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Abstract. In this paper, we analyzed topological characteristics of four famous centrality indexes 

(including degree, closeness, betweenness, and the k-core) and their correlations (including 

Pearson correlation and Kendall Rank correlation) in two real data sets. It’s the fundamental 

work of identifying the influential nodes in complex networks. After simulations on two real da-

ta sets, we found that the distribution of degree, betweenness, and the k-core totally follow the 

power-law distribution. The Pearson correlation between degree and betweenness is the highest, 

however, the Kendall Rank Correlation between degree and k-core is relatively larger than val-

ues between degree and other two indexes.  
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1 Introduction 

Recent years, many scholars and researchers are concerned about the social network topology analysis, 

the relationship between the network topology and dynamics of behavior based on the various types of 

complex networks [1-5]. As we all know, a small part of the influential nodes for complex dynamical 

behavior of various types of networks (such as network cascade, information dissemination and network 

node synchronization, etc.) plays a very important role in the dynamic evolution [6-11]. Therefore, min-

ing key nodes in the network has a certain theoretical research value.  

In the computer science, the above problem is defined as the influence maximization, which is to find 

a small subset of nodes (k seed nodes) in a social network that could maximize the spread of influence 

based on a certain influence cascade model. D. Kempe et al [12] firstly defined this problem as the dis-

crete formulation optimization problem, and studied three classic cascade model at the same time, which 

are independent cascade model, weighted cascade model and linear threshold model. Kempe et al. had 

proved the above optimization problem is NP-hard, and improved a greedy approximation algorithm. 

However, because of its low computational efficiency, it was not suited to large-scale social networks. To 

overcome these problems, many scholars had improved some new heuristic algorithm [13-16]. 

But in Interdisciplinary physics, many scholars pay more attentions on the problem of mining influen-

tial nodes base on certain topological statistics just like degree, closeness, betweenness and k-core (or k-

shell). Some hybrid model for example, local weight index [17], influence factor [18], LeadRank [19], 

and so on, are also researched. However, the correlation between these four fundamental topological 

characteristics are still not very impressive. Based on this, our article will focus on some features of these 

four characteristics on two real social networks, and then give a clear understanding of their correlations. 
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2 Data Sets 

The two data sets used in this chapter are both taken from real networks [20]. One comes from BlogCata-

log, whose homepage will recommend some distinctive published blog and list the most popular and 

latest blog users. In this data set, each node corresponds to a blog user and the edge between two nodes 

represents a friend relationship between two blog users. Another data set comes from Delicious. This 

website is currently the world's largest bookmarking website. Four basic functions provided through the 

website: collect, tag, review and automate enable users to easily store, share and discover their favorite 

website links. The two real networks used in this paper are both undirected graphs. Degree distribution of 

two data sets are shown in Fig.1. 
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Fig. 1. Degree distribution of Blogcatalog (upper) and Delicious (lower) 

 

It can be found that two real networks all have obvious characteristics of scale-free networks (the 

power exponents of the two networks can be approximately fitted as 2.2 and 1.9 via mathematical tools) 

that most users in the network have fewer friends while few users have more friends. The network diame-

ter and clustering coefficient of Delicious are respectively 5 and 0.2128, indicating that it has obvious 

small-world characteristics. But compared with BlogCatalog, Delicious is much sparser. 

3 Characteristics analysis 

Degree centrality is usually used in the complex network, and degree distribution of two data sets are 

shown and analyzed in section 2, so we will not make any introduction of degree. In this section, we just 

focus on characteristics analysis of other indexes, such as closeness, betweenness, and k-core. 



Journal of Computers Vol. 27, No. 3, 2016 

73 

3.1 Closeness 

In the complex network theory, closeness can also measure the nodes centrality. The closeness of node i 

( )
C

C i  can be regarded as the reciprocal of geodesic distance sum of all the nodes. In order to simplify 

the calculation, the node closeness can be usually expressed by the following formula [21]： 
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Among them, n is the total number of network nodes, and 
ij

d  expresses the geodesic distance be-

tween nodes i and j. Under the condition of not considering the network edge weight, geodesic distance 

can be regarded as the minimum hop between nodes. 

The probability distribution and cumulative distribution (CDF) of closeness in two data sets are 

shown in Fig.2. It can be seen that the closeness of the two data sets have the same distribution trend. 

