
Journal of Computers Vol. 27, No. 3, 2016, pp. 21-31

doi:10.3966/199115592016102703003

21

A Method of Android Malware Detection Based on BP Neural

Network Combining Static and Dynamic Features

Li Zhu1 Genying Wang1,* Junsong Fu1 ZhongDing Dong1,2

1 Department of Electronic and Information Engineering, Key Laboratory of Communication and Informa-

tion Systems, Beijing Municipal Commission of Education, Beijing Jiaotong University, Beijing, 100044,

China

13120193@bjtu.edu.cn, gywang@bjtu.edu.cn, 14111005@bjtu.edu.cn

2 Department of Network Security, China’s Information Security Evaluation Center, Beijing, 100085, China

denniel_narco@sina.cn

Received 1 July 2015; Revised 27 July 2015; Accepted 10 August 2015

Abstract. At present, Android smart mobile terminals have been becoming more and more popu-

lar, meanwhile, due to its property of high openness, the Android platform has become the main

target of the attackers. In order to effectively detect the malicious software, this paper presents

an approach based on BP neural network. This approach not only considers the static features of

the APK of the application, but also the running characteristics of the applications. In addition,

after completing collecting features, to reduce the processing capacity and the complexity of the

classification algorithm, dimension reduction technique is introduced into our approach, at the

same time, comparative analysis is conducted between two dimension reduction methods. Then

these features are used to train and test the classification algorithm with ten -fold cross valida-

tion. The empirical results and comparative analysis demonstrate that our approach can detect

unknown Android malware accurately.

Keywords: Android malware, BP neural network, dimension reduction, PCA, information gain

1 Introduction

With the popularity of the Android smartphone, Android platform faces more and more attacks in recent

years. According to the report of Fortinet (November 2011), approximately 2000 Android malware sam-

ples had been discovered, and these malware belonged to 80 different families [1]. Furthermore, accord-

ing to a Finnish security company F-secure, among 301 mobile malware samples that arose in 2012, 238

of them targeted Android platform [2]. Since the first Android malware was discovered in 2010, more

and more sophisticated malware families have emerged, which are able to evade traditional signature-

based detection [3].

The vast majority of users often download apps from third party markets, and these platforms have no

strict safeguards to prevent the producers releasing malware. Therefore, the mobile terminals are very

easily to be attacked. As a result, this paper proposes a novel method to effectively detect Android mal-

ware. Due to the wide application of neural network and its favorable classification characteristics, this

paper employs it to the detection of Android malware. These features applied to detect malware contain

two parts. The first part is static features extracted from the installation package; the second part is dy-

namic behavior-based characteristics, which are collected from Android virtual device when the mali-

cious application is running in it. The combination of static and dynamic features results in a favorable

detection result.

The rest of the paper is organized as follows: Section 2 reviews the related work. Section 3 presents

the system structure of our approach, and the core classifying approach is presented in Section 4. The

* Corresponding Author

A Method of Android Malware Detection Based on BP Neural Network Combining Static and Dynamic Features

22

approach is conducted simulation in Section 5. Finally, we conclude this paper and present some future

research plans in Section 6.

2 Related work

Traditionally, signature-based detection [4-7] is a high-frequently-used method to detect mobile malware.

Followed by the emergence of more sophisticated malware, which is able to evade traditional signature-

based detection, the method becomes invalid.

In recent years, to detect Android malware, there are mainly two kinds of methods: static analysis and

dynamic methods. Static analysis refers to recognize the application benign or malicious by analyzing the

APK without running the application. On the contrary, dynamic methods need to install the application

and run it. During its running, the required features information is collected. Moreover, dynamic methods

can be further subdivided into behavior-based detection and taint-analysis-based detection.

The advantage of static analysis [8-15] lies in comprehensive analysis, as it is difficult to disguise ma-

licious behavior during static analysis. ComDROID [8] is used to detect application vulnerabilities in

communication, and DroidChecker [9] is applied to finding privacy leakage problem of Android applica-

tions. In addition, some previous researches ever employed static analysis to detect malicious properties,

like SCANDAL [10], AndroidLeaks [11], and the framework presented in [12], but they only focus on

privacy leakage problem, whereas the issues we target is far more than privacy issues.

