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Abstract. The simulation of turbulent details generated around solid boundaries is crucial for visually realis-
tic fluid animations. We present a new hybrid approach aimed at incorporating solid-induced turbulence into 
the particle-based SPH fluid solver. Based on a novel adaptive sampling method, we split particles in regions 
around solid boundaries to more finely capture solid-induced turbulence, and merge small particles in regions 
away from solid boundaries to promote efficiency. Furthermore, a turbulence production model is proposed 
to identify the small particles which separate from solid boundaries and obtain the vorticity information. We 
employ a hybrid scheme which combines coarse Euler grid and Lagrangian particle to enforce fluid incom-
pressibility and solve turbulence evolution. Our method provides a physically plausible way to model turbu-
lence details generated around solid boundaries in particle-based fluid solvers, from which the results demon-
strate a significant improvement in the quality of visual details as compared to existing methods. 

Keywords: turbulence, fluid simulation, smoothed particle hydrodynamics, particle-based method 

1   Introduction 

In computer graphics, physically based simulation of fluid is becoming increasingly popular to create realistic 
animation of many complex phenomena, such as water, smoke and fire. Actually, more interesting natural phe-
nomena are the result of fluids interacting with solid objects immersed in a flow. For current fluid solvers, how-
ever, significant problems still remains in the capture of turbulence details induced by solids immersed in a flow. 
One of the prominent difficulties in the popular Eulerian grid fluid solver is the loss of small-scale details due to 
numerical diffusion caused by the low discretization resolution. To model the turbulence formation around ob-
jects immersed in a flow, high-resolution grids [1], [2], [3] are widely adopted in local concerned region to get 
vivid results. But the generated turbulence details are difficult to be preserved in the global flow with the coarse 
grid, when they move out of the high-resolution region. 

Lagrangian particle method is becoming a competitive alternative to Eulerian grid method, in particular for an-
imations with many small droplets and turbulence details of fluids. For example, the method in [4] used vortex 
particles to represent vortical details in fluids. Some researches attempt to combine the strengths of two different 
methods, and many hybrid grid-particle methods [5], [6], [7] which incorporate some vortex particles into Euleri-
an grid fluid solvers are presented to model turbulence effects. However, most of them deal with the preservation 
of vortices already existed in the overall flow rather than the turbulence formation around objects immersed in a 
flow. In [8], a physically plausible turbulence model is presented to seed vortex particles where the separated 
boundary layers will transit into actual turbulence. However, it is time-consuming to create a pre-computed artifi-
cial boundary layer that captures the characteristics of turbulence generation around objects. 

To our knowledge, it is still a challenge to model the realistic turbulence formation and evolve turbulent de-
tails in particle-based fluid solvers like SPH, because the requirement of a higher particle resolution to capture 
turbulence details becomes the system bottleneck. Recently, Level of Detail technique [9], [10], [11] has been 
proposed to improve efficiency in the simulation process by focusing on visually important regions such as near 
the free surface or around objects. In this paper, we provide a physically plausible method to simulate turbulence 
induced by solid boundaries in particle-based fluid solvers. Based on a new adaptive sampling scheme, our ap-
proach split particles in regions around objects to more finely capture solid-induced turbulence, and merge parti-
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cles in regions away from solid boundaries to avoid oversampling and lend efficiency to the simulation. The 
small particle which separates from solids and becomes unstable will obtain the vorticity information, and can be 
regarded as a vortex particle. The evolution of generated turbulence as well as fluid incompressibility is solved 
under the help of the coarse uniform grids. To sum up, our method is inspired by turbulence method using artifi-
cial boundary layers [8], the adaptive particle-based method [9], and the incompressible hybird SPH method [12]. 
It can be regarded as a complementary for a standard SPH simulator to simulate turbulence details induced by 
solid boundaries. The main contributions of this paper can be described as follows: 

(1) Based on a new adaptive sampling scheme, we split particles near solid objects to allocate computing re-
sources to regions with turbulence details, and merge small particles in regions away from solids. 

(2) A turbulence production model is proposed to identify the small particles which separate from solid 
boundaries and would obtain the vorticity information. 

