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Abstract. Summary-based compositional symbolic execution is able to merge the paths of target method into 
one logic formula, so that to eliminate path explosion due to inter-procedural paths. However, constraints in 
such summary-base method are always more complex than classical symbolic execution. When the con-
straints are complex enough, it will cost a lot of time in constraint solving, so as lead to worse scalability. In 
order to improve the scalability of compositional symbolic execution, we propose a more flexible summary-
based approach named DEMPS, which introduces parameterization mechanism into summary, so that a 
summary specification is able to be instantiated with different calling context, as well as to be composed with 
each other in hierarchical way.  DEMPS improves the scalability though on-demand path expanding and 
merging of summary. On-demand expanding selectively expands the paths of summary instances which con-
tribute to the target, and keeps the useless summary instances abstract. On-demand merging is able to selec-
tively merge or expand paths of specific summary instances, so as to support the trade-off between path ex-
ploration and constraint solving. We implement DEMPS in Symbolic JPF, and experimental results show that, 
when we choose a reasonable decision of merging and expanding, DEMPS has better scalability than both 
classical symbolic execution and classical summary-based approach. 

Keywords: symbolic execution, scalability, summary  

1   Introduction 

Symbolic execution is a well-known program analysis technique, which proved to be practical for automated test 
case generation and bug finding [1]. Some tools, e.g. CUTE [2], KLEE [3], symbolic JPF [4], have been widely 
used in industrial software development. Symbolic execution works by exploring as many program paths as 
possible in a given time budget, creating logical formula encoding the explored paths, using a constraint solver 
to generate test inputs for feasible execution paths, as well as finding corner-case bugs such as buffer overflows, 
uncaught exceptions, or even higher-level program assertions [5,6]. 

However, symbolic execution always suffers from challenge problems of path explosion and complex con-
straint solving [5,6,7].  A lot of techniques are proposed to cope with the path explosion, such as heuristic 
search[8], interleaving random and symbolic execution [9], paths pruning [10,11,12], lazy test generation [13], 
static path merging [14,15,16], incremental/regressive symbolic execution [17,18,28], combining static checking 
and dynamic symbolic execution [19], etc. Constraint solving is also able to be eased by techniques like irrele-
vant    constraint    elimination and incremental solving [20,21].  

Compositional symbolic execution is a group of approaches, which cope with the path exploration issues 
based on summary [20,21,22]. The summary of method is specified as a formula of propositional logic, which 
merges the pre/post condition of the method paths together with disjunction. By reusing the summary, composi-
tional symbolic execution treats method calling as one state, instead of exploring the method paths. Therefore, it 
is able to eliminate path explosion due to inter-procedural (inter-block) paths.   

However, through the mitigating of path explosion by summary-based approach, it increases the complexity 
of constraints [6,7,16]. Method summary merges multiple constraints of paths in summarized method into one 
formula, which will be composed into caller’s path conditions, therefore result in longer and more complex path 
constraints than that of classical symbolic execution.  When the constraints are complex enough, it will cost a lot 
of time in constraint solving, so as lead to worse scalability. 
In order to overcome this problem, we propose a more flexible summary-based approach named DEMPS (on-
Demand Expanding and Merging of Parameterized Summary), which introduces parameterization mechanism 
into summary, so that a summary specification is able to be instantiated with different calling context. Just like 
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the function in programming language, parameterized summaries are able to be composed with each other in 
hierarchical style.  

The parameterized summary improves the scalability though on-demand path expanding and merging.  On-
demand expanding eases the path exploration, in that it only expands the paths of summary instances which 
contribute to the target, and keeps the useless summary instances abstract. On-demand merging is helpful for 
trade-off between path exploration and constraint solving, so that we can get reasonable complexity of constraint 
at a cost of acceptable path exploration by merging or expanding the paths of specific summary instances. 

We have implemented DEMPS in Symbolic JPF, and experimental results show that, when we choose a rea-
sonable decision of merging and expanding, DEMPS has better scalability than both classical symbolic execu-
tion and classical summary-based approach. 

2 Parameterized Summary 

The idea of parameterized summary is similar to the function in programming language. The summary of meth-
od or code fragment has a list of input variables and a pre-condition as its parameters, which can be assigned 
with symbolic values and constraint formula in the calling context.  

Just like the function in programming language, the parameterized summaries in program will be composed 
in hierarchal style. One summary specification can compose other summaries into its path, in the form of ab-
stract summary instance expressions. 

2.1 Definition of Parameterized Summary 

Definition 1: (Parameterized Summary) S=(I, O, C, PS), where I  is the value list of Input valuables, O is the set 
of output valuables, C is the pre-condition of the summary, PS is the path set of program. For every p ϵ PS, 
p=(lpc,T), where lpc is the local path condition formulas for this path.  T is the trace of this path, including a 
sequence of path steps. 

Definition 2: (Path Step) Path step specifies the action in the path. The step set STEP ={s| s∈DW ∪ EP ∪ 
SI}, where DW ⊂ (O∪Output(SI)) × E , is the set of data-written steps, output(SI) is a set of output for summary 
instance set SI,  and E is the symbolic expression set; EP is the set of path-set step, which contains a set of 
embedded sub-paths; SI is the set of summary instance step, which contains a summary instance. 

Definition 3: (Summary Instance) Summary instance is defined as a triple tuple: SI=<Ssi, Isi, Csi>, where i.e. 
Ssi is the referred summary of this instance, Isi is the symbolic values of the input list, and Csi is a unquantified first 
logic formula of pre-condition. 

In these definitions, the input I and pre-condition C play the role of parameters, which will be assigned with 
symbolic values in summary instances.  

The output of the summary specifies the summary’s effect on its callers. The outputs include the return value, 
the modified field of this object, the modified field of static class, as well as the modified input objects. 