Furthermore, we analyze the histograms of two data sets. Statistical results show that noses closeness of 

Delicious and BlogCatalog are respectively distributed in the interval [0.18, 0.48] and [0.26, 0.62] (see 

Fig.3).  However, nearly 86.5% node closeness is concentrated between the interval (0.2, 0.3), and in 

BlogCatalog, nearly 69.8% node closeness is concentrated between the interval 0.4 and 0.5 and 28.5% 

node closeness is concentrated between the interval 0.3 and 0.4. All of this illustrate that, from the close-

ness aspect, more nodes are located in the relatively central position of the network. 
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Fig. 2. Closeness distribution in two data sets 

3.2 Betweenness 

Betweenness is usually applied to evaluate the significance of nodes in the process of information spread 

and material transportation. The betweenness ( )
B

C i  of node i can be defined by the following formula 

[22]: 

 

( )
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i j k V jk
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Fig. 3. Closeness histogram 

Among them, ( )jkg i signifies the number of shortest path between j and k which must go through 

node i. And ( )jkg i is the number of all the shortest path between node j and node k. In order to improve 

calculation speed, betweenness can be solved by applying the following equation:  
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The distribution and CDF of betweenness of two data sets are shown in Fig.4.  

It can be seen from Fig.4 that betweenness centrality of the two data sets approximate to obey pow-

er-law distribution. The largest betweenness in BlogCatalog is 0.1186, and the node number whose be-

tweenness are smaller than 0,001 accounts for 97.53%. The largest betweenness in Delicious is 0.7427, 

and the node number whose betweenness are smaller than 0.01 accounts for 98.58%. These statistical 

data strongly prove that the betweenness distribution in these two networks is extremely uneven, and it 

has strong heterogeneity. 
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Fig. 4. Betweenness distribution in two data sets 
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3.3 k-core 

Centrality index k-core can describe the node’s position in the network. The larger the node k-core is, the 

closer the node is to the core place. The detailed calculation process of k-core can refer to the famous 

work [23]. The pseudo-code is shown in Fig.5. 

 

Fig. 5. The pseudo-code of k-core decomposition algorithm 

After k-core decomposition, the network is divided into k layers (assuming that the maximum k-core is 

k). All nodes in each layer have the same k-core, but they are not necessarily to the same degree. Fur-

thermore, two nodes with the same degree does not belong to the same layer. Fig.6 shows a sample of k-

core decomposition, in which, node A and B belong to different k-core although they have same degree. 

Obviously, node B locates in the edge position, and node A is in the central area. 

 

Fig. 6. Schematic diagram of k-core decomposition algorithm 

In addition, by analyzing k-core distribution of the two data sets (as is shown in Fig.7, it can be known 

that each node k-core distribution also conform to the characteristics of power-law distribution, namely 

k-cores of most nodes in the network are relatively small (close to the edge of network), while a small 

amount of node k-cores are relatively large (located in the central position of the network). This kind of 

distribution way is extremely similar with the user distribution of real social network, namely many ce-

lebrities and opinion leaders are sought after by the majority of users as cores, while the vast majority of 

network users are located at the relatively marginal position in the network as followers. 

1 init nodes list V; 

2 init links list E; 

3 init core=1; 

4 while (|V| != 0) 

5  while (node i V∈ and degree (i) = core) 

6   delete node i and related links; 

7   update V and E; 

8   add removal node i into set Vk-core(core); 

9  end while 

10  core ++; 

11 end while 

12 reture Vk-core; 
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Fig. 7. K-core distribution of two real networks 

4 Correlation Analysis 

4.1 Pearson Correlation Analysis 

Respectively calculate the Pearson Correlation Coefficient of four centrality indexes in BlogCatalog and 

Delicious, and specific results are shown in Table 1 and Table 2.  

Table 1. The Pearson Correlation Coefficient of four centrality indexes in BlogCatalog 

 Degree Closeness Betweenness k-core 

Degree 1 0.5065 0.8258 0.5760 

Closeness - 1.2010 0.2292 0.8449 

Betweenness - - 1.2010 0.2010 

k-core - - - 1.2010 

 

Table 2. The Pearson Correlation Coefficient of four centrality indexes in Delicious 

 Degree Closeness Betweenness k-core 

Degree 1 0.4214 0.7016 0.4783 

Closeness - 1.2010 0.2558 0.5944 

Betweenness - - 1.2010 0.1675 

k-core - - - 1.2010 

 

We can find that the correlation between degree and betweenness is the highest, especially in the 

BlogCatalog where the Pearson correlation coefficient has arrived above 0.8. The weakest correlation is 

betweenness and k-core. In Delicious, the coefficient between betweenness and k-core is only 0.1675. 