(3) We employ a hybrid scheme which combines coarse Euler grid and Lagrangian particle to enforce fluid in-
compressibility and solve turbulence evolution. 

2   Related Work 

Over the past decades, physically based fluid animations such as smoke and water have received considerable 
attention in computer graphics. There exist two broad categories for simulation methods based on their different 
approaches to spatial discretization: Eulerian grid method [13], [14] and Lagrangian particle method [15], [16]. 
For a more thorough review, we refer readers to the recent paper [17]. 

The inherent damping of turbulence details due to numerical dissipation is one of the prominent difficulties in 
fluid simulation, especially in the popular Eulerian approach. To solve this problem, Fedkiw et al. [18] proposed 
vorticity confinement to amplify existing grid vorticity in the fluid. However, if the uniform simulation grid is not 
fine enough to capture the desired details, vorticity confinement can not recover them. The numerical dissipation 
problem can also be alleviated by using higher order advection schemes [19], [20], [21], but turbulence details 
represented by these methods are still inherently limited by the resolution of the underlying grid. By solving the 
Navier-Stokes equations with higher-resolution grids in a local concerned space, several approaches [1], [2], [3] 
can accurately model the small-scale turbulence formation around objects immersed in a flow. However, this 
assumes that only a small part of a simulation needs high detail. When moving out of the high-resolution region, 
these vortices are difficult to be preserved in the coarse grid. 

Recently, procedural methods for adding further details in sub-grid by using noise have been introduced. Kim 
et al. [22] used wavelet method and synthesized missing turbulent flow components with band-limited wavelet 
noise. This method helps to show turbulence details in a coarse grid. Schechter and Bridson [23] presented a sub-
grid turbulence evolution model for fluid simulation. They tracked bands of turbulent energy using a simple line-
ar model, and created the turbulent velocity using flow noise. They also added a predictor step to the usual time 
splitting of the incompressible Euler equation, and corrected the additional vorticity dissipation caused by time 
splitting of the pressure and advection. Narain et al. [24] introduced a technique coupling a procedural turbulence 
model with a numerical fluid solver. They used an energy function and a Lagrangian approach to advect noise 
when synthesizing an incompressible turbulent velocity field. In addition, they applied the method to the simula-
tion of liquids with free surfaces. 

The vortex particle method is more suitable to model small-scale details in fluids, and was introduced to the 
graphics community by Gamito et al [25]. Selle et al. [5] made use of vortex particles to introduce additional 
vorticity into the grid fluid for highly turbulent flows. But their method requires the artist to specify where these 
particles are injected into the flow, and does not reproduce the decay of turbulence when the force is removed. 
Thus, it is suited for scenarios where a constant source of turbulence vorticity is known in advance. Some other 
grid-particle methods [6], [7], [26] incorporating vortex particles into Eulerian grid fluid solvers are used to 
model turbulence effects. However, most of them mainly deal with the preservation of vortices already represent-
ed in the overall flow rather than the turbulence formation around objects immersed in a flow. In addition, Park 
and Kim [4] model gaseous phenomena by entirely distributing vortex particles on the whole grid and utilizing a 
pure Lagrangian simulation with vorticity transport equation. 

While the preceding approaches achieve interesting turbulent behavior in fluids, a major source of turbulence 
is the interaction of fluids with solids. By carrying vorticity information on SPH particles, the method in [27] 
created the turbulence details around the objects immersed in flows and preserved these details in particle-based 
SPH smoke. The visual effects obtained by their methods are vivid, but perhaps not physically plausible. The 
method in [8] employed vortex particles in a grid-based fluid solver to introduce obstacle-induced turbulence and 
obtained physically plausible results. During a fluid simulation, the method identifies areas where the separated 
layers will transit into actual turbulence and seeds vortex particles. After seeding, the method solves energy 
transport equations to determine when the particles should increase or reduce their chaotic agitation, and corre-
spondingly heuristic rules are developed for particle merging and splitting. However, it is time-consuming to 

87 



Journal of Computers   Vol.27, No.2, July 2016 
 
create a pre-computed artificial boundary layer that captures the characteristics of turbulence generation around 
objects. In this paper, we proposed a novel adaptive sampling method for SPH fluid. Our method splits particles 
in regions around solid objects to more finely capture turbulence, and merges small particles in regions away 
from solids to promote efficiency. Then a turbulence model is proposed to identify the small particles which 
separate from solid boundaries  and will obtain the vorticity information. 

