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Abstract. At present, Android smart mobile terminals have been becoming more and more popu-

lar, meanwhile, due to its property of high openness, the Android platform has become the main 

target of the attackers. In order to effectively detect the malicious software, this paper presents 

an approach based on BP neural network. This approach not only considers the static features of 

the APK of the application, but also the running characteristics of the applications. In addition, 

after completing collecting features, to reduce the processing capacity and the complexity of the 

classification algorithm, dimension reduction technique is introduced into our approach, at the 

same time, comparative analysis is conducted between two dimension reduction methods. Then 

these features are used to train and test the classification algorithm with ten -fold cross valida-

tion. The empirical results and comparative analysis demonstrate that our approach can detect 

unknown Android malware accurately.  
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1 Introduction 

With the popularity of the Android smartphone, Android platform faces more and more attacks in recent 

years. According to the report of Fortinet (November 2011), approximately 2000 Android malware sam-

ples had been discovered, and these malware belonged to 80 different families [1]. Furthermore, accord-

ing to a Finnish security company F-secure, among 301 mobile malware samples that arose in 2012, 238 

of them targeted Android platform [2]. Since the first Android malware was discovered in 2010, more 

and more sophisticated malware families have emerged, which are able to evade traditional signature-

based detection [3]. 

The vast majority of users often download apps from third party markets, and these platforms have no 

strict safeguards to prevent the producers releasing malware. Therefore, the mobile terminals are very 

easily to be attacked. As a result, this paper proposes a novel method to effectively detect Android mal-

ware. Due to the wide application of neural network and its favorable classification characteristics, this 

paper employs it to the detection of Android malware. These features applied to detect malware contain 

two parts. The first part is static features extracted from the installation package; the second part is dy-

namic behavior-based characteristics, which are collected from Android virtual device when the mali-

cious application is running in it. The combination of static and dynamic features results in a favorable 

detection result.  

The rest of the paper is organized as follows: Section 2 reviews the related work. Section 3 presents 

the system structure of our approach, and the core classifying approach is presented in Section 4. The 
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approach is conducted simulation in Section 5. Finally, we conclude this paper and present some future 

research plans in Section 6. 

2 Related work 

Traditionally, signature-based detection [4-7] is a high-frequently-used method to detect mobile malware. 

Followed by the emergence of more sophisticated malware, which is able to evade traditional signature-

based detection, the method becomes invalid.  

In recent years, to detect Android malware, there are mainly two kinds of methods: static analysis and 

dynamic methods. Static analysis refers to recognize the application benign or malicious by analyzing the 

APK without running the application. On the contrary, dynamic methods need to install the application 

and run it. During its running, the required features information is collected. Moreover, dynamic methods 

can be further subdivided into behavior-based detection and taint-analysis-based detection.  

The advantage of static analysis [8-15] lies in comprehensive analysis, as it is difficult to disguise ma-

licious behavior during static analysis. ComDROID [8] is used to detect application vulnerabilities in 

communication, and DroidChecker [9] is applied to finding privacy leakage problem of Android applica-

tions. In addition, some previous researches ever employed static analysis to detect malicious properties, 

like SCANDAL [10], AndroidLeaks [11], and the framework presented in [12], but they only focus on 

privacy leakage problem, whereas the issues we target is far more than privacy issues. 

Behavior-based detection [16-22] comparatively analyzes the current behavior and established attack 

pattern. When the smart phone is being used, the method detects abnormal behavior by monitoring mem-

ory usage amount, SMS, battery consumption amount, etc. event information. By monitoring the condi-

tion of some terminal properties in real time, Shabtai, Kanonov, Elovici, Glezer, & Weiss [20] put for-

wards anomaly detection method, which applies machine learning. By inspecting the power consump-

tions of terminals in real time, Buennemeyer, Nelson, Lagett, Dunning, Marchany, & Tront [21] builds 

an outstanding virus detection model. In this paper, to detect malware more effectively, we select some 

terminal properties as dynamic features.  

TaintDroid [23-26] is an information-flow tracking system by monitoring real-time privacy informa-

tion on smart phones. The application and development of this method are hindered by the limited over-

head of smart phones in real environment.   

The main contributions of this paper lie in the following three aspects. 

Firstly, these features applied to detect malware combine the static features extracted from the APK 

with dynamic behavior features collected from the Android smartphone itself when the application is 

running.  

Secondly, to reduce the processing capacity and the complexity of the classification algorithm, dimen-

sion reduction of the combined features adopts two kinds of methods: the PCA (principal components 

analysis) and the algorithm of information gain, they are used to select top-ranked features and the results 

are comparatively analyzed. 