Furthermore, degree has higher correlation with the other three centricity indicator, while betweenness 

has the weakest correlation with k-core. The correlation distribution between concentration of the two 

data sets and centrality indexes of the other three is shown in Fig.8. 
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Fig. 8. The correlation of degree and the other three centricity indicators 

In Fig.8, closeness, betweenness and k-core almost increase as the node degree increases. This trend 

is especially obvious in BlogCatalog. However, when the node degree is smaller, the differences among 

three centrality indexes of the same node are larger. In addition, there are 447 nodes in the kernel layer in 

BlogCatalog (k-core is 114), and all of these nodes’ degree are distributed in the interval [174, 3992]. In 

the same way, the kernel lay in Delicious is 11, and it has 173 nodes whose degree are distributed in the 

interval [13 566]. This phenomenon shows that the k-core has relatively coarse distinguishing abilities.  

4.2 Rank Correlation Analysis 

Firstly, we enumerate top 10 nodes respectively in descending order based on degree, closeness, and 

betweenness centrality indexes in two data sets, and details are shown in Table 3. We should note that the 

number inside the brackets behind the node number is the corresponding k-core. It is known that the larg-

est k-core in two data sets are respectively 114 and 11. 

The consistency phenomenon can be easily found in the Table 3, especially between the degree and 

betweenness in BlogCatalog. It’s a remarkable fact that top 10 nodes in each centrality indexes are not in 

the largest k-core layer. For example, a small amount of nodes come from the layer 10 and layer 8. 

Table 3. Top 10 node number of four centricity indexes in descending orders in the two data sets 

BlogCatalog Delicious 

Degree Closeness Betweenness Degree Closeness Betweenness 

4839(114) 4839(114)   176(114)   320(11)       3(11)       3(11) 

 176(114)  176(114) 4839(114)   977(11)       1(10)       1(10) 

4374(114) 4374(114) 4374(114) 3803(11)   636(11)   231(10) 

8157(114) 8157(114) 8859(114)       3(11)   320(11)   320(11) 

1226(114) 1226(114) 8157(114)   231(10) 1893(10)   354(10) 

4997(114) 4984(114)  645(114)   354(10)   354(10)     198(8) 

4984(114) 4997(114) 1226(114)     198(8)   269(11)   333(10) 

8859(114) 8859(114) 7806(114)   333(10) 4046(11)   977(11) 

 645(114) 7098(114)   233(114)       1(10)   231(10) 1893(10) 

 446(114)  645(114)   446(114) 1893(10) 3441(10)   475(10) 
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Secondly, we analyze the Kendall Rank Correlation among closeness, betweenness, k-core and degree 

in the two data, and details are shown in Fig.9.  

 

10
1

10
2

10
3

10
4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

top s

Delicious

 

 

closeness

betweenness

k-core

10
1

10
2

10
3

10
4

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

top s

k
e
n
d
a
ll
 τ
B

BlogCataLog

 

 

 

Fig. 9. Kendall Rank Correlation Coefficient among closeness, betweenness, k-core and degree 

 

There exists a large rank correlation coefficient (positive correlation) between degree and k-core. Es-

pecially in the BlogCatalog, top 100 nodes in the degree ranking are approximately identical with top 100 

nodes in the k-core ranking (Coefficient is close to 1), but there is not such high consistency in Delicious 

network. In addition, in two networks, the rank correlation between betweenness and degree violently 

increases as s increases, and when it reaches the critical value c
s , rank correlation will show the declin-

ing trend. Besides, the trends of rank correlation between closeness and node degree in these two net-

works are not the same. Totally speaking, the rank correlation coefficient between k-core and degree is 

relatively stable, betweenness ranks the second stable, and closeness is the most unstable. 

5 Conclusion 

In this paper, we just analyze four famous centrality indexes and their correlations in two real data sets. 

It’s the fundamental work of identifying the influential nodes in complex networks. Based on the simula-

tion of two real social networks, we found that the distribution of degree, betweenness, and the k-core 

totally follow the power-law distribution. The Pearson correlation between degree and betweenness is the 

highest, however, the Kendall Rank Correlation between degree and k-core is relatively larger than val-

ues between degree and other two indexes. From now on, we have an integral impression of the four 

centralities, next time we will focus on how to design a new index to identify influential nodes with 

lower complexity and higher precision. 
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