Incompressibility property of fluids plays an important role in the formation of important visual effects like 
splashes and dynamic turbulent motions. SPH method was originally designed to model compressible or weakly 
compressible flow. In order to simulate incompressible fluids in SPH, instead of preserving a uniform particle 
density [28], Karthik et al. [12] proposed a hybrid method which uses a Poisson solve on an auxiliary coarse grid 
to enforce a divergence free velocity field and permits a significantly larger time step. Greatly inspired by their 
work, we use an auxiliary coarse grid to enforce incompressibility for our splittable particle-based SPH fluid 
solver. 

3   Particle-Based Fluid Simulation 

In this section, we will briefly introduce our SPH-based fluid solver, and show how we calculate the incompress-
ibility of fluid and solid-fluid interaction. 

3.1   SPH Method Summary 

Generally, the governing Navier-Stokes equations of Lagrangian fluid solvers are given as: 

21D
p

Dt
µ

ρ
= − ∇ + ∇ +

u
u f   ,                                                           (1) 

·
d
dt
ρ

ρ= − ∇ u  ,                                                                      (2) 

which are composed of two equations, i.e., momentum equation and continuity equation, respectively. The value 
u denotes the velocity field of the fluid, ρ denotes the density, p the pressure, f the external forces and µ vis-
cosity coefficient. 

Among Lagrangian methods, SPH is one of the most effective model in computational fluid dynamic (CFD), 
which represents fluid as a collection of particles. Field quantities are expressed as a summation of physical val-
ues each of which is weighted by smoothing kernel product in the vicinity of each particle. A physical quantity 

( )iA x at the position ix  can be computed by the equation 

( ) ( , )j
i j ij

j j

A
A m W h

ρ
= ∑x x   ,                                                    (3) 

where jm is the mass of neighboring particle j , ij i j= −x x x . The function ( )W x is called the smoothing kernel 

with the support radius h which is a scaling factor that controls the smoothness or roughness of the kernel. Here 
we use different kernel functions in [15] for evaluating different field quantities in order to enhance the precision 
and the robustness of our algorithm. 

In SPH approach, the derivatives only affect the smoothing kernel. The gradient and Laplacian of the smooth 
attribute function ( )A x are 

( ) ( , )j

i j ij
j j

A
A m W h

ρ
∇ = ∇∑x x  ,                                                  (4) 

2 2( ) ( , )j

i j i j
j j

A
A m W h

ρ
∇ = ∇∑x x  .                                               (5) 

Since our method adopts a new adaptive sampling scheme which will be described in next section, a particle 
may have other neighborhood particles with different radius. Following the method in [9], we substitute Equation 
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(4) and Equation (5) into the Navier-Stokes momentum equation and obtain the symmetric pressure and viscosity 
forces acting from particle jp on ip : 

( , ) ( , )
( )

2
ij i ij jpres

ij i j i j

W h W h
VV P P

∇ +∇
= − +

x x
f  ,                                     (6) 

2 2( , ) ( , )
( )

2
ij i ij jvisc

ij i j j i

W h W h
VVµ

∇ + ∇
= − −

x x
f u u                                   (7) 

with the particle volume i iiV m ρ= . 

3.2   Fluid-Solid Interaction 

In general, SPH-based fluid solvers calculate wall boundaries by generating wall particles [29]. Muller et al. 
developed a method in which fluid particles interact with deformable solids [30]. This method computes particle 
interaction with solid meshes by generating temporary particles on the surface of the mesh at every time step. 
Since the density of generated particles varies among polygons which do not have a uniform surface area, it does 
not guarantee that the constant particle density is near the wall boundary. In addition, the number of wall particles 
is proportional to the surface area of the boundary. Thus the shape of the boundary gets much complex, and the 
number of wall particles also increases. 

