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Abstract. The speculative circuit is a kind of special parallelizing circuits which could execute 

the sequential operations in parallel by breaking the dependencies between them through the 

prediction approach. That is, the consumer operations no longer needs to wait the computed re-

sults of the corresponding product ones by predicting them, so that the consumer operations can 

be executed with the corresponding product ones at the same time. However, the predicted value 

is speculatively generated, so there still needs an additional recovery mechanism which will re-

cover the speculative execution when the predicted value is detected not to match the computed 

one. Therefore, the dedicated conflict management mechanism and data synchronization mecha-

nism are needed when designing a speculative circuit. In this paper, we present a new design 

model called “transactional speculative circuit model” (TSCM), which is based on the concept 

of transactional memory (TM), to design the speculative circuits. Moreover, this model also can 

be used to design non-speculative parallelizing circuits. We use TSCM to design a new specula-

tive MPEG-2 encoder, and the experiment results show the performance can be efficiently im-

proved. 
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1 Introduction 

In recent years, the researches of efficient parallel execution have become one of the important fields in 

SoC (System on Chip) design. How to aggressively explore the concurrency and efficiently utilize the 

function units of a SoC system are the significant design challenges. The maximum utilization of the 

function units of a SoC system is that all of them keep running without idling. But, actually, the situation 

of the full utilization of the function units rarely occurs due to existing the control and data dependencies 

between operations allocated at the function units. Transactional memory (TM) [1-4] has the data man-

agement mechanisms and conflict management mechanisms which can be used for resolving the depend-

ence conflict and ensuring the data synchronization among the function units in a SoC system. 

In order to increase the utilization rate of the function units, the speculative execution has been pro-

posed which predicts the values of control and/or data dependencies among the program components and 

will allow more functional units executing in parallel. If the predicted ones is hit, then the performance of 

SoC could be efficiently improved. However, if any miss occurs, then the executing function units must 

be discard and recovered correctly. Therefore, efficient design of a SoC with a speculative style will be 

confronted with the problem for speculative data synchronization. Hence, a suitable mechanism for their 

synchronization is required. 

Besides, we also take the variable executing latency for each speculative function unit into considera-

tion. The variable executing latency will lead to unexpected conflicts during speculative execution. 

Therefore, a suitable mechanism for conflict management of a speculative execution of SoC is also re-

quired. 
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The rest of this paper is organized as follow. First, we will introduce the basic properties of transac-

tional memory, and then propose a new transaction-based model. After that, the speculative MPEG-2 

encoder by using the new model is designed. Finally, the experiment results are listed for explaining the 

performance improvement of MPEG-2 encoder. 

2 Relative Work 

2.1 Transactional memory 

In the transactional memory [6, 9, 11] system, there are special mechanisms for data version management 

and conflict management to keep execution synchronization. “Conflict” is the case that more than two 

processes in the circuit access the same data at the same time and at least one process writes this data. 

Unlike the lock-based system, “transaction” is a basic unit for program processing and is unnecessary to 

use a lock circuit for exclusively accessing the data. Instead, the TM system will keep the atomicity and 

the isolation of transactions to keep data synchronization. 

“Atomicity” means that a transaction legally commits its results when all operations in this transaction 

are executed completely and there is no conflict among the results. Otherwise, this transaction commits 

unsuccessfully and should be restarted. All results of it executing will be discarded or recovered. “Isola-

tion” means that the modified data is not visible for other transactions until its transaction commits, and 

other transactions should only read the original value of the data.  

To keep the two properties, data version management mechanisms and conflict management mecha-

nisms are required during designing a TM-based circuit. 

Version management.  Data version management mechanism decides the position where to put the old 

value (original value) and new value (modified value) of the data to be synchronized 0. The eager strat-

egy is that its old value is recorded in another (new) space and the new value will replace the old one and 

be used directly. The lazy strategy is that the new value is put in the new space and the old value will be 

replaced after the transaction commits. 

Conflict management.  Conflict management mechanism decides when to detect the data value conflicts 

and resolves these conflicts. The eager strategy is that the conflicts are detected during transaction exe-

cuting and are resolved as soon as possible. The lazy strategy is that conflicts are detected during transac-

tion executing or before transaction commit and are resolved until transaction committing.  

Transactional memory detects the conflicts according to the read/write set of each transaction, and the 

read/write set is used to record what data are accessed by the corresponding transactions. 

Nested transaction.  The nested transaction is a special transaction which includes one or more transac-

tion. The nested transaction is classified into three types: closed nested transaction, open nested transac-

tion, and flattening nested transaction according to the isolation of the inner transaction. 

The isolation of closed nested transaction includes all the inner transactions, and the committed data of 

inner transaction can only accessed by the other transactions which are included in the outmost transac-

tion; the committed data is outside visible after the outmost transaction committing. The inner transaction 

should restart when the outmost transaction conflicts and aborts. And, the inner transaction is partial 

aborted while the inner transaction conflicts. 

The isolation of open nested transaction includes only the operation in the outmost transaction, and the 

committed data of the inner transaction is outside visible after the inner transaction committing. The in-

ner transaction does not be affect while the outmost transaction aborts. 

Flattening nested transaction is the special closed nested transaction which is flattened as a general 

transaction, and all the inner transactions would become the general operations. So, the outmost transac-

tion should abort while any inner transaction conflicts. 

