments are conducted on various simplification ratios (SRs), 

which are defined as the ratios between the deleted mesh size and the initial mesh size.  Fig. 5 has shown simpli-
fied results for the #1 mannequin. Quite a number of contour features regarding neck girth, armpit girth, waist 
girth, hip girth, and crotch girth are kept by geometric information gain metric. Fig. 6 has shown simplified 
results for the #2 mannequin. Some feature points on the female torso such as shoulder points, front neck point, 
bust points, armpits and crotch point are well preserved by geometric information gain metric even at high sim-
plification ratios. Fig. 7 has shown simplified results for the #3 mannequin. Geometric information gain metric 
well reserve more male body shape features such as head, neck, shoulder line, belly, waist, mid-waist during the 
progressive simplification process. 

To evaluate the quality of approximations generated by the algorithm proposed in this paper, two criteria 
termed maximum error maxe  and mean squared error mse between simplified and original model are introduced 

as [37]: 

( ) ( ) ( )( )max , max max , maxe
∈ ∈

=


 
v vv v 

      ,                                         (14) 

( ) ( ) ( )2 21
,mse

M M ∈ ∈

 = + +  
 v v
v v 

 


 

      .                                          (15) 

In (12) and (13), M and M  are the numbers of vertices corresponding to the original and the simplified 

models  and  , and distance ( ) min
∈

= −v p
v p


   is the minimum distance from v  to the closest facet of  . 
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Resulting errors of the simplification using fuzzy partitioning of geometric information gain metric are com-
pared to those using Garland’s metric, which are detailed in the Tables 2, 3, and 4. 

 

                                                                           
            (a)                                                               (b)                                                               (c) 

Fig. 4.  Initial mannequin:  (a) a Chinese adult obese woman #1,  (b) a Chinese adult thin woman  #2 and (c) a Chinese adult 
obese man #3. 

                                                                                
           (a)                                                                (b)                                                                (c) 

Fig. 5.  Simplified results for the mannequin #1: (a) SR=30%, (b) SR=50% and (c)  SR=90%. 

                                                                         
           (a)                                                              (b)                                                          (c) 

Fig. 6.  Simplified results for the mannequin #2: (a) SR=30%, (b) SR=50% and (c)  SR=90%. 
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           (a)                                                              (b)                                                          (c) 

Fig. 7.  Simplified results for the mannequin #3: (a) SR=30%, (b) SR=50% and (c)  SR=90%. 

Table 2. Comparison of the simplification errors of mannequin #1 

SR Garland’s Algorithm Algorithm of this paper 

 
maxe                    mse  maxe                  mse   

10% 0.02856             0.000004 0.02337             0.000004 
20% 0.04493             0.000013 0.0294               0.000012 
30% 0.04493             0.000026 0.03147             0.000024 
40% 0.04493             0.0000 45 0.04493             0.000044 
50% 0.04802             0.000077 0.04493             0.000074 
60% 0.05831             0.000133 0.0535               0.000128 
70% 0.05926             0.000243 0.05926             0.000246 
80% 0.07613             0.000544 0.06181             0.000532 
90% 0.09306             0.002081 0.07721             0.00204 

 

Table 3. Comparison of the simplification errors of mannequin #2 

SR Garland’s Algorithm Algorithm of this paper 

 
maxe                    mse  maxe                  mse   

10% 0.03287             0.000006 0.0319                0.000005 
20% 0.04326             0.00002 0.03856              0.000022 
30% 0.04452             0.000054 0.04092              0.000051 
40% 0.04723             0.000107 0.04529              0.0011 
50% 0.05389             0.000191 0.05139              0.000198 
60% 0.06571             0.000344 0.06488              0.00035 
70% 0.06691             0.000656 0.06142              0.000629 
80% 0.08825             0.001495 0.07602              0.00148 
90% 0.1036               0.005485 0.1006                0.005441 

 
It can be observed that there exist measurable gaps in the simplification errors between Garland’s quadric er-

ror metric algorithm and geometric information gain algorithm with fuzzy partitioning proposed in this paper. In 
the case of simplified results of mannequin #1, the maximum error of geometric information gain metric algo-
rithm with fuzzy partitioning is apparently less than that of Garland’s quadric error metric algorithm when the 
simplification ratio is either larger than 70% or less than 40%, while in the other case of simplified results of 
mannequin #2, both the maximum error and the mean squared error of geometric information gain algorithm 
with fuzzy partitioning have a certain degree of reduction in contrast with Garland’s quadric error metric algo-
rithm when the simplification ratio is larger than 10% and  less than 90%. As far as mannequin #3 is concerned, 
the maximum error of geometric information gain algorithm with fuzzy partitioning is clearly less than that of 
Garland’s quadric error metric algorithm when the simplification ratio is ranging from 30% to 80%, which is 
accompanied by a moderate reduction of the mean squared error of geometric information gain algorithm with 
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fuzzy partitioning relative to that of Garland’s quadric error metric algorithm when the simplification ratio is 
ranging from 10% to 90%. According to Tables 2, 3 and 4, fuzzily partitioned geometric information gain sim-
plification algorithm outperforms Garland’s quadric error metric algorithm in the sense of maximum error. The 
reason is that vertices among the detailed regions on the object surface are progressively maintained rather than 
contracted in the course of simplification guided by the geometric information gain metric. 

Table 4. Comparison of the simplification errors of mannequin #3 

SR Garland’s Algorithm Algorithm of this paper 

 
maxe                    mse  maxe                  mse   

10% 0.0295               0.000005 0.0295              0.000005 
20% 0.04396             0.000021 0.04396            0.000021 
30% 0.05233             0.000046 0.04135            0.000004 
40% 0.06285             0.0000 87 0.05233            0.000088 
50% 0.0868               0.000161 0.06359            0.000144 
60% 0.09281             0.000302 0.0788              0.000261 
70% 0.09281            0.000549 0.08196            0.000547 
80% 0.1029              0.0012 0.08476            0.000104 
90% 0.108                0.00409 0.119                0.00401 

7   Conclusions 

In this paper, a new mesh simplification method for mannequins based on geometric information gain has been 
presented, which is a function of distance, non-planarity, change of the normals. The newly presented method is 
characterized by a number of aspects such as the partition trick of geometric information gain metric, the simpli-
fication strategy, the error evaluation criteria and the capability to preserve mesh characteristics. Due to intro-
duction of geometric information gain metric, the edge contraction cost as well as the optimal position of new 
vertex are determined not only by the distance but also by the shape variation on the mannequin surface. There 
is a distinct difference of the edge contraction cost between the high convature region and the low convature 
region. As a result, the edge collapse operation is performed on the low convature region prior to the high con-
vature through fuzzily partitioning the geometric information gain values. The position of newly resulted vertex 
is much close to triangulated meshes with high degree geometric information gain metrics. 

Simulation experiments have been run on a set of mannequins involving a chinese adult obese woman, a chi-
nese adult thin woman and a chinese adult obese man. Results obtained by the proposed method in this paper are 
compared to the results with Garland’s quadric error metric algorithm. From the geometric fidelity view of point, 
the proposed simplification approach produces better results than the quadric error metric based simplification 
approach in terms of maximum error, which would constitute a promising way to applications of garment indus-
try. 
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