Behavior-based detection [16-22] comparatively analyzes the current behavior and established attack

pattern. When the smart phone is being used, the method detects abnormal behavior by monitoring mem-

ory usage amount, SMS, battery consumption amount, etc. event information. By monitoring the condi-

tion of some terminal properties in real time, Shabtai, Kanonov, Elovici, Glezer, & Weiss [20] put for-

wards anomaly detection method, which applies machine learning. By inspecting the power consump-

tions of terminals in real time, Buennemeyer, Nelson, Lagett, Dunning, Marchany, & Tront [21] builds

an outstanding virus detection model. In this paper, to detect malware more effectively, we select some

terminal properties as dynamic features.

TaintDroid [23-26] is an information-flow tracking system by monitoring real-time privacy informa-

tion on smart phones. The application and development of this method are hindered by the limited over-

head of smart phones in real environment.

The main contributions of this paper lie in the following three aspects.

Firstly, these features applied to detect malware combine the static features extracted from the APK

with dynamic behavior features collected from the Android smartphone itself when the application is

running.

Secondly, to reduce the processing capacity and the complexity of the classification algorithm, dimen-

sion reduction of the combined features adopts two kinds of methods: the PCA (principal components

analysis) and the algorithm of information gain, they are used to select top-ranked features and the results

are comparatively analyzed.

Thirdly, this paper utilizes BP neural network to recognize the application benign or malicious with

ten-fold cross validation. Meanwhile, in order to raise the detection rate, and according to the principle

that the minority is subordinate to the majority, multiple neural networks vote on the classification results.

What is more, the average detection rate is compared with a few existing Android security tools and

some related works.

3 System structure

As presented in Fig.1, the APK is respectively sent to two modules for processing. In the module of

‘APK Analysis’, the APK is decompressed into separate folders, including the Manifest file, the .dex file

and other resource subfolders. We especially utilize the Manifest file and the .dex file. The Manifest file

is used to extract the permissions the application involves, and the .dex file contains code properties of

the application. Afterwards, we convert the Manifest file to readable format with AXML2jar. The .dex

file is disassembled using Baksmali [25]. Baksmali is a disassembler for the .dex format in Dalvik.

Baksmali disassembles .dex files into multiple files with .smali extensions. Each .smali file contains only

one class information, which is equivalent to a Java .class file. Subsequently, these files are used to ex-

Journal of Computers Vol. 27, No. 3, 2016

23

tract relevant features to construct classification models based on BP neural network. The sub module of

the module ‘The Android Emulator’ is presented in detail as following Fig.2.

APK

The Android

Emulator

APK Analysis

Features Processing

and Storage

BP Training and

Testing

Fig. 1. System structure of classification algorithm

Data Processing and

Storage

Collected Data

Network

Collector

Battery

Collector
CPU Collector

Kernel

Collector

The Android

Emulator

APK

Fig. 2. The framework of features collection by using the Android simulator

Firstly, the application is installed in the Android emulator. While the application is running, we col-

lect dynamic behavior features by some collectors such as network collector, battery collector and so on.

These collected data is gathered together, and in order to be addressed as the data format the classifier

can handle, they are then sent to the module “Data Processing and Storage”. The following chart shows

the dynamic features extracted.

Table 1. The dynamic behavior-based features

Resource Features

CPU CPU Usage Rate

Telephone The Number, Contents of Send/Receive Calls

SMS The Number, Contents of Send/Receive SMS

Network Rx Packets, TX Packets, Rx Bytes, TX Bytes

Process Process ID, Process Name, Running Process, Context Switches

Battery Voltage, Temperature

These features we need are then sent to the module “Features Processing and Storage” stored as a uni-

fied matrix format. Afterwards, the data set was divided into training set and testing set with ten-fold

cross validation. Eventually, for each BP neural network, we conduct the training and testing ten times,

and the final result is voted by ten BP neural networks, and we take the average detection rate as the final

result.

A Method of Android Malware Detection Based on BP Neural Network Combining Static and Dynamic Features

24

4 Core algorithm of classifier

The data set for classifying contains two parts: the features data and the class label of the application.