Although the performance is high for the operations executing in parallel, the hazards among the op-

erations still decreases the parallelization. Hence, the speculation of the dependencies among the opera-

tions is necessary. 

2.2 Speculation 

In order to decrease the idle time of the function units [8, 10], the better method is to apply the specula-

tive execution. That is, the computed results of the execution are speculative and may need to be recov-
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ered when a miss occurs [5]. Therefore, the operation with later order may execute earlier, and the opera-

tion with earlier order might execute concurrently with the later one. There is the important principle that 

the operations have to commit in sequential order, and the later operation should write back its results 

after the earlier operation. So, the data version management mechanism is required for deciding where to 

put the original value and the modified value.  

There are two methods for managing the modified values. The first method is “check-point” that any 

access actions will directly modify the data, and the original data will be stored in other places. The sec-

ond method is “re-order buffer” that the modified value is put in the additional buffer and will be dis-

carded when the speculation is hit or be updated to the current work space when being miss. 

2.3 Motivation 

In order to increase the performance of the circuit, the operations in the circuit should be executed as 

soon as possible; the parallel design is required for executing operations in the same time. However, the 

data synchronization and the data dependency among these operations in the parallel design is the bottle-

neck for improving the performance. The operations with the dependency would execute in order, but 

these operations with no dependency have the chance to execute in parallel. There is the risk that more 

than one operation access the same data at the same time, and the correction of this data may be wrong. 

Therefore, the mechanism for the data synchronization is required, transactional memory is one of the 

lock-free system which is good for executing operation in parallel. 

Another bottleneck is the data dependency which limits the parallelization of the operation execution, 

and the solution of this problem is that the data input of the later operation gets the speculative value 

from a predicting circuit. The speculation of data input may be not correct, so it is necessary for protect-

ing the unmodified data from wrong accessing. Therefore, the operations have to execute out of order and 

commit in order, and the unmodified data is keep in original place or other where.  

Although the concept of speculation is already clear, the implementation of speculative circuit is still 

not easy for design. How to maintain the committing order of these operations and when to detect the 

false speculation and recover the false result of the operation is not presented specifically. Hence, it is 

necessary to combine the transactional architecture with the concept of speculation. 

There is already the good mechanisms for managing the values in TM system, so the transactional de-

sign for speculative is suitable; however, it is difficult for keeping the correct serial order in TM system. 

In TM system, the later transaction commits legally even though the earlier one does not finish its execu-

tion. Therefore, the earlier transaction has to get the higher priority. Besides, the false speculation should 

be looked as the conflict, and the modified values may be discarded when the conflict is detected; other-

wise, the operation with false speculation would still commit legally. 

As a result, it is a good choice to design the speculative circuit with the transactional architecture, so 

we shall develop a TM design model and use it to design a speculative circuit as follows.  

3 Transaction-based Model 

3.1 Transactional speculative circult model 

We propose a transactional speculative circult model here based on the concept of TM to design the 

speculative circuits. There is the problem of data synchronization during speculative circuit executing, 

and the data version management in TM will be used to avoid losing data and occurring wrong. Besides, 

uncommitted values will also be avoided from incorrectly accessing. 

The variable executing time for complex functional units should be considered in the design of the 

control path in a speculative circuit. In this condition, the controller usually cannot determine whether a 

unit has finished, so the read/write set in the TM system are used for indirectly determining when a unit 

finishes its work. In the design of the speculative circuit, a detector is required to monitor the read/write 

sets, and a special controller is designed to determine when the functional units finish. Besides, conflict 

management and data synchronization in the speculative circuit are also designed and kept in the detector. 

The distributer controller design is required for controlling the operation with variable latency, and there 

must be a global controller for integrating the behavior of distributed controllers. 

Adding the predictor circuits is required, and the predictor speculates the value of control dependency 
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and/or data dependency which must be solved for the speculative functional units. The predictor is easily 

designed by the SoC designer, and the rate of successful speculation in the speculative circuit will domi-

nate to the whole circuit’s performance. Consequently, the basic executing unit in TSCM should include 

the executing circuit, the detector, and the predictor, and this basic executing unit is called “transactional 

module”. In other words, the operation is treated as a transaction in the design model.  

3.2 The analysis of control path in TSCM 

“Speculative scheduling” is the main method for analyzing the behavior of the speculative circuit, and the 
result of the speculative scheduling is used for designing the control path of the speculative circuit in 
TSCM. 

There are three steps for analyzing in the speculative scheduling. First, we should divide a sequential 
circuit into more than one operation, and there are possibly some dependencies existing among these 
operations. One operation should be scheduled in one control step.  

Second, we would find the predictable dependencies. If the value of the dependency is easy enough for 
predicting, the dependency is called “speculative dependency.” When the data input of the operation is 
the speculative dependency, the operation is called “speculative operation.” By contract, the other opera-
tion with no speculative dependency is called “normal operation.”  