The path set P of the summary is the body of summary.  The local path condition lpc of path specifies the 
path condition without pre-constraint passed on from predecessor states.  The path trace specifies the observed 
behavior of program in specific path, i.e. it only records the actions that may have effects on its caller.  

The path set of the summary specifies the main structure of symbolic execution tree of target method or code 
fragment.  The definition of path step shows that the paths are organized in hierarchal style, i.e. the paths in path 
set might have embedded path sets, as well as the embedded summary instances that can be expanded as path 
sets. 

2.2 Examples 

We use an example to show how parameterized summaries are specified. The example Java code and its sum-
mary specifications are shown as Fig. 1.  

In these two summary specifications, the input variables are parameters of method, output variable is the 
method return ret, the pre-condition are set as true. In the path-set of summary foo(x,y),  bar(y0) is a summary 
instance step, which has a input value y0, and a pre-condition x0>0 ; ret=bar(y0).ret is a data-written step, which 
assign the bar(y).ret(one output of summary instance bar(y))  to ret ; {(y0>0,…),(y0<=0,…)} is a path-set step 
that embedded into the path (x0<=0,…). 

The parameterized summary can be applied both method and code fragment.  If it is applied to the code 
fragment, the input will be the values of variables that defined before the fragment, and output will be the 
variables that used after the fragment.  
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Example Code 1: 
int bar(int m){ 
      if(m>0){ return 1; }else {return 0;} 
} 
int foo(int x,int y){ 
      int result=0;  
      if(x>0){  result=result+ bar(y); } 

else  if(y>0){result=result+ bar(x-y); } 
      return result; 
} 
Summary Specification of bar(m): 

input:{m0} ,output:{RET}, pre-condition: true,    
path-set: {(m0>0, [RET=1]), (m0<=0, [RET=0])} 

Summary Specification of foo(x,y): 
input:{x0,y0} ,output:{RET}, pre-condition: 

true,          
path-set: {(x0>0, [bar(y0), RET=bar(y0).RET]),  
(x0<=0,[{(y0>0,[bar(x0-y0),RET=bar(x0-y0).RET]),  
(y0<=0,[RET=0]) }])} 

Fig. 1. Example 1 of summary specification 

The loop in the code can be specified with recursive summary. For example, the loop code while (i>0) { x=x-2; 
i--;} can be specified as: 

loop(i,x)={input:<i0,x0>, output:<i,x>, pre-condition: true,  
    path-set:{(i0>0, [x= x0-2,i=i0-1 , loop(i0-1, x0-2)])} 

2.3 Generation of Parameterized Summary 

Figure 2 is an algorithm to generate the parameterized summary. With this algorithm, we can start from given 
method, and generate the summaries for methods in call graph and unbounded loops in methods.  

The summary of given method or loop are generated through partially symbolic execution of given method. 
Instead of symbolic executing the whole application, we start symbolic execution from given method, and exe-
cute the codes in given scope. If we want to generate the summary for the method, the scope will be from the 
first code to the last code. Or if we want to generate a summary for one code fragment, e.g. a loop, the scope will 
be from the first code to the last code of the fragment. Line 6~40 of the algorithm forces the symbolic execution 
only executes the code within the scope. 

Lines 7~16 cope with the tree-like path structure of summary. When the instruction is the first choice of the 
branch, we create an embedded path set step in the path, and set current path to the first path of this path set. 
When we explore the next choice, we create another path, and set current path to it. When the branch is 
completely explored, we set current path to its parent path. 

Lines 17~27 cope with the data-written steps in the summary. If the instruction modifies a data that used after 
the scope, including the fields of this object, fields of argument object, static fields, or other variable used after the 
scope, we add a data-written steps to current path, and add the variable to the output set of the summary. Similarly, 
if the instruction reads data from a variable that defined before the scope, we add the variable to the input list of 
the summary. If the instruction is return, we add “ret” to the output set and recode the data-written step. 

Lines 28~37 cope with the summary instance step of the summary. If instruction is the first code of an 
unbounded loop, or is an invoking instruction, we add a summary instance step to the path, create a summary 
generation task and put it into the task queue if it is required, set the output data to support the following symbolic 
execution, and skip the codes of the loop or invoking instruction.  

This algorithm has good scalability. Since the algorithm is based on partially symbolic execution, the paths to 
be explored are localized into given scope of one method. Also, the unbounded loop and the invoked method are 
treated in separate summary generation tasks, and their paths will be explored only time.  In addition, all the 
generation tasks have no dependencies with each other, so they can be scheduled in parallel. 
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Algorithm 1: generateSummary (M,start,end) 

Input: method M and scope <start,end> 
Output: summary S of  M in scope <start,end> 
1 Path:=(true,[])  //current path; 
2 S:=({},{},true, Path); //initiate the summary 
3 Inst:= firstInstruction (M); 
4 StartSymbolicExecution (M);  
5 While(Inst!=null){ 
6   if(Inst.index>=start && Inst.index<=end) { 
7      if(firstPCChoice(inst)){ 
8          newPath:=( LocalPC,[]); 
9          Path.addPathSetStep({newPath});  
10          Path:=newPath; 
11      }else if(nextPCChoice(inst)){ 
12         newPath:=(currentLocalPC,[]); 
13         Path.addSiblingPath(newPath); 
14         Path:= newPath; 
15      }else if(complatePCChoice(inst)){ 
16         Path:=parentof(P); 
17      }else if(inst : storeInstruction){ 
18           if(scopeof(inst.var).end >end){ 
19              S.O= S.O∪{inst.var} 
20              Path.addDataWrittenStep(inst.var, inst.value); 
21            }  
22      }else if(inst : loadInstruction){ 
23          if(scopeof(inst.varName).start < start ) 
24            S.I= S.I∪{(inst.varName, inst.value)} ; 
25      }else if(inst: Return){ 
26           S.I= S.I∪{(ret, inst.value)} 
27           Path.addDataWrittenStep(RET, inst.value); 
28      }else if(inst.index = = Loop.start){ 
29         Path.addSummaryInstanceStep(Loop,Φ, PC); 
30         enqueueTask (M, Loop.start, Loop.end); 
31         setOutput(Loop.O); 
32         skip(Loop); 
33      }else If(inst: Invoke(M’,ARG’)&&isSymbolic(M’)){  
34         Path.addSummaryInstanceStep(M’, ARG’, PC); 
35         If(!hasSummary(M’) && ! inTaskQueue(M’)) 
36                enqueueTask (M’, M’.start, M’.end); 
37         setOutput(M’.O); 
38         skip(inst); 
39      }  
40       SymbolicExecute(inst); 
41   }// end of line 6 
42   Inst := getNextInstruction(Inst); 
43 }// end of line 5 