To reduce the processing capacity and the complexity of the classification algorithm, this paper adopts

two kinds of dimension reduction methods: the PCA (principal components analysis) and the algorithm

of information gain to select top-ranked features. Afterwards, we utilize BP neural network for training

and testing. Unlike a single BP neural network, according to the minority is subordinate to the majority,

ten neural networks vote on the classification results.

In this paper, 1000 malicious apps from 28 malware families are utilized, the categories and their re-

spective number of samples are shown in Table 2. The malware samples are mainly obtained from the

Android Malware Genome Project [3]. The sample set of 1000 benign apps covers a wide variety of ap-

plication. The categories include system tools, health and fitness, entertainment, news and magazines,

sports, finance, music and audio, education, business, games and so on. The benign apps from third party

market were identified through a series of security software.

Table 2. Malware families and their respective number

Family No. of samples Family No. of samples

AnserverBot 75 Geinimi 104

BaseBridge 100 GoldDream 37

Bgserve 10 Kmin 43

Carberp 12 Pjapps 25

Cawitt 31 RootSmart/Bmaster 15

CruseWin 23 Saiva 33

DroidDream 30 Scavir 10

DroidDreamlight 25 TigerBot 20

DroidKungFu 112 UpdtBot 45

Extension/Monad 17 Uxipp 17

FakeFlash 21 Vdloader 13

FakeInst 13 YZHC 48

FakePlayer 36 Zeahache 16

Gamex 49 Zsone 20

4.1 The algorithm of dimension reduction

In this paper, two dimension reduction techniques are employed, the principles of these two algorithms is

detailed below.

(1) PCA

Let a column vector represents the features set of an application as following.

1 2
(x ,x ,..., x)T

p
X =

The letter p represents the number of all extracted features, and the value of x
i
 is 1or 0, which repre-

sents having the feature or not.

1 2
(x ,x ,..., x) , 1,2,..., .T

i i i ip
X i n= =

The letter n is the number of application samples and n>p. After constructing the samples matrix, the

following standardized transformation is implemented to each element of the sample matrix.

 , 1,2,..., ; 1,2,..., .
jij

ij

j

X X
Z i n j p

S

−

= = = (1)

In the above formula,

1

n

ij

i
j

X

X
n

=

=

∑
 (2)

Journal of Computers Vol. 27, No. 3, 2016

25

2

2 1

(X)

1

n

jij

i

j

X

S
n

=

−

=

−

∑
 (3)

Z is just the standard matrix. Then solve the correlation coefficient matrix of the standard matrix Z as

following.

1

T
Z Z

R
n

=

−

 (4)

Obtain the p characteristic roots according to 0
p

R I− ϒ = , determine the principal components by the

following methods.

1

1

m

j

j

p

j

j

p ercen t
=

=

ϒ

≥

ϒ

∑

∑

 (5)

Determine the value of m according to the above formula making the information utilization rate reach

more than percent.

For each , 1, 2, ...,
j

j mϒ = , solve the unit eigenvector o

j
b from equation

j
Rb b= ϒ . Then transform

the standardized index variables into the main components by , 1, 2 , ..., .
T o

ij i j
U Z b j m= = As a result,

k
U represents the

th
K main component.

(2) Information Gain

The sample matrix of applications is expressed the same as PCA. Differently, we calculate the mutual

information (MI) [24] or information gain of each feature x
i
 related with the class variable C. Let C be a

random variable representing the application class.

 {malicious,benign}C∈

As the goal is to select the most relevant features, we calculate the information gain as follows.

() ()
{ }{ }

()

() ()

{ } { }

()
()

i

i i 2

x 0.1 c mal,ben i

i

i i 2

x 0.1 c mal,ben

P x x;C c
MI x ,C P x x;C c log

P x x P C c

P(C c | x x)
P x x P(C c | x x) log

P C c

∈ ∈

∈ ∈

⎛ ⎞= =
= = = ⋅ ⎜ ⎟⎜ ⎟= =⎝ ⎠

⎛ ⎞= =
= = ⋅ = = ⋅ ⎜ ⎟⎜ ⎟=⎝ ⎠
∑

∑

∑

∑
 (6)

The higher the information gain is, the more relevant the feature. After calculating the information

gain for each feature x
i
the features is then ranked in descending order. As a result, in order to maximize

the classification accuracy, the top n most relevant features are selected for training the classifier.