Third, the speculative operations are speculatively scheduled in earlier control step, and the normal 
operations may execute in parallel with the later operations; however, the value of the speculative de-
pendency is still not sequentially produced. The predictor is required for speculatively producing the 
value of the speculative dependency, and the speculative operation executes speculatively by using the 
value which is produced by the predictor. It is impossible that the speculation of the predictor is always 
correct, so the detector is required for comparing the speculative value and the sequential value. When 
the speculative value does not match the sequential value, it is necessary for keeping the correct order of 
operation executing. The wrong result of speculative operation should be discarded, and the sequential 
value which is produced by dependent operation is used for recovering the wrong execution of the specu-
lative operation. In order to improve the performance of speculative circuit, iteration overlap is required 
in the speculative scheduling. The operations which are scheduled in different iterations should also exe-
cute in parallel for deceasing the idle time of the executing circuits. 

In the above descriptions, there are several control signals needed in the design model. It is difficult for 
the controller to detect when the operation with variable latency finishes, and the “finishing signal” 
which is sent from the detector is required in this design model; of course, the “beginning signal” is also 
required to enable each controller of the operations. These controllers send the “normal executing signal” 
for controlling the serial behavior of operations, and the “speculative executing signal” is sent from the 
controllers for controlling the speculative behavior of the operations. In order to know whether the specu-
lation of the speculative operation is correct or not, the “committing signal” is required to send from the 
detector to the controller of speculative operation. There is a special case that the speculative operation 
starts after the correct input is produced by the dependent operation, the “pipeline beginning signal” 
should be sent from the controller of the dependent operation; this signal is used for start the serial execu-
tion of the speculative operation. At last, the “end signal” should be sent by the controller for outside 
delivering the information of the finishing the operation. This information is used to directly enable par-
ticular controller, or the global controller decide whether to continue the execution of the circuit basing 
on the information.  
Speculative scheduling.  In order to decrease the idle time of the operating circuits, speculative schedul-
ing is a good method for early executing those speculative operations which are scheduled behind the 
dependent operations. These speculative operations may execute before the correct data input is produced, 
and the critical path might shorten when the speculation of these speculative operations is correct; other-
wise, there is overhead in recovering the false result of speculative operations. 

As Fig. 1 shown, there are one normal operation o1 and another speculative operation o2, and the spe-
culative operation may be recovered because of the false speculation. When the speculation of specula-
tive operation o2 is correct, the normal operation o1 and the speculative operation o2 could execute in 
parallel in the same control step C1’ as Fig. 1(a) shown. If there is a false speculation in the speculative 
operation o2, the additional control step C2’ is required for recovery of the speculative operation as Fig. 
1(b) shown. “Pre o2” is the predictor which speculatively produces the data input of operation o2, and 
“Det o2” is the detector which compares the correct input and the speculative input. 
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C1’
o1
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Pre o2

Det o2

 

C1’
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Pre o2

Det o2

o2 N.C2’

 

(a) Correct speculation for speculative operation (b) False speculation for speculative operation 

Fig. 1. Speculation of dependency between operations 

In the following we describe the detail of the speculative scheduling by using some examples. 
Multiple speculations. In the previous section, we describe the behavior of the speculative circuit which 
includes a normal operation and only one speculative operation. If there is more than one speculative 
operation and one of the speculative operations is dependent on another speculative operation, these two 
operations should execute speculatively in the early control step which the normal operation execute in. 

We assume that there is a sequential circuit ckt1 which is divided into four operations (o1, o2, o3, and 
o4), and the second operation o2 and the third operation o3 are speculative operations; of course, the 
other operations are the normal operations. The data dependencies among these operations are presented 
in Fig. 2. 

C1

C2

C3

o1

o2

o3

C0

o4C4 (S)

(S)

(N)

(N)

 

Fig. 2. Behavior of speculative circuit ckt1 

In Fig. 2, the solid line means the data dependency between two operations, and there should be some 
registers for keeping the value of these data dependencies. The speculative operation should execute in 
the same control step which the operation that the speculative operation is dependent on, so operation o3 
could execute in parallel with the speculative operation o2. Therefore, there are two speculative opera-
tions execute in the one control step. In case of correct speculation for all of the speculative operations, 
the performance of the speculative circuit would be three times higher than the original one. However, 
the serial order for committing is still kept in TSCM, and the later operation o3 could not write back its 
result before the earlier operation o2. If there is false speculation for the earlier operation o2, the later 
operation o3 should still wait committing until the operation o2 finishing committing. After the operation 
o2 committing, the detector of the operation o3 checks the correction of the speculation and the operation 
o3 commits successfully when the speculation is correct; otherwise, it is necessary for recovering the 
result of the operation o3. 

In fact, that only one operation is scheduled on each executing circuit is not a general case. The hard-
ware requirement is too high if there are too many operations are included in the speculative circuit.  
Hence, the sharing of the executing circuits is necessary for reducing the hardware cost. 
Resource sharing.  In spite of the sharing of the executing circuits, the sharing of the registers which put 
the result of executing circuits is also a general case. We shall describe all of the case for resource shar-
ing in this section. 

The speculative circuit ckt1 as shown in Fig. 2 is used as an example again, and we assume the specu-
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lative operation o2 and the normal operation o3 share the same executing circuit T2 (see Fig. 3); besides, 

o1 and o4 are both the normal operations. In the first iteration of execution for ckt1, o1 and o2 are sched-

uled in the same control step for parallel execution, and o3 is dynamically scheduled after the speculative 

operation o2 finishing. The normal operation o3 could only execute alone because of the sharing of the 

executing circuit T2. The executing circuit can only execute one operation at the same time, so these 

operations which share the same executing circuit should execute in serial. Thus, the speculative opera-

tion o2 in the next iteration would not execute before o3 which is in the first iteration finishing. 