Fig. 2. Algorithm of summary generation  

3 Three Forms of Summary Instance 

The summary we generated may have some summary instances in the form of abstract summary instance ex-
pression. However, when we use the summary in the test case generation or model checking, these summary 
instances need to be computed to get their concrete path set. 

Based on the path set we computed, the summary instance has three forms. 
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3.1 Three forms of Summary Instance 

Summary Instance has three forms: closed, expanded, and merged. As shown in Fig. 3, Closed is an abstract 
form that has an empty path set. Expanded form means that the path set of summary instance is computed and 
specified in multiple-path style. E.g. the summary instance bar(y) in expanded form will have path set that 
contains two paths: {(y0>0, [bar(y0).ret=1]), (y0<=0, [bar(y0).ret=0])}.  

 

 

Fig. 3. Three forms of summary instance 

Merged form means that all the paths of summary instance are merged into one path, which has a local path-
condition same as the classical summary in [3].  In merged form, each path is translated into one path constraint 
firstly, which is a conjunction of path-condition with a proposition of the final state of the path. And that all paths 
are merged into a single formula with disjunction operators. E.g. the summary instance bar(y0) in merged form 
will have a path set which contains one single path: {(y0>0^bar(y0).ret=1˅ y0<=0^bar(y0).ret=0,[])} . 

Three forms of summary instance are able to meet different requirements of testing or verification. Closed 
form ignores the internal path set, and suitable for the situation that the path set is useless to the target. The 
expanded form has more paths to explore but simpler constraint to solve, while the merged form has more 
complex constraint but fewer paths.  In the practice, we can trade-off between issues of path explosion and 
complex constraints solving by merging some of the summary instances while keep others expanded. 

3.2 Path Expanding of Summary Instance 

 

Fig. 4. Path expanding example of different summary instances 

There are two tasks to expand the path set of summary instances: substitution and pruning. (1)Substitution: 
replace all the input variables in the paths in the summary specification with their corresponding symbolic 
expression in summary instance. (2) Pruning: removes the paths which conflict with the pre-condition in summary 
instance, and this task can be done by constraint solving. The algorithm of expanding is not complex, so it is not 
given in this paper. We simply explain it with an example. 

In examples 1, the summary foo(x,y) has  two summary instances bar(y0) and bar(x0-y0). bar(x0) has a symbolic 
input value x0, with a pre-condition x0>0, and bar(x0-y0) has a symbolic input value x0-y0, with a pre-condition 
x0<=0^y0>0. 

As shown in Fig. 1, the summary specification has two paths and one input variable m. when we compute the 
path set of bar(y0), we replace all the m0 with y, and keep all paths since no path is conflict with pre-condition 
x0>0, and finally, we get a path set {(y0>0, [bar(y0).ret=1]), (y0<=0, [bar(y0).ret=0])}.  Similarly, in the case of 
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bar(x0-y0), we replace m0 with x0-y0, remove the path x0-y0>0 because it conflicts with x0<=0^y0>0, and we get a 
path set {(x0-y0<=0, [bar(x0-y0).ret=0])}. 

As to summary of loop, because it involves recursion, we should expand it for multiple times.  If it is an 
unbounded loop, we should specify a number for the loop times just like what we do in symbolic execution.  

3.3 Path Merging of Summary Instance 

Path merging is a recursive process because of embedded path sets. Fig. 5 is a recursive algorithm which is able to 
merge a path set PS into a single path (PC,Φ). 

In this algorithm, we build one path constraint for each path, and then compose them together with disjunction. 
Each path constraint is a conjunction of three parts: local path condition Path.lpc, constraint of sub-paths Csub, and 
post condition.  

Lines 2~16 travel the path to build the path constraint. Lines 7~12 show that if the step is an embedded path 
set or an expanded summary instance, we merge its path set together into one path, and compose it into Csub. Lines 
13~14 show that if the step is a data-written step, we put the value and its symbolic value into MAP. After the 
path traveling (in Line 17), the path constraint is built as a conjunction of local path condition, constraint of sub-
paths, and post condition. we build the post condition with MAP, which recodes the final value of output data. 

Line 18 composes the path constraints together with disjunction. When all the path constraints are generated 
and composed, we build a merged path with the final path condition PC, and an empty trace of path. 

The complexity of algorithm is O(n), because we travel every path (including the sub-paths) only once in the  
algorithm. 