In order to avoid generating too many wall particles when calculating the interaction between fluid and solid 
boundaries, we use a modified version of the method in [31]. When coupling fluid and solid, we interpolate the 
distance ikd of fluid particle ip  to the solid object kS and the normal ikn based on the pre-computed signed dis-

tance fields [32]. If 2ik id h< , we add a temporary virtual solid particle kp whose distance to ip along the direc-

tion of ikn is ikd . Then the normal force normalf  and the tangent force tan gentf  exerted on fluid particle ip  are 
computed as: 

( , )= ∇normal

i a i ik i ikk m W hf x n  ,                                                      (8) 

tan 2 )(
( , )

( )
gent ki ki ik ik

i b i ik i

ki ki ik ik

k m W h
− ⋅

= ∇
− ⋅

u u n n
f x

u u n n
 ,                                         (9) 

where ki k i= −u u u , ak and bk are user-defined elasticity and friction coefficients respectively. The kernel func-
tion W is defined as: 

2

2

2 2
, 0

3 3
3 2

2 , 11
( , ) 2 3

1
(2 ) , 1 2

2
0,

ik i

ik

q

q q q
W h

q q

otherwise

< <

− ≤ <
=

− ≤ <

 
 
 
  
 
 
 
 
  

x
x

 ,                                         (10) 

where = xik iq h . 

3.3   Incompressibility Enforcement Method 

The most popular Lagrangian fluid simulation method SPH was originally designed to model compressible flow. 
However, incompressibility plays an important role in creating realistic animations of fluids such as water, where 
this property leads to the formation of important visual effects like splashes and dynamic turbulent motions. In 
order to simulate incompressible fluids with SPH, researchers have proposed various techniques that either en-
force a divergence free velocity field or preserve a uniform particle density. The weakly compressible SPH 
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method (WCSPH) attempts to enforce uniform particle density by introducing a stiff equation of state, which 
imposes a severe timestep restriction on the simulation [33]. In PCISPH [28], pressures are determined through a 
predictor-corrector approach so that the maximum density does not exceed a defined threshold, but the cost per 
timestep is much higher. 

A different strategy that makes SPH-based fluid impressible is to enforce a divergence free velocity field. 
However, solving a divergence free velocity equation on each particle [34] usually makes the simulation of a 
large number of particles intractable. Karthik et al. [12] proposed a hybrid SPH method which samples particle 
velocities on a coarse uniform grid and solves for pressure values that enforce a divergence free velocity field on 
this grid. In this paper, we adopt the idea of Karthik's method and optimize it. Our overall incompressibility 
scheme is: 

(1) Integrate viscosity forces and other external forces such as gravity and boundary forces to obtain interme-
diate particle velocities. 

(2) Construct a coarse staggered Marker-and-Cell (MAC) grid around the particles. 
(3) Interpolate particle immediate velocities onto grid faces. 
(4) Classify cells as solid, fluid or air. 
(5) Construct linear system and solve Poisson equation. 
(6) Interpolate pressure values back onto particles. 
(7) Compute the pressure force between each pair of particles using SPH kernels. 
Different from the integration process of Karthik's method, our method uses time splitting of the incompressi-

ble fluid equations, which integrate viscosity forces and other external forces to obtain intermediate particle ve-
locities. In addition, Karthik's method is initially designed to enforce the incompressibility of SPH method with 
uniform particle size. Since our SPH fluid solver adopts an adaptive sampling scheme, each particle has a differ-
ent mass and radius. In our framework, we optimize the hybrid SPH method and extend it to our new adaptive 
SPH fluid solver. When particle velocity is transferred to the auxiliary uniform grid, the contribution of a particle 
to a grid point is weighted by the mass of fluid represented by the particle. Given a particle distribution, the fluid 
velocity gu  of grid point at location gx is computed as: 

( , )

( , )
i gi g ii

g

i gi gi

mW d

mW d
=
∑
∑

x u
u

x
 ,                                                                (11) 

where gd is the grid cell width, gi g i= −x x x . The weighting kernel W is formulated as: 

2 21 / , 0
( , )