C1’
o1

o2 S.

o3C3

Pre o2

Det o2

C1’’ o4
o1

o2 S.

o3

Pre o2

Det o2

o4

C3

C4

Allocation of

executing circuit:

o1 � T1

o2 � T2

o3 � T3

o4 � T4

 

Fig. 3. Behavior for the sharing of the executing circuit 

Note that the next iteration starts after the speculative operations o2 commits. If the first operation o1 

which is in next iteration starts at the time when the speculative operation o2 in current iteration still exe-

cutes, the speculative operation o2 in next iteration could not execute speculatively because of the exe-

cuting circuit sharing. As soon as scheduling can affect the usage of the hardware that is designed for the 

speculation. Consequently, the timing for begin the next iteration is that all of the speculative operations 

which is dependent on the highest priority operations finish. The highest priority operations mean that all 

of the normal operations which may execute in the first control step of the iteration. There is the risk that 

all the highest priority operations begin too early, and then all the speculative operations which are de-

pendent on these highest priority operations cannot execute speculatively forever. Therefore, it is neces-

sary for restricting the time to begin the next iteration. 

In addition to the sharing of the executing circuits, the sharing of the registers may also affect the tim-

ing to start the next iteration. We use the speculative circuit ckt1 as shown in Fig. 2 as an example for 

describe the behavior of the circuit in TSCM again. 

We assume that the normal operation o1 and the normal operation o3 share the same writing register R 

as shown in Fig. 4, and there is only one speculative operation o2. The conflict should be avoided while 

o3 in the current iteration and o1 in the next iteration execute in the same control step. Otherwise, the 

result of o3 may be overwritten by o1. The normal operation o4 might execute incorrectly because of the 

wrong input which is produced by o1 in the next iteration. So, the normal operation o1 in the next itera-

tion should be scheduled in the next control step C1’, but there is still conflict between o1 in the next 

iteration and o4 in the current iteration; however, this conflict is allowed in TSCM. The write-after-read 

(WAR) dependency between o1 and o4 do not always lead to error execution, and o1 could execute with 

o4 in parallel while o1 writes back result later than o4 reads the data from the register R. Because the 

operation o4 is a transaction in TSCM, the information that the data reading of o4 finishes is outside 

knew after the execution of o4 finishing; therefore, the timing for o1 committing is when the operation o4 

in the previous iteration finishes. 

Partial abort of nested transaction.  It is necessary for recovering the result of the operation while the 

speculation is false, and all the result of the operation is discarded; however, it is not a good choice if the 

execution of the operation is complicated and time-consuming. The partial abort property is suitable 

when an operation can be divided into many sub-operations, and the result of these sub-operations whose 

speculation is correct can be reserved during the recovery of the operation. 

We take the behavior of the circuit in Fig. 4 as an example, and o2 is the only one speculative opera-

tion in this circuit. If the o2 could be individually divided into three sub-operations as shown in Fig. 5, 

the data input can be produced by the different predictor. Hence, we would clearly distinguish that the   
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C4’ o4
o1

o2 S.

o3

Pre o2

Det o2

o4

C3

C4

R

R

R

R

C0

 

Fig. 4. Behavior for the sharing of the register 

false speculation is for which sub-operation. We assume o2_sub1, o2_sub2, and o2_sub3 are the sub-

operations which are divided from o2, and o2_sub3 is the only one sub-operation whose speculation is 

correct. In speculative scheduling, there should be two additional control steps for partial abort of 

o2_sub1 and o2_sub2; moreover, the result of o2_sub3 is reserved and the time cost is saved. 

C1

C2*

C3

o1

o2_sub1

o3

C0

o4C4

o2_sub2

o2_sub3

d1_sub1

d1_sub2

d1_sub3
d2_sub1

d2_sub2

d2_sub3

C2**

C2***

 

Fig. 5. Three sub-operations dividing from o2 

3.3 The design of control path in TSCM 

In the previous section, the length of executing time for the operations which execute in the same control 

step seem to be equal, and the latency of execution for the operation seems to be fixed in any iteration.  

However, the operation with variable latency should be taken into consideration. The distributed design 

of the local controller is required in TSCM for controlling the operation with variable latency, and it is 

necessary to use a global controller for integrating the behavior of all the local controllers. There should 

be one controller for one executing circuit, and these operations which share the same executing circuit 

would be controlled by only one controller. 

Because the property of the operation for controlling is different, we classify the finite state machine 

(FSM) of the controllers into four types. “Normal FSM” is using for controlling the normal operation, 

and the “speculative FSM” is using for controlling the speculative operation; besides, “special normal 

FSM” is using for controlling the normal operation with WAR dependency. When a circuit is shared by 

the normal operation and the speculative operation, “mixed FSM” is required for controlling the two 

types of operations. 

The normal operation ON should be enabled when all OD finishes its execution. ON can commit while it 

finishes the execution, or ON has to wait all ODP finish its execution. OD means the operation which ON is 

dependent on, and ODP means the operation which has the write-after-read dependency with ON and the 
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earlier committing order than ON. The normal operation with no WAR dependency could commit as long 

as the execution finishing, so there are only two states required for the normal FSM as shown in Fig. 6(a). 