Algorithm 2: merge (PS) 

Input: target path set PS  
Output: merged path (PC,Φ) 
1 PC=null; //the final path condition of merged path 
2 for(each Path ϵ PS) { 
3     for(each step ϵ Path.T) { 
4       Csub=true; // constraint for sub-paths 
5       MAP=Φ;//hash map to store data states of path  
6       if(step is a summaryInstance){ 
7           if(isExpanded(step)){ 
8               P’:=merge(step.PS); 
9               Csub’:=  Csub’ ^ P’.PC }         
10        }else if(step is a path-set){ 
11             P’:=merge(step); 
12             Csub’:=  Csub’ ^ P’.PC; 
13        } else if(step assign value to var){ 
14             MAP.put(var,value); 
15        }  
16      }////end of  line 2 
17      PC’ := Path.lpc  ^ Csub ^ PostCondition(MAP); 
18      PC  := PC ˅ PC’; 
19   }//end of  line 1 
20    Return (PC,Φ);  

Fig. 5. Algorithm of summary generation  

4 On-demand Path Expanding and Merging of Parameterized Summary 

Based on parameterized Summary, we propose an approach called DEMPS (on-Demand Expanding and Merging 
of Parameterized Summary).  This approach is able to expand and merge the paths in summary according to the 
target of testing or verification, as well as the requirement of scalability. 

4.1 What is On-demand Path Expanding of Summary? 

When we use parameterized summary to support test case generation or model checking, it is possible that some 
of the summaries instance are useless for the target. E.g. If we want to generate the test cases that cover all paths 
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of example foo(x,y), the two instances bar(x0) and bar(x0-y0) are all useless, because they are not used in the path-
conditions. However, if we want to verify the post-condition properties   “ret>0” for foo(x,y), this two instances 
are useful, because the value of ret is related to them. 

Taking this fact into consideration, one of the best practices to use the summary is that we should expand the 
summary instances that contribute to the target, and keep the useless summary instances closed. We call this on-
demand summary expanding. In this way, we can get fewer paths to explore as well as simpler constraints to 
solving.  

4.2 What is On-demand Path Merging of Summary? 

Summary instances in merged form have the advantage in reducing the amount of path exploration, but similar to 
the traditional summary, they have the negative effects on the constraint solving. On the other hand, the expanded 
form will result in simpler constraint than merged form, but it will have more paths to explore.  If the constraints 
are too complex or the paths amount increase exponentially, the cost of symbolic execution will be very expensive. 

Therefore, we should have a trade-off to keep a balance between path exploration and constraint complexity. 
In our approach, we can selectively merge given set of the summary instances, while keep others expanded to 
achieve this balance. This is so called on-demand summary merging.  

4.3 Algorithm of On-demand Summary Expanding and Merging 

Figure 6 gives a general algorithm for on-demand summary expanding and merging. This algorithm has three 
inputs, where P is the target path to be tested or verified, D is the target data set used in test path or checked 
properties, and M is the summary instance set to be merged. This algorithm travels the path set from target path to 
the root in bottom-up order to find the summary instances to be expanded and merged.  

 
Algorithm 3: ondemandExpandAndMerge (P, D,M) 
Input: target path P of given summary, target data set D, 
Summary instance set to be merged 
Output: the summary whose  path set is expanded 

1 CP:=P; // current path  
2 SI:={};//summary instances to be expanded  
3 while(CP!=null){ 
4      //backward travel the trace 
5     for(each step ϵ CP.T from the last to the first) { 
6       if(step is summaryInstance&& step.O∩D !=Φ){ 
7           SI:=SI∪{step};  
8        }else if(step assign value to var && varϵ D){ 
9           D := D∪summaryOutputUsedIn(value); 
10        }      
11     }//end of  line 4 
12     D := D∪SummaryOutputUsedIn(CP.lpc); 
13     CP:=parentof(CP);// bottom-up traveling 
14   }//end of  line 3   
15 for(each si ϵ SI){ 
16     if(isClosed(si)){ 
17         PS := computePathSet (si); 
18         for(P’ ϵ leaviesOf(PS)){  
19            ondemandExpandAndMerge (si.S, P’, D∩si.O);  
20         } 
21    }//end of line 16{ 
22    If(si ϵ M && isExpanded(si) ) {  
23         mps := merge(si .PS);  si.PS={ mps }; }  
24 } //end of line 15 

Fig. 6. Algorithm of summary generation  

The algorithm visits the paths in a bottom-up and backward order, because the data only depend on its former 
steps. It starts form the target path, and travels the path backward, after the path is traveled, then go on traveling 
its parent path.  
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Lines 3~14 do the bottom-up traveling, where line 13 turns to its parent path. Lines 5~11 do the backward 
traveling for current path. Lines 6~7 indicate that if current step is a summary instance which has outputs in target 
data set D, then we add this summary instance into SI, a set of summary instance to be expanded. Lines 8-9 
indicate that if current step is a data-written step, and the modified variable is in target data set D, we check the 
value expression of this variable, and if it uses any summary instance’s output, we put these summary instance’s 
outputs into data set D. After traveling current path, we check the current local path condition, and put the 
summary instance’s output it used into data set D. 

Lines 15~24 do the expanding and merging for the summary instances in SI. Lines 15~20 expand the 
summary instances reclusively.  It computes the path set of summary instance and on-demand expands and merges 
all of its leaf nodes with a target dataset D∩si.O.  Lines 22~23 check if the summary instance is in merged set M. 
If so, then merge it. 

5 Application of Parameterized Summary 

Parameterized summary supports test case generation and model checking in two different ways: (1) symbolic 
execution; (2) without additional symbolic execution. 

5.1 Using Parameterized Summary with Symbolic Execution 

Traditional summaries need not standalone generation procedure, and are generated and used in the process of 
test case generation. Each summary is specified as one formula which merges the pre and post conditions of 
paths of target methods together.  If the symbolic execution invokes the method again in the same context, it can 
be reused and without re-execute the target method again. 

 In our approach, the summary instance is the counterpart concept to the traditional summary. The merged 
form of summary instance has a path condition that is as same as the traditional summary. Therefore, at least, the 
summary instance can be used as a traditional summary to support the symbolic execution. Furthermore, we 
provide three forms of summary instances which can be used to meet different requirement.  