4.2 BP neural network

This paper utilizes favorable classifying property of BP neural network. It is kind of multilayer feed-

forward neural network training by error back propagation algorithm. Without prior to reveal the mathe-

matical equations to describe this mapping, BP neural network is able to learn and store large amounts of

input-output mapping relationships. Its learning rule is the method of steepest descent, to achieve the

minimal mean square error (MSE) of the network, the network weight value and threshold value is con-

stantly adjusted by back propagation. The topology structure of a BP neural network includes input layer,

hidden layer and output layer.

Note that ten-fold cross-validation is employed in this paper. Thus, random 1600 samples are used in

the training, whereas the remaining 400 samples are applied for testing. Hence, in the experiment process

of ten-fold cross validation, a BP neural network uses ten different training and testing sets. This strategy

helps classifier to learn more comprehensive, and provides a wider range of samples to test the classi-

fier’s ability to detect unknown malware. In conclusion, this method contributes to improve the perform-

ance of the classifier.

A Method of Android Malware Detection Based on BP Neural Network Combining Static and Dynamic Features

26

5 Experiment results and discussing

In this part, we conduct experiments on benign and malicious applications, including features processing,

the training and testing of the classifier, comparative analysis.

5.1 Features processing and BP training

After extracting the dynamic behavior-based features and static mixed permissions and code properties,

these features are then implemented the process of dimension reduction. These characteristics after the

dimension reduction for subsequent classification processing are shown in Table 3 and Table 4.

Table 3. Scope of principal components and their respective percentage

Scope of Principal Components (1,5) (1,10) (1,15) (1,20) (16,20) (6,20)

Information Utilization Rate 0.62 0.73 0.81 0.92 0.11 0.3

Table 4. Static features and the descending order of information gain

Mixed permissions and code properties Benign Malicious Total Infogain

READ_SMS 31 761 792 0.44135

getSubsciberld(TelephonyManager) 22 603 625 0.38911

WRITE_SMS 13 473 486 0.26153

getDeviceId (TelephonyManager) 314 861 1175 0.22954

SEND_SMS 375 895 1270 0.21012

READ_PHONE_STATE 36 457 493 0.20966

getSimSerialNumber (TelephonyManager) 32 452 484 0.19874

RECEIVE_SMS 14 396 410 0.19615

chmod 87 540 627 0.18205

.apk 15 390 405 0.18134

intent.action.BOOT_COMPLETED 8 336 344 0.17987

READ_CONTACTS 77 491 568 0.17236

abortBroadcast 65 467 532 0.16878

Runtime.exec() 7 301 308 0.16365

WRITE_APN_SETTINGS 113 496 609 0.15316

/system/app 39 375 414 0.14752

/system/bin 4 251 255 0.14013

getLine1Number (TelephonyManager) 174 552 726 0.13516

RECEIVE_BOOT_COMPLETED 8 183 191 0.13079

CALL_PHONE 182 503 685 0.12879

The result of Table 3 is obtained according to the algorithm of PCA, and it just lists the top 20 most

relevant features. It is clear that the amount of information of the first fifteen features accounts for 81%

of all the characteristics, and the information utilization rate of the first twenty features is 92%. The per-

centage of the lowest five ranked features occupying is far less than the top five features. The same result

applies to the situation between the top fifteen and the lowest fifteen ranked features, moreover, the in-

formation utilization rate of the lowest fifteen ranked features is less than half of the percentage of the top

five features. The content of Table 4 is computed using the formula (6), and to undertake the following

comparative analysis, it accordingly presents the top 20 ranked features.