 

reset

IDLE

~o1_B

o1_EX

~o1_F/o1_N

o1_F/ o1_E

o1_B/ o1_N

 

reset

IDLE

~o1_B

o1_EX

~o1_F/o1_N

o1_F& o4E/ o1_E

o1_B/ o1_N
WAIT

o1_F& ~o4_E

~o4_E

o4E/ o1_E
 

(a) Normal FSM (b) Special normal FSM 

Fig. 6. FSM for controlling the normal operation 

The state of FSM transfers to “ON_EX” state when the normal operation ON is enabled; otherwise, the 

state stays in “IDLE” for waiting the beginning signal from global controller or other local controller. 

Above two states are also included in the special normal FSM, and there is one additional state for wait-

ing the finishing of the execution for all ODP; this state is named “ON_WAIT”. If all ODP finish, ON could 

commit and the result of ON should be write back the registers. For example, o1 is the normal operation 

which is controlled by the FSM as shown in Fig. 6(a); if the WAR dependency exists between the normal 

operation o4 and o1, it is necessary to use the special normal FSM for controlling the normal operation 

o1 as shown in Fig. 6(b). “o1_B” is the beginning signal of o1 for enabling the execution of o1, and 

“o1_N” is the normal executing signal for controlling the serial execution of o1. “o1_F” is the finishing 

signal which is sent from o1 detector, and the signal is only delivered between o1 detector and o1 local 

controller; hence, another signal is required for sending the information about the finishing of o1 to 

global controller. As the description in section 3.2, the end signal is used to deliver this the information 

about the finishing of the operations, and “o1_E” is the end signal for the normal operation o1. 

The speculative execution of the speculative operation OS should be enabled when all OD starts its exe-

cution and all OD do not finish its execution; otherwise, the serial execution of OS should be enabled. The 

state of speculative FSM transfers from “IDLE” to “OS_EX_S” for beginning the speculative execution 

of OS, or the state transfers from “IDLE” to “OS_EX_N” for beginning the speculative execution of OS. If 

the speculation of OS is false, “OS_EX_N” is also for recovery of the speculative execution of OS. 

“WAIT” state is require while the speculative execution of OS finishes and any of the ODP does not finish; 

the correct data input is produced after all ODP finishes. 

As shown Fig. 7, there are two signals are used for start the execution of speculative operation o2. 

“o2_B” is the beginning signal for start the speculative execution of o2, and “o2_P” is the pipeline be-

ginning signal for start the serial execution of o2 while the dependent operation is already end. After the 

starting of speculative execution of o2, the speculative executing signal “o2_S” is sent from local control-

ler for controlling the speculative execution of o2. The committing signal “o2_C” is sent from detector 

for delivering the information about the correction of the speculation, and this signal is valid after the 

execution of dependent operation o1 ending. 

 

reset

IDLE

~o2_B or ~o2_P

o2_EX_S

~o2_F/o2_S

o2_B /o2_S WAIT
~o1_E &o2_F

~o1_E

o2_EX_N

~o2_F/o2_N

~o2_C &o1_E/o2_N

~o2_C &o1_E/o2_N

o2_F /o2_E

o2_C &o1_E /o2_E

o2_C&o2_F &o1_E/o2_E

o2_P /o2_N

 

Fig. 7. Speculative FSM for controlling the Speculative operation 

The mixed FSM is required for the executing circuit which is shared by the normal operation and the 

speculative operation. In fact, the mixed FSM is the combination of the speculative FSM and the normal 

FSM, and the “IDLE” state is shared by these FSM; of course, the mixed FSM for controlling the normal 

operation with WAR dependency is the combination of the speculative FSM and the special normal FSM. 
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The distributed local controllers should be integrated by the global controller. The highest priority op-

erations would be enabled by the global controller, and then the other operations are enabled by the de-

pendent local controller. The global controller must to check the condition is that the speculative opera-

tions which are dependent on the highest priority operations could start the speculative execution while 

the highest priority operations are enabled. Another condition which the global controller has to check is 

how much iteration the speculative circuit has already executes, and the global detector is required to 

record the times of iteration and to decide when to end the execution of the speculative circuit. The fol-

lowing algorithm is for the global controller of the circuit whose behavior is shown in Fig. 8. 

Algorithm Global_controller;

input: En, L1, o1_E, 03_E, o4_E, 

output: o1_B 

begin

if En==1 then

begin

output o1_B  to LC_T1

end

else if L1&o1_E&o3_E then 

begin

output o1_B to LC_T1

end

else

“IDLE”;

end

end_ Algorithm
 

Fig. 8. Algorithm of global controller 

The highest priority operation in the behavior which is shown in Fig. 8 is the normal operation o1, so 

the global controller enables o1 when En equals to one and the speculative circuit starts. After the begin-

ning of the first iteration, the global controller has to check the two conditions which are described in the 

previous paragraph.   

There is not only the difference of control path for different operation but also the difference of data 

path. The normal operation and speculative operation would be responded to different design of data path. 

3.4 The design of data path in TSCM 

The entire data includes the transactional modules and the registers, and the buffer is required for the 

normal operation with WAR dependency. The data put in the buffer would be written back the register 

after the hazard resolving. 