1) Lazily expanding and merging of summary instances 

Closed form of summary instance can be used to support lazily expanding and merging. When the symbolic 
execution encounters a method invoking, we get the summary specification we generated before, and create a 
summary instance with symbolic values of arguments as its input and current path condition as its constraint. 
And then set the abstract expression of return value or other output values to the state of symbolic execution. 
But will not change the current path condition immediately. 

We will keep this summary closed until their output expressions appear in the constraints to solve. E.g. in the 
example of Fig. 1, if we want to generate the test cases for the foo method, the summary instances bar(y0) and 
bar(x0-y0) will keep closed all the time, because we never use them in the path conditions.  

However, if we verify the post condition property “ret>0” through constraint solving. In the path 
if(x0>0){result=result+ bar(y0);}, the negative constraint to solve is ret<=0 ^ x0>0 ^ ret=bar(y0).ret, which uses 
the output of one summary instance bar(y).ret. So we will expand and merge paths of bar(y0), and compose the 
merged path condition with the original constraint, then we get a constraint to solve:  ret<=0 ^ x0>0 ^ 
ret=bar(y0).ret ^ (y0>0^bar(y0).ret=1 ˅ y0<=0 ^ bar(y0).ret=0).  By solving this constraint, we will get a count 
example.  Similar we should expand and merge bar(x0-y0) to check the property for another path. 

2) Usage of Merged and Expanded Summary Instance 

We can use both expanded and merged form of summary instance in symbolic execution. The merged from can 
be used like traditional summary. When the path condition contains the summary instance expression, we add 
the merged path condition to current path condition to support the path solving. 

The expanded summary instance will be a little different.  Because it contains multiple paths, we should treat 
is just like the branch instruction in symbolic execution, and create a group of sub-paths in symbolic tree. E.g. if 
we use the expanded form of bar(y0), we will create a two-path choices in symbolic tree. One path uses 
y0>0^bar(y0).ret=1as its local path condition, and another path uses y0<=0^bar(y0).ret=0 as its local path 
condition. 
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5.2 Using Parameterized Summary without Additional Symbolic Execution 

In other view, the summary is the behavior specification of the program, and it includes information to support 
test case generation and verification. Therefore, based on them, we can do some works without additional sym-
bolic execution.  

In this section, we show an example of on-demand test case generation to illustrate how to use the summary 
without symbolic execution.  

1) Problem analysis 

On-demand test case generation in this paper means that we generate the test case for specific path or specific line 
of code. Generating such test cases based on parameterized summary means that we need to find a group of inputs 
with which the program will go along a path to the target node in summary paths. Therefore, on-demand test case 
generation is reduced to one problem: finding one feasible path led to the target node in the summary paths. Once 
we find this path, the input values that solved in this path will be the test case we need.  

The example code as well as its summary specifications is shown in Fig. 7. In this example, we want to 
generate the test case for the code if(sum ==0) assert(false),  and the corresponding path in summary is 
(bar(s1).ret+ bar(s2).ret+ …+ bar(s19).ret ==0,[ERR]).  

The code of this example is quite simple, but traditional symbolic execution doesn’t work well to generate the 
test cases, because there are about 251 paths to be explored, caused by the method invoking in the loop.  
Traditional summary-based method only explores three paths, but has to solve three complex constraints, each of 
which contains 201 propositions, therefore will also cost a lot of time.  

 
Example Code 2: 
static int N = 50;  
int bar (int m) { 

if(m>0) return 1; else  return -
1; 
} 
int top(int [] s) { 

 int sum = 0; 
 for (int i=0; i< N; i++) { 

 sum = sum +bar(s[i]); 
} 
if(sum ==0) assert(false); 
return bar(sum); 

} 
Summary Specification of bar: 
input:<m> ,output:{ret}, pre-
condition: true,          
path-set: {(m>0, [ret=1]), (m<=0, 
[ret=-1])} 
Summary Specification of top: 
input:<s> ,output:{ret }, pre-
condition: true,          
path-set: {(true,[bar(s0),bar(s1), 
bar(s2) …bar(s19), {(bar(s1).ret+ 
bar(s2).ret+…+bar(s19).ret==0,  
[ERR]), 
(bar(s1).ret+ bar(s2).ret+…+ 
bar(s49).ret !=0, 
[bar(bar(s1).ret+ 
bar(s2).ret…+bar(s19).ret)), 
ret= 
bar(bar(s1).ret+…+bar(s49).ret)).re
t])})} 

Fig. 7. Algorithm of summary generation  

2) Steps of our approach 

Our approach has two steps to generate the test case based on parameterized summary. In the first step, we expand 
and merge the summary according to the target, in order to reduce the complexity and get balance between path 
exploration and constraint solving. In the second step, we search the paths according to specific strategy, and 
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solve the constraints composed by the path conditions along the paths. Once we get a feasible solution in one path, 
the input values in the solution will be the test case we need. 

Step1: on-demand expanding and merging of summary 
Base on the method in section IV, we can expand and merge the summary on demand.  In this example, the 

target path is (bar(s1).ret+ bar(s2).ret+…+ bar(s49).ret ==0,[ERR]), which  constraints 50 summary instance 
outputs {bar(s0),bar(s1),…bar(s49)}, therefore, we should expand or merge the summary instance 
bar(s0),bar(s1),…bar(s49). As shown in Fig.7, we decide to merge 12 summary instances and keep 8 instances 
expanded.  Each of the merged summary instances has only one internal path, and each of the expanded sum-
mary instances has two internal paths, therefore, there will be totally 225 paths form the first node to the target. 