Thirdly, this paper utilizes BP neural network to recognize the application benign or malicious with 

ten-fold cross validation. Meanwhile, in order to raise the detection rate, and according to the principle 

that the minority is subordinate to the majority, multiple neural networks vote on the classification results. 

What is more, the average detection rate is compared with a few existing Android security tools and 

some related works. 

3 System structure 

As presented in Fig.1, the APK is respectively sent to two modules for processing. In the module of 

‘APK Analysis’, the APK is decompressed into separate folders, including the Manifest file, the .dex file 

and other resource subfolders. We especially utilize the Manifest file and the .dex file. The Manifest file 

is used to extract the permissions the application involves, and the .dex file contains code properties of 

the application. Afterwards, we convert the Manifest file to readable format with AXML2jar. The .dex 

file is disassembled using Baksmali [25]. Baksmali is a disassembler for the .dex format in Dalvik. 

Baksmali disassembles .dex files into multiple files with .smali extensions. Each .smali file contains only 

one class information, which is equivalent to a Java .class file. Subsequently, these files are used to ex-
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tract relevant features to construct classification models based on BP neural network. The sub module of 

the module ‘The Android Emulator’ is presented in detail as following Fig.2. 
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Fig. 1. System structure of classification algorithm 
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Fig. 2. The framework of features collection by using the Android simulator 

Firstly, the application is installed in the Android emulator. While the application is running, we col-

lect dynamic behavior features by some collectors such as network collector, battery collector and so on. 

These collected data is gathered together, and in order to be addressed as the data format the classifier 

can handle, they are then sent to the module “Data Processing and Storage”. The following chart shows 

the dynamic features extracted.  

Table 1. The dynamic behavior-based features  

Resource Features 

CPU CPU Usage Rate 

Telephone The Number, Contents of Send/Receive Calls 

SMS  The Number, Contents of Send/Receive SMS 

Network Rx Packets, TX Packets, Rx Bytes, TX Bytes  

Process Process ID, Process Name, Running Process, Context Switches 

Battery Voltage, Temperature  

 

These features we need are then sent to the module “Features Processing and Storage” stored as a uni-

fied matrix format. Afterwards, the data set was divided into training set and testing set with ten-fold 

cross validation. Eventually, for each BP neural network, we conduct the training and testing ten times, 

and the final result is voted by ten BP neural networks, and we take the average detection rate as the final 

result.  
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4 Core algorithm of classifier 

The data set for classifying contains two parts: the features data and the class label of the application. 

To reduce the processing capacity and the complexity of the classification algorithm, this paper adopts 

two kinds of dimension reduction methods: the PCA (principal components analysis) and the algorithm 

of information gain to select top-ranked features. Afterwards, we utilize BP neural network for training 

and testing. Unlike a single BP neural network, according to the minority is subordinate to the majority, 

ten neural networks vote on the classification results. 

In this paper, 1000 malicious apps from 28 malware families are utilized, the categories and their re-

spective number of samples are shown in Table 2. The malware samples are mainly obtained from the 

Android Malware Genome Project [3]. The sample set of 1000 benign apps covers a wide variety of ap-

plication. The categories include system tools, health and fitness, entertainment, news and magazines, 

sports, finance, music and audio, education, business, games and so on. The benign apps from third party 

market were identified through a series of security software. 

Table 2. Malware families and their respective number 

Family No. of samples Family No. of samples 

AnserverBot 75 Geinimi 104 

BaseBridge 100 GoldDream 37 

Bgserve 10 Kmin 43 

Carberp 12 Pjapps 25 

Cawitt 31 RootSmart/Bmaster 15 

CruseWin 23 Saiva 33 

DroidDream 30 Scavir 10 

DroidDreamlight 25 TigerBot 20 

DroidKungFu 112 UpdtBot 45 

Extension/Monad 17 Uxipp 17 

FakeFlash 21 Vdloader 13 

FakeInst 13 YZHC 48 

FakePlayer 36 Zeahache 16 

Gamex 49 Zsone 20 

4.1 The algorithm of dimension reduction 

In this paper, two dimension reduction techniques are employed, the principles of these two algorithms is 

detailed below. 

(1) PCA 

Let a column vector represents the features set of an application as following. 

 

1 2
(x ,x ,..., x )T

p
X =   

The letter p represents the number of all extracted features, and the value of x
i
 is 1or 0, which repre-

sents having the feature or not. 
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The letter n is the number of application samples and n>p. After constructing the samples matrix, the 

following standardized transformation is implemented to each element of the sample matrix.  
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Z is just the standard matrix. Then solve the correlation coefficient matrix of the standard matrix Z as 

following. 
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Determine the value of m according to the above formula making the information utilization rate reach 

more than percent.  