The normal transactional module for the normal operation includes one executing circuit, one detector, 

and one read/write set; read/write set is used to record the address of data accessing in TM system. The 

executing circuit is the unit for executing operation, and the detector is used to detect when the normal 

operation finishes. Because of the variable latency for the operation, the information in write set is re-

quired by the detector for indirectly detecting the finishing of the normal operation. If there are many 

operations sharing the executing circuit, more than one detector is required for different finishing condi-

tion in normal execution. The different data input may be required in different control steps, so the tri-

state buffer may be included in the transactional module for deciding which input the executing circuit 

should accept.  

In spite of the units included in normal transactional modules, it is necessary to add the predictor for 

producing the speculative input of speculative operations into the speculative transactional modules. The 

tri-state buffer must be included in the speculative transactional module because of the different input for 

speculative execution and serial execution; the serial execution is used to recover the false speculation of 
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the speculative operation. Besides, the detector should detect not only the finishing of the execution but 

also the correction of the execution, so the correct value of data input sent from other modules should be 

deliver to detector; therefore, a detector should include a counter for recording the progress of the execu-

tion and a comparator for check the correction of the execution. 

For instance, there is a normal operation o1 which is executing on executing circuit T1, and the result 

of execution is written in the register R1; then, the architecture of transactional module for o1 is shown as 

Fig. 9(a). The signal which delivers between o1 detector (“Det o1” in Fig. 9(a)) and write set T1 is used 

to detect the finishing of the execution. Another transaction module which is shown as Fig. 9(b) is shared 

by the speculative operation o2 and the normal operation o3, and the executing circuit T2 is shared by o2 

and o3. According to the control signal of local controller, the data input may be sent from R1, R2, or o2 

predictor (“Det o2” in Fig. 9(b)). The detector should detect the correction of the execution while the data 

input of T2 is sent from o2 detector; in other case, the detector should only detect the finishing of the 

execution of o2 or o3.  

T1

Det o1

o1_F

Input1

o1_N Write set

T1

R1

R1

 

(a) Normal transactional module 

T2

Det o2

o2_F

R1

o2_N Write set

T2

R2

R4

Det o3

o3_F

o3_N

R2

R2 R4

Pre o2

o2_S

o2_C

d2

d2’

 

(b) Speculative transactional module 

Fig. 9. The architecture of transactional module 

In the following we shall take the MPEG-2 design as an example to explain in details how to design a 

speculative circuit by using the proposed TSCM. 

4 Transaction-based MPEG-2 Design 

4.1 Introduction of MPEG-2 

MPEG-2 is one of encoding formats, and the MPEG-2 file is combined by a series of pictures. There are 

three encoding mode in MPEG-2 format. 
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I-frame is the first picture in a GOP (group of pictures), and it is the reference frame for the other pic-

tures; so, I-frame is encoded individually. I-frame is encoded in intra-mode for little distortion; however, 

a picture with little distortion leads to lower compression ratio.  

The other pictures in GOP are P-frames and B-frames which are located between the I-frame and P-

frames; the P-frame and B-frame have two reference frames and the I-frame is the reference frame of 

these P-frames. Hence, they are encoded in the inter-mode. The encoder finds the similar frame from the 

reference frames, and then “motion vector” and “numerical difference between the similar frame and P-

frame” are the data for encoding. The values of vectors and the values of the numerical difference are 

little in general cases, so the compression ratio is high. 

4.2 Analysis of MPEG-2 

The basic behavior of a MPEG-2 encoder is presented in Fig. 10; there are many control steps in Fig. 

10(a) and the marks C0 to C8 correspond to different control steps. One I-frame is encoded from C0 to 

C2, and two P-frames are encoded from C3 to C8. In the beginning, we analyze the MPEG-2 encoder and 

divide the circuit behavior into four function units, which are encoder (ENC), decoder (DEC), motion 

estimation (ME), and motion compensation (MC), respectively, shown in Fig. 10. 

We first analyze the dependencies among these function units in the MPEG-2, and find that the de-

pendencies between ME and MC are suitable for speculating. The function of ME is to find the most 

similar frame from the reference frames, and then computes the motion vector (MV) of each macro-block 

in the current frame. 
The values of dependencies which are required by MC can be provided in advance by the predictor 

(Pre MC) in Fig. 10(b), and the detector will check whether the speculative value is correct or not. If 
speculative value of motion vector is not correct, the executing time of the circuit will be extended as 
shown in Fig. 10(c). 

C3’
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Det MC

C3’
ME
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ENC_PC5

Pre MC

Det MC

MC N.C4
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ME
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Pre MC
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Allocation of register 

for writing:

ENC_I � R1

ENC_P � R1

DEC � R2

ME � R3

MC � R4

(a) Behavior of original 

MPEG-2 encoder

(b) Behavior of Speculative MC

(c) Behavior of Speculative MC 

with error speculation

(d) Execution in parallel for 

operations in different iteration

 

Fig. 10. Behavior of MEPG-2 encoder 

Each function unit’s operations which are located in the different iterations therefore may execute in 
parallel for decreasing the execution time of the whole circuit. In Fig. 10(d), the parts which are used for 
encoding different frames will locate in different iterations. In order to correct the false speculative re-
sults of the predicted motion vectors, the MC circuit is seemed like a variable latency functional unit, and 
a distributed controller is required and had been designed to manage these functional units with the vari-
able executing times as follows. 