The summary bar(bar(s1).ret+ bar(s2).ret +…+bar(s49).ret) is not used directly or indirectly by the target 
path, therefore, we keep it closed. 

a) Step2: path searching and constraint solving 

After step 1, we get a group of paths. Fortunately, we need not to solve constraints for all paths, because our target 
is to find one feasible path. Once find it, the searching and solving will stop immediately. In the example, the 225 

paths generated are all feasible. Therefore the searching and solving will stop after the first path.  
The path searching can be in depth-first order, breadth-first order, random order, or order in heuristic strategy. 

We would better adopt the random or heuristic search strategy, because in general they find the feasible path more 
quickly. 

Whatever the search strategy we adopt, once the search gets a path from root to the target node, we compose 
together all the path conditions of all nodes along the paths into a path constraint to solve. In the example, if the 
search get a path which chooses the first internal path for all the expanded instances bar(s12),bar(s13)…bar(s49). 
Then we can compose together the path conditions of bar(s0), bar(s1)…,bar(s24) with the path conditions s25>0, 
s26>0,…s49>0, and the path condition bar(s1).ret+bar(s2).ret+…bar(s49).ret==0. The composed path 
constraint is:  

(s0>0^bar(s0).ret=1˅s0<=0^bar(s0).ret=-1) ^  
(s1>0^bar(s1).ret=1˅s1<=1^bar(s1).ret=-1) ^ 
… 
(s11>0^bar(s11).ret=1˅ s11<=0^ bar(s11).ret= -1) ^ 
S25>0^ s26>0^ …  s49>0  ^ 
bar(s1).ret+bar(s2).ret+…bar(s24).ret+25==0 
This constraint has 126 propositions, and is much simpler than the constraints generated by traditional 

summary method.  
 

 

Fig. 8. Example of on-demand path expanding and merging 
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We solve this path constraint. If the constraint is satisfied,   then this is a feasible path. We get the input values 
from the resolution of this constraint, and then test case is generated by now. If the constraint is not satisfied, we 
continue and get the next path to solve until we find a resolution. If all the paths’ constraints are solved but none is 
satisfied, that means the target path is unreachable in the program and has no test case.  

The constraints generated by search can be solved in parallel, because the constraint solving tasks have no di-
rect dependency with each other.  The search generates multiple paths, and puts into parallel scheduler, which 
arranges the path constraints in parallel with the help of multicore or distributed computing techniques. 

6 Experiment and Evaluation 

6.1 Implementation of DEMPS approach 

We implement DEMPS approach based on Symbolic JPF [4].  Symbolic JPF is an expansion of java model 
checking tool JPF (Java Path Finder). It provides the implementation for efficient dynamic symbolic execution, 
and supports test case generation and bug finding, as well as assert verification.  We implement DEMPS approach 
as a JPF plugin. The main classes we implemented include:  

(1) PartialExecutionVM: an extension class of SingleProcessVM. It enables partial symbolic execution that 
can start the symbolic from any method, instead of just the static main method.  

(2) SummaryGenerator:  a listener of JPF, which generates the summary for the methods or the loops, by 
responding to the events of symbolic execution.  

(3) SummaryGenerationTaskManager: maintains a task queue of summary generation, and starts a partial 
symbolic execution to enact the task.  

(4) SummaryDAOService: access to a Redis database in order to store and read summaries and summary 
instances’s path set.  

(5) SummaryAssembler:  implement the path expanding and merging algorithms, as well as the algorithm for 
on-demand expanding and merging.  

(6) RandomSearch: search in random order in the paths of summary, in order to find the paths led to the target.  
(7) ConstraintSolvingTaskManager: a parallel task scheduler for constraints solving. 
Also, we modified the class PathCondition to support adding a disjunction expression to the constraint, and 

translate it into CNF style so that it can be handled by Coral solver.  

 
Fig. 9. Experiment result of scalability of three approaches 

6.2 Research Questions 

In this section, we want to answer two research questions through experimental evaluation. 

1) Will parameterized summary improve the scalability of test case generation or verification? 

This is the main benefit of parameterized summary approach that we advocate. Does parameterized summary 
perform better than traditional summary and non-summary symbolic execution? We will evaluate the performance 
of these three approaches with different scales of programs. 
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2) What are the performance effects of summary merging and expanding? 

In order to get better performance, should we merge more summary instances or expand more? Which 
summary instances should be merged and which ones should be expanded? We will evaluate the performance of 
our approach in different situations to answer these questions. The answer will give a guide on the trade-off 
between path exploration and constraint solving. 

6.3 RQ1-Improvement of Scalability 

We did an experiment in symbolic JPF, to evaluate the scalability of our approach, by comparing DEMPS 
approach with (1) symbolic execution without summary (written as SE), and (2) SMART approach, which is 
based on classical pre/post-condition based summary. 

Symbolic JPF supports test case generation through dynamic symbolic execution, but does not provide the 
implementation of SMART approach. We contacted with the author Patrice Godefroid, who replied that his group 
had no implementation of SMART in JPF. Therefore, we implemented a prototype of SMART method by 
ourselves. This prototype is a little different from SMART: we generate the summary with full paths of method, 
instead of partial paths in respect to the invoking context in SMART. But this won’t influence the result of our 
evaluation, because all the invoked method in this experiment has no deference on this point. 

We choose the example 2 in Section V as the target program to be processed. This example has a method 
invoking in the loop, and will generate huge number of paths in symbolic execution, which will be a challenge for 
both SE and SMART methods.  

This experiment generates the test cases with three different approaches, for code line if(sum ==0) assert(false) 
in programs of different scales .  We assign the loop times N to different values, to generate different scales of 
symbolic execution. In the experiment, we changed the loop times N from 8 to 84, and the paths of symbolic 
execution will scales from 29 to 285. 