0,

h h
W h

otherwise

− ≤ ≤
=
 
 
 

r r
r  .                                            (12) 

4   Turbulence Evolution 

4.1   Adaptive Sampling Scheme 

The physical and visual quality of SPH fluid solvers is defined by the number of particles that are used to discre-
tize the fluid. Generally, the more particles that are used, the smaller the damping artifacts and the more small-
scale details like droplets and vortices can be reproduced. However, using a large number of small particles to 
obtain a finer animation leads to enormous computation cost, which is often unnecessary. Greatly inspired by 
some previous Level of Detail techniques [9], [10], [11] which allocate computing resources to regions where 
complex flow behavior emerges, our approach splits large particles in regions around solid objects to more finely 
capture solid-induced turbulence, and merges small particles in regions away from solid to promote efficiency. 

Each particle ip is defined by its position ix , mass im , independent radius 3
03 / 4i ir m πr= , and support radius 

3
0/i ih mξ ρ= . In our system, the initial density 0ρ equals to 1000, and ξ  is valued according to the average 

number of neighboring particles we want to obtain around ip . The initial particles are the largest ones used in 

our fluid algorithm, and have mass 0m  and support radius 0h . Whether a particle ip  should be split into finer 
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ones or be merged is determined by its distance to the solid boundaries id  interpolated from the pre-computed 
signed distance field. In practice, we split or merge particles according to the following rules: 

Splitting If 0id hα< , the large particle ip  will be split into several small particles (we use 2α = in all our 
simulations), so there are more particles in regions around solid objects to more finely capture turbulence details 
in fluid-solid interaction. As the splitting scheme illustrated in 2D in Fig. 1 (a), at each step eight candidate sub-
particles are placed on vertices of an axial bounding cube around the splittable parent particle ip . The mass 

cm and support radius ch of each candidate sub-particle can be calculated by / 8c im m= and 3 /c c i ih m m h= . 
However, to improve stability and maintain a uniform particle distribution, the candidate particles cannot be 
inserted naively because these candidates are usually too closer to solid boundaries and existing particles or with-
in solid volume. To avoid the introduction of large pressure forces, we choose the candidate sub-particles which 
are not closer to any other particle or solid boundary than 4/ch to be the truly created sub-particles. Once the 

number n  of true sub-particles of the parent particle ip  is determined, the mass and support radius of each sub-

particle are calculated by /im m n=  and 3 1 / ih nh= respectively. According to a given compromise between 

precision and computational efficiency, the particle whose mass is less than 0 / 64m would not be split any more. 
Our cubical splitting scheme can keep the volume of fluid the same as it was, and results in a regular particle 
distribution around solids compared to a 2-particles in [9]. 

 

Fig. 1. Particle splitting and merging 

Merging As shown in Fig. 1(b), if 0id hβ>  (we use 4β =  in all our simulations), the small particle ip whose 

mass is less than 0m searches for other small particles jp among its neighborhood particles in the order of the 

distance increasing to merge. When the total mass newm of ip and current found particles is larger than 0m , the 

search process is suspended. A new particle with a support radius 3
0/new newh mξ ρ=  is created at the center of 

gravity i i j jj

i jj

m m

m m

+
=

+

∑
∑

x x
x  of the original small particles if this position is within the fluid volume and there is 

no other particles within the distance / 4newh . The velocity of the new particle is set to i i j jj

i jj

m m

m m

+

+

∑
∑

u u
. In 

addition, we merge particle vorticities produced by our vorticity production model which will be described in the 

next section. The new particle's vorticity ω  is set to  
+

+

∑
∑

i i j ij

i jj

m m

m m

ω ω
. Compared to the merging scheme in [9], 

our method can merge particles with different masses. 
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4.2   Vorticity Production Model 

Solid boundaries are obvious turbulence generators. According to boundary layer theory [35], the friction of solid 
boundaries enforces a tangential flow velocity of zero at the solid boundary. This leads to the formation of a thin 
layer with reduced flow speed, called the boundary layer. The gradient of tangential flow velocity tanu in the 

boundary layer leads to the creation of a thin sheet of vorticity tan= ∇×ω u . At regions of high flow instability, 
the boundary layer is separated from the solid boundary, and vorticity is ejected from the boundary layer and 
enters the flow as turbulence. In graphics, this effect was modeled in Euler fluid through pre-computing an artifi-
cial boundary layer considering the tangential flow profile and layer separation [8]. However, the method in [8] is 
time-consuming to create a pre-computed artificial boundary layer that captures the characteristics of turbulence 
generation around objects. 