A Transaction-based Design Model and Its MPEG-2 Encoder Design 

106 

4.3 Circuit architecture 

We explain the design of distributed controller with the FSM shown in Fig. 11, and the control steps’ 
names in Fig. 10(c) are then labeled with the states’ names. There are two styles in TSCM for designing 
the FSM: the serial FSM and the speculative FSM. 

We first take the serial behavior of ME circuit into consideration, and the normal FSM is sufficient for 
controlling ME circuit as shown in Fig. 11(a). The normal FSM is enabled by “beginning signal” 
(ME_B), and then FSM delivers “normal executing signal” (ME_N) for behavior controlling (i.e. IDLE
→ME_EX). After getting “finish signal” (ME_F) from the detector, the state of the serial FSM transfers 
back “idle state” (i.e. ME_EX →IDLE); then, the “end signal” outputs from the serial FSM. Behavior 
controlling of DEC are similar to that of ME, so we also use the same method to design the FSMs for the 
local controller of DEC (shown in Fig. 12(a)).  

Next, we investigate the speculative behavior in the MC circuit and then design it. The speculative 
FSM is analyzed and designed to control the MC circuit as shown in Fig. 11(b). The speculative FSM is 
enabled by “beginning signal” (MC_B), and then delivers “speculative executing signal” (MC_N) for 
behavior controlling (i.e. idle→MC S.). When the speculative FSM gets the “finish signal” from the de-
tector, it means that the speculative execution finishes; however, the speculative execution is not un-
doubtedly successful.  

If ME circuit finishes early, the detector of the MC circuit will early know whether the speculative 
value is correct or not; therefore, “commit signal” and “finish signal” will be concurrently delivered from 
the detector of MC. The state in speculative FSM transfers back the idle state if the speculative value of 
the motion vector is correct (i.e. WAIT→idle), or the MC circuit is restarted by using a correct value 
when the speculative one is false (i.e. WAIT→ MC N.).  The “WAIT” state in Fig. 11(b) is required for 
the functional units with variable executing times. On the contrary, the MC circuit should wait until the 
ME circuit finishes (i.e. MC S.→WAIT), and the result of speculative MC execution may be modified 
when the ME circuit finishes. 

At last, the FSM of executing circuit ENC is share by ENC_I (variable length coding for I_frame) and 

ENC_P (variable length coding for P_frame), the normal FSM for ENC local controller should be de-

signed as shown in Fig. 12(b). 
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Fig. 11. FSM of local controller in speculative 

MPEG-2 

Fig. 12. Normal FSM for ENC controlling 

A global controller is required for controlling all distributed local controllers in the whole speculative 

MPEG-2 circuit, and the global controller will manage when to execute a functional unit and keep data 

synchronization among those distributed controllers. The global controller for the speculative MPEG-2 

encoder is designed and shown in Fig. 13. “L1” in it is the variable for deciding whether to continue the 

loop for the P-frame encoding in the Speculative encoder, and “L2” is the one for I-frame encoding. With 

the proposed TSCM, the global controller is easily designed. 
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Algorithm Global_controller;

input: En, L1, L2, DEC_E, ENC_P_E

output: ENC_I_B, ME_B

begin

if En==1 then

begin

output ENC_I_B  to LC_ENC

end

else if DEC_E then 

begin

output ME_B to LC_ME

end

else if ~L1&L2&ENC_P_E then

begin

output ENC_I_B to LC_ENC

end

else

“IDLE”;

end

end_ Algorithm
 

Fig. 13. Algorithm of global controller in speculative MPEG-2 encoder 

By the way, in our design more than one operation in the speculative circuit is allowed to share the 

same local controller and the same functional circuit, and these operations which share the same sources 

should only execute in serial. 

The data path of speculative MPEG-2 is shown in Fig. 14. The executing times of ENC and MC are 

variable in this speculative encoder design, so the information of read/write sets is analyzed and designed 

when designing the detectors of ENC and MC. The respective computation circuits and detectors for the 

ENC, DEC, and ME circuits are designed for construction of the whole speculative module, which is 

called “transactional module”; of course, a transactional module is the basic unit for executing the circuit 

in TSCM.  

Because of the difference between serial execution and speculative execution in the speculative data 

path for MC circuit, one predictor and two tri-state buffer are required in designing the transactional 

module. The function of these tri-state buffers is used to select the correct inputs and to avoid misusing 

the uncommitted data.   

5 Result of Synthesis 

We had implemented and synthesized the speculative MPEG-2 encoder in Verilog, and its synthesis re-

sults are listed in Table 1. The synthesis tool is Quartus II 8.0, and the device name used for synthesizing 

is EP1S80F1508C5. 

The largest unit in the diagram is encoder circuit, but the critical path may not be located in the circuit 

when these circuits execute in parallel. The value of data (i.e. MV and numerical difference) for P-frame 

encoding is little, so the executing time of ENC is shorter; therefore, the critical path will be located in 

motion estimation and motion compensation (MEMC). It is necessary for MEMC optimizing in specula-

tive encoder. The encoder is tested by encoding 20 frames, and each group of picture (GOP) includes one 

I-frame and three P-frames. The detail executing times of the encoder is listed in Table 2.  