For each , 1, 2, ...,
j

j mϒ = , solve the unit eigenvector o

j
b  from equation

j
Rb b= ϒ . Then transform 

the standardized index variables into the main components by , 1, 2 , ..., .
T o

ij i j
U Z b j m= =  As a result, 

k
U  represents the 

th
K  main component. 

(2) Information Gain 

The sample matrix of applications is expressed the same as PCA. Differently, we calculate the mutual 

information (MI) [24] or information gain of each feature x
i
 related with the class variable C. Let C be a 

random variable representing the application class. 

 {malicious,benign}C∈   

As the goal is to select the most relevant features, we calculate the information gain as follows.  
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The higher the information gain is, the more relevant the feature. After calculating the information 

gain for each feature x
i
the features is then ranked in descending order. As a result, in order to maximize 

the classification accuracy, the top n most relevant features are selected for training the classifier. 

4.2 BP neural network 

This paper utilizes favorable classifying property of BP neural network. It is kind of multilayer feed-

forward neural network training by error back propagation algorithm. Without prior to reveal the mathe-

matical equations to describe this mapping, BP neural network is able to learn and store large amounts of 

input-output mapping relationships. Its learning rule is the method of steepest descent, to achieve the 

minimal mean square error (MSE) of the network, the network weight value and threshold value is con-

stantly adjusted by back propagation. The topology structure of a BP neural network includes input layer, 

hidden layer and output layer.  

Note that ten-fold cross-validation is employed in this paper. Thus, random 1600 samples are used in 

the training, whereas the remaining 400 samples are applied for testing. Hence, in the experiment process 

of ten-fold cross validation, a BP neural network uses ten different training and testing sets. This strategy 

helps classifier to learn more comprehensive, and provides a wider range of samples to test the classi-

fier’s ability to detect unknown malware. In conclusion, this method contributes to improve the perform-

ance of the classifier. 
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5 Experiment results and discussing 

In this part, we conduct experiments on benign and malicious applications, including features processing, 

the training and testing of the classifier, comparative analysis. 

5.1 Features processing and BP training 

After extracting the dynamic behavior-based features and static mixed permissions and code properties, 

these features are then implemented the process of dimension reduction. These characteristics after the 

dimension reduction for subsequent classification processing are shown in Table 3 and Table 4.   

Table 3. Scope of principal components and their respective percentage 

Scope of Principal Components (1,5) (1,10) (1,15) (1,20) (16,20) (6,20) 

Information Utilization Rate 0.62 0.73 0.81 0.92 0.11 0.3 

Table 4. Static features and the descending order of information gain 

Mixed permissions and code properties Benign Malicious Total Infogain  

READ_SMS 31 761 792 0.44135 

getSubsciberld(TelephonyManager) 22 603 625 0.38911 

WRITE_SMS 13 473 486 0.26153 

getDeviceId (TelephonyManager) 314 861 1175 0.22954 

SEND_SMS 375 895 1270 0.21012 

READ_PHONE_STATE 36 457 493 0.20966 

getSimSerialNumber (TelephonyManager) 32 452 484 0.19874 

RECEIVE_SMS 14 396 410 0.19615 

chmod 87 540 627 0.18205 

.apk 15 390 405 0.18134 

intent.action.BOOT_COMPLETED 8 336 344 0.17987 

READ_CONTACTS 77 491 568 0.17236 

abortBroadcast 65 467 532 0.16878 

Runtime.exec() 7 301 308 0.16365 

WRITE_APN_SETTINGS 113 496 609 0.15316 

/system/app 39 375 414 0.14752 

/system/bin 4 251 255 0.14013 

getLine1Number (TelephonyManager) 174 552 726 0.13516 

RECEIVE_BOOT_COMPLETED 8 183 191 0.13079 

CALL_PHONE 182 503 685 0.12879 

  

The result of Table 3 is obtained according to the algorithm of PCA, and it just lists the top 20 most 

relevant features. It is clear that the amount of information of the first fifteen features accounts for 81% 

of all the characteristics, and the information utilization rate of the first twenty features is 92%. The per-

centage of the lowest five ranked features occupying is far less than the top five features. The same result 

applies to the situation between the top fifteen and the lowest fifteen ranked features, moreover, the in-

formation utilization rate of the lowest fifteen ranked features is less than half of the percentage of the top 

five features. The content of Table 4 is computed using the formula (6), and to undertake the following 

comparative analysis, it accordingly presents the top 20 ranked features. 