Afterwards, these feature data is applied for train and test the classifier. For each ten-fold cross valida-

tion, ten BP neural networks are trained and tested ten times with different training and testing sets, and

eventually ten testing results of all samples are obtained. Then ten neural networks vote on the testing

results. In order to gain more accurate detection rate, ten-fold cross validation is implemented on each BP

neural network ten times. The following is the training process of one BP neural network. Arbitrary one

among the ten BP neural networks contains an input layer, an output layer and two hidden layers. The

number of the hidden layers and the number of neurons which each hidden layer contains have influence

on the training performance and the detection rate. The dimension of the input layer rests with the num-

ber of input features, the number of nodes of the output layer depends on the number of classification

categories.

Journal of Computers Vol. 27, No. 3, 2016

27

From Fig.3, it is obviously that gradient descent with momentum and adaptive learn rate is utilized to

train BP. This method helps to solve the primary two problems BP confronted with: the speed of conver-

gence and the objective function has a local minimum point.

10
-2

10
-1

10
0

g
ra
d
ie
n
t

Gradient = 0.032507, at epoch 220

-1

0

1

v
a
l
fa
il

Validation Checks = 0, at epoch 220

0 20 40 60 80 100 120 140 160 180 200 220
0

5

lr

220 Epochs

Learning Rate = 4.5882, at epoch 220

Fig. 3. The training states of one BP neural network

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Target

O
u
tp
u
t
~
=
 0
.9
6
*T
a
rg
e
t
+
 -
0
.0
0
3
3

Training: R=0.99018

Data

Fit

Y = T

Fig. 4. The regression of the training result

In this paper, the whole of the ten BP neural networks is equivalent to a linear classifier. As a result,

the actual outputs and the targets are painted in a picture so that the relationship between the two can be

fitted, and the closer the fit line to the line Y = T, the better the performance of the training state. How-

ever, the ultimate goal of the classifier does not lie in the training performance, but the testing perform-

ance. The lowest mean squared error of the training performance is very likely to result in a problem of

overlearning, which directly leads to lower detection rate of unknown malwares. As a result, the relation-

ship between the training performance and the detection rate need to be balanced well. In principle, in the

premise of a little difference between them, the detection rate is strived to improve.

5.2 BP testing and comparative analysis

After accomplishing training ten BP neural networks, they can be applied to test and verify with the dif-

ferent testing sets. For the same scope of features, the average detection rate of the ten BP neural net-

A Method of Android Malware Detection Based on BP Neural Network Combining Static and Dynamic Features

28

works is considered as the ultimate result. Fig.5 and Fig.6 respectively exhibit the accuracy and error rate

of detection.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

(1,5) (1,10) (1,15) (1,20) (16,20) (6,20)

A
cc
u
ra
cy
 R
at
e

Features Scope

InG-BP ACC

PCA-BP ACC

Fig. 5. The accuracy rate of the classifier

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(1,5) (1,10) (1,15) (1,20) (16,20) (6,20)

E
rr
o
r
R
a
te

Features Scope

InG-BP ERR

PCA-BP ERR

Fig. 6. The error rate of the classifier

In the general case, the classifier based on PCA performs better than that based on InG (Information

Gain) except the features is ranked between 6 ~ 20
th th

. It exhibits the best performance with the top 15

ranked features used for classifying based on PCA. The information utilization rate of characteristics is

not necessarily with proportional to the corresponding detection rate, and the accuracy comparison be-

tween the top 15 and 20 ranked features is right the verification for that. Under the same number of fea-

tures, the detection rate with 16 ~ 20
th th

 is far inferior to that with1 ~ 5
th th

. Fig.7 shows the error rate

which is complementary to the accuracy, accordingly, it exhibits the best performance with least error

rate under the top 15 ranked features.

Journal of Computers Vol. 27, No. 3, 2016

29

0.8 0.85 0.9 0.95 1

BP Method

Ikarus

Trend Micro

Lookout

Sophos

Kaspersky

Detection Rates

Fig. 7. The comparative analysis with some existing security software

To demonstrate abilities of our classifier to detect unknown Android malware, comparative analysis

with some existing security software is undertaken and the result is as shown in Fig.7. Obviously in the

figure, the optimal detection rate of our method excels the vast majority of other security software, and

the accuracy of our method approximately reaches up to 97%, which is an excellent performance.