In the experiment, we use Coral [23] as the constraint solver, because it handles disjunction well in JPF. We 
set “multiple errors” to false to force the symbolic execution stop as soon as it finds the error. Also, we generate 
summary specifications for method foo and bar before evaluation (time spent is less than 2 seconds). We expand 
the summaries according the target code, and merge half of the summary instances of bar(y), and keep another 
half expanded. 

And after the test case generation with three approaches in different scales, we get a result as shown in fig. 9. 
In this figure, the X-axis is the times of loop, which indicate the scale of symbolic execution. The Y-axis is the 
time spent on finding the test case.  

It is clearly shown that symbolic execution without summary has poor scalability. When N increases to 16, the 
time cost will be unacceptable.  

The SMART method has a better scalability than SE. The reason is that: no matter how many the times of loop 
is, it only has two paths to explore, and only has to solve constraints twice in each symbolic execution. However, 
when loops number increases more than 40, the time cost increases dramatically, because it spends a lot of time on 
solving the complex constraints, and each of which has 4N+1 propositions. 

As shown in the figure, the DEMPS approach has a better scalability than other two approaches when we 
merge half of the summary instances while keep another half expanded. The maximum loop times can reach more 
than 80. In this experiment, our approach generates 2N/2 paths, but these paths are all feasible. Therefore only one 
time of constraint solving is required to generate the test case. Each constraint contains 2.5N+1 proposition, which 
is much simpler than the constraints in SMART approach. 

6.4 RQ2- Performance Effects of Merging and Expanding 

The performance of DEMPS approach largely depends on the decision of summary expanding and merging. 
Though we get a good result in experiment 1, but if we choose an unsuitable   decision, it is possible that we 
might get a worse result than the classical method. So there must be a trade-off between path exploration and 
constraint solving to get better performance.  

We design an experiment to find out what will influence the performance of our method, and what is the best 
practice to decide which summary instances should be merged and which ones should be expanded.  

The program to test is a modified version of example in Section V. the program has another method foo2, with 
a code like this: 

   void  foo2(int[] A, int[] B) 
 int sum1 = 0; int sum2=0; 
 for (int i = 0; i <20; i++) { 

 sum1 = sum1 + bar(A[i]);sum2=sum2+bar(B[i]); 
 } 
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if(sum1>=0 && sum2>12) { assert (false);} 
} 

The target is to generate the test case for line if(sum1>=0 && sum2>10){assert(false);}. Firstly, we generate 
the summary for foo2. As a result the target path condition is: bar(A1).ret+bar(A2).ret+…bar(A19).ret >=0 ^ 
bar(B1).ret+ bar(B2).ret+… bar(B19).ret>= 12. This path condition can be divided into two parts. The first part 
bar(A1).ret+ bar(A2).ret+…bar(A19).ret>=0 is easy to solve because there are a lot of feasible paths in symbolic 
tree. The second part bar(B1).ret+bar(B2).ret + …bar(B19).ret>=12 is difficult to solve  because there are just a 
few feasible paths in symbolic tree.  

In other words, summary instances bar(B1)~bar(B19) have more possibility to cause infeasible paths than  
bar(A1)~bar(A19). In this experiment, We tried different decisions of summary merging and expanding, to find 
out what is difference between merging/expanding bar(A1)~bar(A19) and bar(B1)~bar(B19).  

The experiment result is shown in TABLE 1. The table head and the first column is the merging scope of two 
groups of summary instances. Each cell of the table contains two figures. The first figure is the time spent to 
generate the test case, and the second one is the count of searched path. (51.469, 8) means it searched 8 paths and 
the total time cost is 51.469 seconds. Timeout in the cell means it spent more than 300 seconds to find the test case. 

As shown in the table, it seems that merging bar(B1)~bar(B19) has positive effect on the performance, while 
merging bar(A1)~bar(A19) has negative effect on the performance.   

This can be explained in respect to the effect of merging on paths.   In DEMPS approach, the path constraints 
in summary instances bar(B1)~bar(B19) will be composed with the target path constraint bar(B1).ret+bar(B2).ret 
+ …bar(B19).ret>=12.  However, among these composed constraints, a great deal of them is infeasible. Merging 
several paths into one has a merit to eliminate some infeasible compositions, because the disjunction of several 
path constraints provides more choices to compose with sequential path constraints, so that lead to higher 
possibility of feasible composition.  

However, there is another interesting phenomenon in the table: the best performance appears in row bar(B0) 
~bar(B14) instead of  row bar(B0)~bar(B19). The reason is that: after merging bar(B0) ~bar(B14), the   possibility 
of feasible paths is already 100%, but it has simpler constraint than that of merging bar(B0)~bar(B19).  

Table 1. Experiment result of effects of merging and expanding 

Merging Scope none bar(A0) ~ bar(A4) bar(A0) ~ bar(A9) bar(A0) ~ bar(A14) bar(A0) ~ bar(A19)

none timeout timeout timeout timeout timeout 

bar(B0) ~ bar(B4) 136.235,21 timeout timeout timeout timeout 

bar(B0) ~ bar(B9) 51.469,8 timeout timeout timeout timeout 

bar(B0) ~ bar(B14) 10.749,1 14.690,1 85.571,1 154.688,1 timeout 

bar(B0)~ bar(B19) 11.877,1 36.060,1 41.038,1 timeout timeout 

 
Therefore, we can make a conclusion: merging summary instances are able to improve the possibility of 

feasible path composition, as well as decrease the paths to explore; while expanding is able to decrease the 
complexity of constraints. Therefore, if the summary instance has high possibility to cause infeasible paths, 
merging will have positive effects on the performance, and if the summary instance has low possibility to cause 
infeasible paths, expanding will have positive effects on the performance.  

In the practice, we can order the summary instances according their possibility to cause infeasible paths, and 
merge the summary instances which have high possibility, until it produces a good enough possibility of feasible 
path.  One of the challenge problems is how to precisely estimate the possibility that cause infeasible paths. This 
will be one of our future works. 