In fluid mechanics, the Reynolds Number eR , which is the ratio of inertial force to viscous force, can be used 
to identify the boundary layer. Different from pre-computing an artificial boundary layer in Euler fluid [8], to 
identify the small SPH particles in the boundary layer, we define a factor named BLR roughly proportional to eR : 

2

( )
BLR

µ

⋅∇
=

∇

u u

u
                                                                        (13) 

by taking a ratio of the convection term and the diffusion term in the Navier-Stokes equation. And the convection 
term is computed by taking finite difference on an associated grid. 

To detect where boundary layer separates, we calculate the value ·i iu n for each particle ip  in the boundary 

layer, and in is interpolated from the pre-computed signed distance fields. If · 0i i >u n , particle ip is selected as 
a separated particle whose position is chosen as the location of boundary layer separating from solids. Next we 
need to identify regions where the separated boundary layer becomes unstable and transits to free turbulence. As 
described in [8], the anisotropic component ija of the Reynolds stress tensor ijR , which is responsible for the 
production of turbulence, is a good indicator for such transition regions. As a modified version of the method in 
[8], we therefore define a transition probability density TP for each separated particle in our particle-based fluid, 
which is used to seed turbulence, 

2

2 2
2= ∆ ≈ ∆ij s

T p p m

a
P c t c tl

ω

u u
 ,                                                            (14) 

where · denotes the Euclidean matrix norm, pc is a parameter to control the seeding granularity, u the average 

velocity, and for each particle tan= ×s iω u n . The turbulent viscosity can be expressed in terms of a so called 

mixing length ml , which in near-wall regions is given by the distance to the wall. 

If TP is larger than a user-defined threshed value, an initial swirling vorticity with value sω  is computed for 
each separated particle. The SPH particles carrying vorticities are regarded as vortex particles, and form the 
vorticity field of the fluid flow. 

4.3   Turbulence Synthesis 

The SPH particles are convected with the velocity field. We consider two kinds of velocity fields: One is u from 
the calculation of the momentum equation using SPH method, which is described before; the other is vorticity 
velocity vu from vorticity. The total velocity field totalu  is obtained by superposing these two velocity fields: 

total v= +u u u . 
Then we exploit a second-order Adams-Bashforth scheme for time integration as follows: 

1 13 1
( )
2 2

n n n n

i i i it+ −= + ∆ −x x u u  ,                                                         (15) 

where n

ix is the position of particle i at time n and n

iu  is the velocity at n

ix . 
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The velocity field vu  induced by the vorticity field can be recovered via the Biot-Savart law, which computes 

vu at the position x that is a distance ′= −r x x from a vortex element d ′x  with vorticity ω  by integrating over 
all space: 

3

1 ( )
( )

4π

′ × ′= ∫v d
ω x r

u x x
r

  .                                                           (16) 

Discretizing the above equation, the integral becomes a simple summation: 

3

1
( )

4π

×
= ∑ i i

v
i i

ω r
u x

r
 .                                                                (17) 

If the simulation has n  vortex particles, a straightforward summation would take 2( )O n  operations, which is 
too slow. So instead, based on the method in [36], we approximate the influence of clusters of multiple distance 
vortex particles as a single vortex particle. As long as those clusters are far away enough, this approximation 
works well for visual effects. Fig. 2 shows ways in which we can represent vortex particle clusters using the hier-
archical data structure KD-Tree. The bottom row of nodes represents actual vortex particles. In the layer above 
that, each node represents clusters of vertex particles, and the layer above that represents clusters of clusters, and 
so on. To compute vu at each vertex particle's position, our method traverses the tree from top down, as Fig. 2 
shows: visit each node and ask whether the query location (colored red) is inside the region that node represents. 
If not, apply the influence of that cluster (shaded regions) as though it were a single vertex particle, whose posi-
tion is the average position of all constituent vertex particles in the cluster: i i

i

ω= ∑x x . If the query location lies 

within the cluster region, then descend that branch (following the arrows) and repeat. 