A Transaction-based Design Model and Its MPEG-2 Encoder Design 

108 

Det_ENC

ENC_F

Det_ENC

DEC_F

Det_ENC

ME_F

ENC

DEC

ME

Det_MC

ME_F

Pre_MC

MC

MC_C

MC_N

MC_S

MV MV’

Output

Input

 

Fig. 14. Architecture of data path in speculative MPEG-2 

Table 1. Result for synthesis of speculative MPEG-2 

Logic elements  

in synthesis of 

Encoder 

Logic elements  

in synthesis of 

Decoder 

Logic elements  

in synthesis of 

Speculative 

MEMC 

Logic elements  

in synthesis of 

Speculative  

controller 

Total pins  

in synthesis 

Maximum  

operating  

frequency 

12470 4677 1824 201 1189 28.34 MHz 

Table 2. Executing time for speculative MPEG-2 encoder 

Exe. Time 

Benchmark 

Average cycle for 

original MEMC 

Average cycle for 

speculative MEMC

Total cycle for specu-

lative MPEG-2 

Total cycle for 

original MPEG-2 

akiyo_cif.yuv 324748 23099391 35561500 

coastguardo_cif.yuv 331926 27113921 43770660 

mobileo_cif.yuv 336129 32366145 54344240 

foremano_cif.yuv 335132 26038211 41551520 

containero_cif.yuv 331859 26155374 41583900 

flowero_cif.yuv 336295 29054463 47660720 

waterfallo_cif.yuv 336312 29630149 49016860 

stefano_cif.yuv 336221 28150032 45968400 

tempeleo_cif.yuv 

337872 

336065 29621736 48916180 

 

The executing time reduction of speculative MEMC is less than 1 millisecond as listed in Table 2; and 

the speedup of speculative MEMC is 1.039 times higher than that of original one when the hit rate in 

speculation is 47.92% (see Table 3). The benefit of speculating in MEMC circuit is not significant, and it 

is because that the executing time of MC is ten times shorter than that of ME; so the best case of speedup 

for speculative MEMC is 1.1 times higher. Therefore, the most important factor for performance im-

provement is not the speculation in MEMC. 
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Table 3. Speed up for speculative MPEG-2 encoder 

Speed up 

Benchmark 

Speculative region 

in MEMC 
MEMC Original MPEG-2 Hit rate (%) 

akiyo_cif.yuv 1.049 1.039 1.351 47.92 

coastguardo_cif.yuv 1.028 1.018 1.381 26.98 

mobileo_cif.yuv 1.015 1.005 1.404 14.72 

foremano_cif.yuv 1.018 1.008 1.373 17.62 

containero_cif.yuv 1.028 1.018 1.371 27.17 

flowero_cif.yuv 1.014 1.005 1.390 14.23 

waterfallo_cif.yuv 1.015 1.005 1.396 14.18 

stefano_cif.yuv 1.015 1.005 1.388 14.44 

tempeleo_cif.yuv 1.015 1.005 1.394 14.90 

 

In fact, the scheduling in Fig. 10(d) significantly shortens the critical path of speculative MPEG-2. The 

executing time reduction of speculative MPEG-2 is 20 milliseconds as listed in Table 2; and the most 

important factor for performance improvement is that each part’s operations, which is located in different 

iterations, execute in parallel. 

The results of synthesized circuit are listed in Table 4, and the speculative encoder produces a 0.75% 

area overhead.  The additional hardware is located in the speculative MEMC (as Fig. 11) and the global 

controller (as Fig. 13). The trade-off between the 0.75% area overhead and the 1.35 times speedup is a 

worth deal. 

Table 4. Area comparison between original MPEG-2 and Speculative MPEG-2 

Total logic elements in synthesis 

of Speculative MPEG-2 

Total logic elements in synthesis of

original MPEG-2 
Additional elements Percentage of  

additional area 

18366 18229 137 +0.75% 

6 Conclusion and Future Work 

We have proposed a TSCM model and designed a transaction-based MPEG-2 encoder using the mode. 

The transaction-based design could improve the performance of circuit. Although additional hardware 

was required, the circuit executing time would significantly decrease.  

Transaction memory is a good design for synchronization, so the parallelization of the programs and 

the operations is proved; however, the improvement of parallelization will not certainly increase the per-

formance of the system. If the ratio of successful committing for the transactions is too low, most of re-

sult for transactions will be discarded after parallelizing execution; the performance of the system may 

not be improved obviously. How to schedule the operations for executing in parallel is an important topic 

in the future. Besides, the new value of the data which is modified during the transaction executing is 

outside read legally after the transaction commits, and it is steady method for protecting the new value 

from wrongly accessing. But in the case that a new value is produced early and waits committing for a 

long time will decrease performance of the system. It is because that some transactions which need the 

new value must wait the certain transaction committing and do not execute early. So, it is important to 

select the suitable operations for combining into a transaction. 

The transaction-based encoder in this paper is a small-size circuit, so the memory requirement for this 

circuit is little. However, the amount of the required memory is proportional to the size of transaction-

based circuit. The amount of the memory required by the circuit will impact the speed of data delivery; 

and it will be our next target. 

Another target is the automatic design of the transaction-based circuit in TSCM. The current design of 

speculative scheduling is still the static scheduling, and the speculative circuit is still analyzed by SoC 

designer; this method is only suitable for simple design of speculative circuit.  If there are more elements 

and more complicated behavior in the circuit, we will spend a lot of time and effort for analyzing and 

designing. Therefore, how to automatically produce the acceptable design of the speculative circuit in 

TSCM is an important target in the future. 
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