7 Related Work 

Compositional symbolic execution or summary-base method has been developed since Patrice Godefroid 
proposed it in 2007[20]. We will list and discuss some important works that related to ours.  

Incomplete summary: Incomplete summary means that the summary does not cover the full paths of target 
method [21,22].  In [21], summary contains dangling nodes that represent unexplored paths, and are able to be 
expanded lazily on a demand-driven basis. Therefore as few intra-procedural paths as possible are symbolically 
executed in order to form an inter-procedural path leading to a specific target branch or statement of interest.  

In our approach, summary specification is regarded as a complete summary in the view of intro-procedural 
analysis, while summary instances are incomplete one.  Similar to [21], the summary instance in our approach is 
also able to be expanded on demand.  We distinguish the summary specification and summary instances, in order 



Journal of Computers   Vol. 26, No. 4, January 2016 
 

60 

to get better reusability and flexibility:  the summary specifications and summary instances are all reusable, and 
summary instances can provide different degrees of completeness to meet different requirements. 

Abstract summary: Uninterpreted functions is allowed to appear in summaries [20,21,22,24]. Such summary 
is called abstract summary in [22]. In general, uninterpreted functions are utilized to express the functions that are 
difficult or impossible to be symbolically executed. When the summary with uninterpreted functions merge into 
path constraint, such path constraint is possible to be solved with mixed concrete-symbolic solving in dynamic 
symbolic execution, or be utilized to support high-order test case generation [24].  

In our approach, the summary which contains summary instances is somehow like the abstract summary, 
because the summary instance expression has similar characteristics as that of uninterpreted function. However, 
the main feature of the summary instance expression is to support the summaries composition, as well as on-
demand expanding and merging, instead of to represent  an “unknown” function.  

Loop Summary:  Input-dependent loops may cause an explosion in the number of constraints to be solved 
and in the number of execution paths to be explored. Loop summary is able to simplify the execution of loop into 
one first logic formula, which is the conjunction of pre and post condition of the loop[25,26].   In [25], Patrice 
Godefroid proposed an algorithm to generate the loop summary. The algorithm includes a (partial) loop-invariant 
generator that uses pattern-matching rules on the loop guards to guess the number of loop iterations, and can infer 
loop invariants relating values of induction variables, a restricted but common class of loop invariants. 

Parameterized summary is also helpful to reason the pre and post-condition of loop summary. For instance, in 
the loop example in Section II, where the summary path set is: {(i0>0, [x=x0-2,i=i0-1, loop(i0-1, x0-2)])}, given x 
and i has the initial symbolic value x0 and i0. Obviously, the pre-condition of loop is i0>0. With the help of this 
summary, we can reason that after N times of loop, the variables:  i=i0-N and x=x0-2*N.  When the loop is 
completed, i0-N==0, therefore the post condition of loop will be  i==0 ^ x==x0-2* i0.  

Path/state merging: Path merging is an approach   to decrease the path number to be explored through 
merging them using select expressions [14,15,16].  E.g. two paths (X < 0, [x = 0]) and (X ≥  0, [x = 5]), can be 
merged into one path (true, [x = ite(X < 0,0,5)]). Similar to the summary-base method, state merging also has the 
problem that it will increase the complexity of constraint solving. Volodymyr Kuznetsov presents query count 
estimation, a method to automatically choose when and how to merge states in order to get better performance 
[16]. The method statically estimate the impact that each symbolic variable has on solver queries that follow a 
potential merge point; states are then merged only when doing so promises to be advantageous. 

In our approach, it is also a problem to decide when and how to merge paths of summary instance. The 
method of Volodymyr Kuznetsov mainly considers the merging’s effects on complexity. However, our 
experiment shows that the effect on the path feasibility is also an important factor to be taken into consideration, 
because the time cost on solving unfeasible constraints is very expensive.  

Precision and progress of compositional symbolic execution:  Dries Vanoverberghe and Frank Piessens  
point out in [28] that precision and  progress are two important properties  hold by classical symbolic execution, 
but difficult to be proved in compositional symbolic execution.  They give a formal definition of precision and 
progress, as well as an algorithm to check them for compositional symbolic execution. 

According to this paper, DEMPS approach is precise, because for every invocation in the application, all the 
leaf nodes of the summary instances are reachable in the calling context, and the return value of summary doesn’t 
introduce any approximants.   DEMPS approach doesn’t satisfy the strong process property, because it adopts on-
demand expanding which introduces unfairness. But DEMPS approach is complete relatively for test case 
generation or bug finding, because all the internal paths of called method that lead to the target are kept for 
exploration. 

8 Conclusion 

In this paper, we proposed an approach named DEMPS, to improve the scalability of compositional symbolic 
execution. The main contributions of our work include: 

(1)We presented parameterized summary, which is able to be instantiated by calling context, as well as be 
composed in hierarchical way. Also, an algorithm based on partially symbolic execution is given to generate the 
summaries. 

(2)We defined three forms of summary instance: closed, expanded, and merged to meet different requirements 
of test case generation or verification.  

(3)We proposed an approach DEMPS based on parameterized summary, which is able to improve the 
scalability through on-demand path expanding and merging of summary. 

(4)We implement the DEMPS approach in symbolic JPF, and did the experimental evaluation for the approach. 
And the experiments show that if we choose suitable decision of expanding and merging, the DEMPS will get 
better scalability than classical symbolic execution and classical summary-based method. 
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In the future, we would like to do further work on evaluating the effect of path merging and expanding, in 
order to get a more precise trade-off between exploration and constraint solving. We will also do some works on 
incremental approach for compositional symbolic execution [27,29] based on parameterized summary. In addition, 
we would like to analyze mobile apps [30] or identify malicious codes [31] for large programs based on our 
approach. 
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