Afterwards, these feature data is applied for train and test the classifier. For each ten-fold cross valida-

tion, ten BP neural networks are trained and tested ten times with different training and testing sets, and 

eventually ten testing results of all samples are obtained. Then ten neural networks vote on the testing 

results. In order to gain more accurate detection rate, ten-fold cross validation is implemented on each BP 

neural network ten times. The following is the training process of one BP neural network. Arbitrary one 

among the ten BP neural networks contains an input layer, an output layer and two hidden layers. The 

number of the hidden layers and the number of neurons which each hidden layer contains have influence 

on the training performance and the detection rate. The dimension of the input layer rests with the num-

ber of input features, the number of nodes of the output layer depends on the number of classification 

categories. 
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From Fig.3, it is obviously that gradient descent with momentum and adaptive learn rate is utilized to 

train BP. This method helps to solve the primary two problems BP confronted with: the speed of conver-

gence and the objective function has a local minimum point. 
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Fig. 3. The training states of one BP neural network 
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Fig. 4. The regression of the training result 

In this paper, the whole of the ten BP neural networks is equivalent to a linear classifier. As a result, 

the actual outputs and the targets are painted in a picture so that the relationship between the two can be 

fitted, and the closer the fit line to the line Y = T, the better the performance of the training state. How-

ever, the ultimate goal of the classifier does not lie in the training performance, but the testing perform-

ance. The lowest mean squared error of the training performance is very likely to result in a problem of 

overlearning, which directly leads to lower detection rate of unknown malwares. As a result, the relation-

ship between the training performance and the detection rate need to be balanced well. In principle, in the 

premise of a little difference between them, the detection rate is strived to improve. 

5.2 BP testing and comparative analysis 

After accomplishing training ten BP neural networks, they can be applied to test and verify with the dif-

ferent testing sets. For the same scope of features, the average detection rate of the ten BP neural net-
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works is considered as the ultimate result. Fig.5 and Fig.6 respectively exhibit the accuracy and error rate 

of detection. 
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Fig. 5. The accuracy rate of the classifier 
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Fig. 6. The error rate of the classifier 

In the general case, the classifier based on PCA performs better than that based on InG (Information 

Gain) except the features is ranked between 6 ~ 20
th th

. It exhibits the best performance with the top 15 

ranked features used for classifying based on PCA. The information utilization rate of characteristics is 

not necessarily with proportional to the corresponding detection rate, and the accuracy comparison be-

tween the top 15 and 20 ranked features is right the verification for that. Under the same number of fea-

tures, the detection rate with 16 ~ 20
th th

  is far inferior to that with1 ~ 5
th th

. Fig.7 shows the error rate 

which is complementary to the accuracy, accordingly, it exhibits the best performance with least error 

rate under the top 15 ranked features. 
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Fig. 7. The comparative analysis with some existing security software 

To demonstrate abilities of our classifier to detect unknown Android malware, comparative analysis 

with some existing security software is undertaken and the result is as shown in Fig.7. Obviously in the 

figure, the optimal detection rate of our method excels the vast majority of other security software, and 

the accuracy of our method approximately reaches up to 97%, which is an excellent performance. 

Moreover, we also conduct simple comparative analysis with part of previous works, and the result is 

presented in Fig.8. In Fig.8, BP Method represents our method, obviously, our detection rate excels the 

others. What is more, other detection rates are all lower than 0.95, only ours exceeds. The methods in 

[13-15] are all static analysis, they are respectively based on static code properties, permission correlation, 

the mixed permissions and code-based properties. Whereas, the proposed means in [22] is a kind of be-

havior-based detection, which is based on the properties of the mobile terminals; and [26] proposes a 

taint analysis tool FlowDroid. The aspects these previous works consider are less comprehensive than our 

method, consequently, their detection rates is inferior to ours. In conclusion, our method has excellent 

ability to detect unknown Android malware. 
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Fig. 8 The comparative analysis with some related works   



A Method of Android Malware Detection Based on BP Neural Network Combining Static and Dynamic Features 

30 

6 Conclusions 

In this paper, a method for detecting Android malware based on BP neural networks is proposed. We not 

only consider the static but also the running characteristics of the applications in the mobile terminals. 

We regard ten different BP neural networks as a classifier, and each neural network is conducted ten-fold 

cross validation ten times. The simulation results demonstrate that our approach can detect unknown 

Android malware accurately. As our future work, we plan to collect more Android malware samples 

which can be used to train and test the classifier. In addition, to detect more sophisticated malware and 

protect the privacy and property of users from being infringed, more efficient and timely detection meth-

ods are also deserved to be proposed. 
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