 

Fig. 2. KD-Tree of vertex particles 

4.4   Development and Spreading 

By taking the curl of Equation (1), the momentum equation of Navier-Stokes equations can be put into vorticity 
form 

2( ) µ= ⋅∇ + ∇ + ∇×
D

Dt

ω
ω u ω f  ,                                                       (18) 

where ( )⋅∇ω u is a vortex stretching term, and the pressure term vanishes for constant density fluids. 
In our simulation process, each vortex particle stores a vorticity value ω  which includes both a magnitude and 

direction. The fluid flow evolves as the particles move around and their vorticity values change. The solution of 
Equation (18) for each particle requires a velocity field, which can be calculated from the vorticity values stored 
on the individual particles using Equation (17). What is more, the vortex stretching term ( )⋅∇ω u involves spa-
tial derivatives of the total velocity. In our method, a coarse uniform grid is employed to solve the spatial deriva-
tive of velocity for each particle. As we have done in Incompressibility Enforcement section, we first construct a 
coarse uniform grid around all vortex particles. Then interpolate particle velocities onto grid points. When parti-
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cle velocity is transferred to the auxiliary grid, the weight of a particle's effect is determined by the mass of fluid 
represented by the particle. Finally, the value of the vortex stretching term for each particle is solved by the spa-
tial derivatives computation of the velocity field on the grid with central differences, 
then the trilinear interpolation of them to the particle location, and finally the augmentation of the vorticity on the 
particle with ( )+ = ∆ ⋅∇tω ω u . 

Viscous flow rapidly dissipates vorticity according to the 2µ∇ ω  term in Equation (18). In particle-based fluid, 
this term spreads vorticity from a particle to its neighbors. So we implement this term as an exchange of vorticity 
between particles. In SPH fluid solver, the 2µ∇ ω   term for each particle is solved by 

2 2 ( , )µ µ
ρ

−
∇ = ∇∑ j i

j ij
i j

µ W h
ω ω

ω x  .                                                 (19) 

5   Results and Discussion 

In this section, we implement our new method for the simulation of turbulence induced by solid boundaries in 
particle-based SPH fluid flow, and discuss comparisons of our approach to previous work. The simulation and 
rendering parts of our system are implemented on a Microsoft Windows XP PC with dual Intel Core 2.8 GHz 
CPUs, 2.0 GB RAM, and NVIDIA GeForce GTX 480 GPU. The parameter values of the simulation are docu-
mented in Table 1.  

Table 1. Parameter values in the experiments 

Properties Values Unit 
Time step ( ∆t ) 0.003 s 

Initial spacing ( 0r ) 0.02 m 
Support radius ( h ) 0.05 m 

Density ( 0ρ ) 100-5000 kg/m3 
Particle mass ( m ) 0.00054-0.013 kg 

Viscosity ( µ ) 0.05 ⋅Pa s  

For rendering 3D results, we construct a density volume from the particles using the method in [37], and apply 
the Marching Cubes method to generate surface mesh, which is then visualized with POV-Ray 3.7 rendering 
engine. The cell size for the Marching Cube method is set to 0.7d, and d is the rest particle spacing. The 
flowchart of our system is described in Fig. 3. 

 

Fig. 3. Flowchart of the turbulence simulation 
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Fig. 4 shows the results of our new adaptive sampling method for particle-based fluid. Our method splits parti-
cles in regions around solid boundaries to more finely capture solid-induced turbulence, and merges small parti-
cles in regions away from solid boundaries to promote efficiency. The particle size difference is a user-defined 
value and can be chosen to be arbitrarily large. In our simulations, according to a given compromise between 
precision and computational efficiency, the particle whose mass is less than  0 / 64m  would not be split any more. 
Our cubical splitting scheme can keep the volume of fluid the same as it was, and results in a regular particle 
distribution around solids compared to Adams' 2-particles splitting method in [9] and spherical splitting method 
in [10]. In addition, our splitting method does not need sphere-sphere Boolean operations in spherical coordi-
nates, so it runs twice as fast as Adams' splitting method in the water dam break simulation displayed by Fig. 5 
and Fig. 6. Compared to the Adams' merging scheme, our method can merge particles with different masses. 