Moreover, we also conduct simple comparative analysis with part of previous works, and the result is

presented in Fig.8. In Fig.8, BP Method represents our method, obviously, our detection rate excels the

others. What is more, other detection rates are all lower than 0.95, only ours exceeds. The methods in

[13-15] are all static analysis, they are respectively based on static code properties, permission correlation,

the mixed permissions and code-based properties. Whereas, the proposed means in [22] is a kind of be-

havior-based detection, which is based on the properties of the mobile terminals; and [26] proposes a

taint analysis tool FlowDroid. The aspects these previous works consider are less comprehensive than our

method, consequently, their detection rates is inferior to ours. In conclusion, our method has excellent

ability to detect unknown Android malware.

0.8 0.85 0.9 0.95 1

[13]

[14]

[15]

[22]

[26]

BP

Detection Rates

Fig. 8 The comparative analysis with some related works

A Method of Android Malware Detection Based on BP Neural Network Combining Static and Dynamic Features

30

6 Conclusions

In this paper, a method for detecting Android malware based on BP neural networks is proposed. We not

only consider the static but also the running characteristics of the applications in the mobile terminals.

We regard ten different BP neural networks as a classifier, and each neural network is conducted ten-fold

cross validation ten times. The simulation results demonstrate that our approach can detect unknown

Android malware accurately. As our future work, we plan to collect more Android malware samples

which can be used to train and test the classifier. In addition, to detect more sophisticated malware and

protect the privacy and property of users from being infringed, more efficient and timely detection meth-

ods are also deserved to be proposed.

Acknowledgment

This research is supported by Fundamental Research Funds for the Central Universities (2015YJS027).

References

[1] Apvrille, A., & Strazzere, T. (2012). Reducing the window of opportunity for Android malware Gotta catch’ em all. Journal

in Computer Virology, 8(1-2), 61-71.

[2] F-Secure. (2012). Mobile threat report Q4 2012. Retrieved from https://www.f-secure.com/documents/996508/1030743/

Mobile+Threat+Report+Q4+2012.pdf

[3] Zhou, Y., & Jiang, X. (2012, May). Dissecting android malware: Characterization and evolution. Paper presented at the

Proceeding IEEE Symposium on Security and Privacy, San Francisco, CA.

[4] Schmidt, A. D., Camtepe, A., & Albayrak, S. (2010, September). Static smart phone malware detection. Paper presented at

the Proceedings of the 5th Security Research Conference (Future Security 2010), Berlin, Germany.

[5] Bläsing, T., Schmidt, A. D., Batyuk, L., Camtepe, S. A., Albayrak, S. (2010, October). An android application sandbox

system for suspicious software detection. Paper presented at the 5th International Conference on Malicious and Unwanted

Software (MALWARE’2010), Nancy, France.

[6] Kou, X., & Wen, Q. (2011, October). Intrusion detection model based on android. Paper presented at the 4th IEEE Interna-

tional Conference on Broadband Network and Multimedia Technology (IC-BNMT), Shenzhen, China.

[7] Bose, A., Hu, X., Shin, K. G., & Park, T. (2008, June). Behavioral detection of malware on mobile handsets. Paper presented

at the Proceedings of the 6th International Conference on Mobile Systems, Applications, and Services, Washington, DC.

[8] Chin, E., Felt, A. P., Greenwood, K., & Wagner, D. (2011, June). Analyzing inter-application communication in Android.

Paper presented at the Proceedings of 9th International Conference Mobile Systems, Applications, and Services, Washing-

ton, DC.

[9] Chan, P. P. F., Hui, L. C. K., & Yiu, S. M. (2012, April). DroidChecker: Analyzing android applications for capability leak.

Paper presented at the Proceedings of 5th ACM Conference Security and Privacy in Wireless and Mobile Networks, Tucson,

AZ.

[10] Kim, J., Yoon, Y., Yi, K., & Shin, J. (2012, May). SCANDAL: Static analyzer for detecting privacy leaks in Android appli-

cations. Paper presented at the Proceedings of the Workshop on Mobile Security Technologies (MoST 2012), San Fran-

cisco, CA.

[11] Gibler, C., Crussell, J., Erickson, J., & Chen, H. (2012, June). AndroidLeaks: Automatically detecting potential privacy

leaks in Android applications on a large scale. Paper presented at the Proceedings of 5th International Conference Trust and

Journal of Computers Vol. 27, No. 3, 2016

31

Trustworthy Computing (TRUST 2012), Vienna, Austria.