 

Fig. 4. Our adaptive sampling method which allocates computing resources to regions where turbulence emerges. the region 
around cylindrical obstacles is simulated with high resolution particles (green), the major remaining part of the fluid is com-

puted with low resolution (blue) 

Fig. 5 shows the distribution of particle's vorticity created by our turbulence model in the simulation of a water 
dam break passing through two cylinders. A color spectrum is used to dye the particles with the evolving swirling 
vorticity iω . Red to yellow to blue colors illustrate that the magnitude of iω  changes from large to small. The 
color distribution of particles' vorticity indicates that the magnitude of particle's vorticity is determined by the 
tangential velocity, and our method can simulate the development and spreading of particles' vorticity. 

  

Fig. 5. Particle's vorticity induced by solid boundaries 

In Fig. 6, we compared our method with the latest rigid-fluid coupling method [38]. In the simulation, the ini-
tial number of particles is 89,293. As illustrated Fig. 6(a), the rigid-fluid coupling method [38] generates large-
scale waves and some droplets, but fails to capture turbulence. Fig. 6(b) shows that our turbulence simulation 
method can produce physically plausible turbulent details behind the solid obstacles. In addition, our adaptive 
sampling method adaptively splits particles into small ones near solids (maximum up to 105,665), so more splash 
details are produced. The average time per frame for these two methods is 1.7s and 2.1s respectively. 

  

(a) 
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(b) 

Fig. 6. The comparison between the rigid-fluid coupling method [38] and our method. (a) The rigid-fluid coupling method 
[38] without turbulence. (b) Our method with more droplets and turbulence 

Our method can also simulate the turbulence of particle-based smoke. Fig. 7 shows the comparison between 
Bo Zhu's method [27] and our method. Fig. 7(a) shows the results of the rising smoke passing through the cylin-
der obstacles, which are simulated by Bo Zhu's method. The maximum number of particles is 100 k, and the 
average time per frame is 2.3 s. And Fig. 7(b) shows the results produced by our method. The maximum number 
of particles is 112 k, and the average time per frame is 2.7 s. From the comparison results, we can conclude that 
our method can calculate the fluid-solid interaction more robustly, and generate more physically plausible turbu-
lence induced by the solid obstacles. 

  

Fig. 7. Turbulence in smoke-solid interaction. (a) Bo Zhu's method [27]. (b) Our method 

Figure 8 displays the snapshots of the water at the velocity of 5 m/s flows past a rigid tower model. The turbu-
lent details are physically plausible generated behind the rigid tower, which greatly improves the simulation reali-
ty of fluid-solid coupling. In the simulation, the initial number of particles is 183 k, and the maximum number of 
particles is 212 k. The average time per frame throughout the simulation is 4.9 s. 

  

Fig. 8. The turbulence behind the rigid tower model immersed in the water 

6   Conclusion 

In this paper, we provide a new hybrid numerical method to simulate turbulence induced by solid boundaries in 
SPH fluid flow, which has not been well developed for the well-known Lagrangian particle scheme before. We 
propose a new adaptive sampling scheme, which splits particles near solid objects to allocate computing re-
sources to regions with turbulence details, and merge small particles in regions away from solids to lend efficien-
cy to the simulation. According to our plausible turbulence production model, the small particle which separates 
from solids and becomes unstable obtains the solid-induced vorticity information. And coarse uniform grids are 
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employed to enforce fluid incompressibility and solve turbulence evolution. The results show that our method 
can efficiently produce turbulence details generated around solid boundaries in particle-based fluid, and get a 
significant improvement in the quality of visual details over existing methods. 

In future, we will extend our method to simulate the turbulence induced by deformable solids, and take ad-
vantage of GPGPU (General-Purpose computation on Graphics Processing Units) techniques to further promote 
the performance. 
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