[12] Mann, C., & Starostin, A. (2012). A framework for static detection of privacy leaks in android applications. Paper pre-

sented at the Proceedings of 27th Annual ACM Symposium On Applied Computing (SAC’12), Trento, Italy.

 [13] Zhang, H., Wu, J.-L, & Tang, J.-J. (2014). Neighbor Watcher: Detecting piggybacked smart phone applications with their

family members. Acta Electronica Sinica, 42(8), 1642-1646.

[14] Zhang, R., & Yang, J.-Y. (2014). Android malware detection based on permission correlation. Journal of Computer Appli-

cations, 34(5), 1322-1325.

[15] Yerima, S. Y., Sezer, S., & McWilliams, G. (2014). Analysis of Bayesian classification-based approaches for Android

malware detection. IET Information Security, 8(1), 25-36.

[16] Schmidt, A. D., Schmidt, H. G., Clausen, J., Yüksel, K. A., Kiraz, O., Camtepe, A., & Albayrak, S. (2008, October). En-

hancing security of Linux-based android devices. Paper presented at the Proceedings of 15th International Linux Kon-

gress, Hamburg, Germany.

[17] Cheng, J., Wong, S. H. Y., Yang, H., & Lu, S. (2007, June). SmartSiren virus detection and alert for Smart phones. Paper

presented at the Proceedings of the 5th International Conference on Mobile Systems, Applications and Services,

MobiSys ’07, Puerto Rico.

[18] Liu, L., Yan, G., Zhang, X., & Chen, S. (2009). Virusmeter preventing your cellphone from spies. Recent Advances in

Intrusion Detection Lecture Notes in Computer Science, 5758, 244-264.

[19] Burguera, I., Zurutuza, U., & Nadjm-Tehrani, S. (2011, July). Crowdroid behavior-based malware detection system. Paper

presented at the Proceedings of the 1st ACM Workshop on Security and Privacy in Smart Phones and Mobile Devices

(SPSM ’11), New York, NY.

[20] Shabtai, A., Kanonov, U., Elovici, Y., Glezer, C., & Weiss, Y. (2012). ‘‘Andromaly’’ a behavioral malware detection

framework for android devices. Journal of Intelligent Information Systems, 38(1),161-190.

[21] Buennemeyer, T. K., Nelson, T. M., Lagett, L. M. C., Dunning, J. P., Marchany, R. C., & Tront, J. G. (2008, Januagry).

Mobile device profiling and intrusion detection using smart batteries. Paper presented at the Proceedings of the 41st Annual

Hawaii International Conference on System Sciences (HICSS ’08), Big Island, HI.

[22] Liu, Y.-B., Jia, S.-S., & Xing, C.-C. (2012). A novel behavior-based virus detection method for smart mobile terminals.

Discrete Dynamics in Nature and Society, 2012, 1-12.

[23] Fuchs, A. P, Chaudhuri, A., & Foster, J. S. (2011). ScanDroid: automated security certification of Android applications.

Retrieved from http://www.cs.umd.edu/avik/projects/scandroidascaa/

[24] Enck, W., Gilbert, P., Chun, B. G,, Cox, L. P., Jung, J., McDaniel, P., Sheth, A. (2010, October). TaintDroid: An informa-

tion-flow tracking system for real time privacy monitoring on smart phones. Paper presented at the Proceedings of the 9th

USENIX Conference on Operating Systems Design and Implementation (OSDI’10), Berkeley, CA.

[25] Baksmali: http://code.google.com/p/smali, Accessed June 2013.

[26] Fritz, C., Arzt, S., Rasthofer, S., Eric Bodden, E., Bartel, A., Klein, J., le Traon, Y., Octeau, D., & McDaniel, P. (2013).

Technical report: Highly precise taint analysis for Android application. Retrieved from http://www.bodden.de/pubs/TUD-

CS-2013-0113.pdf

A Method of Android Malware Detection Based on BP Neural Network Combining Static and Dynamic Features

32

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

