
Journal of Computers Vol. 27, No. 4, 2016, pp. 111-119

doi:10.3966/199115592016122704009

111

Program Design in Cloud Platform Based on Prototype

Development Approach

Tse-Chuan Hsu1, Dong-Meau Chang2, and Yao-Hong Tsai 3*

1 Department of Information Management, Hsuan Chuang University

Centre for Creative Computing, Bath Spa University

Hsinchu 300, Taiwan, ROC

davidhsu@hcu.edu.tw

2 Department of Journalism, Hsuan Chuang University

Hsinchu 300, Taiwan, ROC

morgan@hcu.edu.tw

3 Department of Information Management, Hsuan Chuang University

Hsinchu 300, Taiwan, ROC

tyh@hcu.edu.tw

Received 22 June 2015; Revised 11 August 2015; Accepted 22 November 2015

Abstract. For the software system development in cloud, it is difficult to have a complete speci-

fication of the desired system. Due to the product development time (time to market) will affect

the demand and market trends systems, and in product prices, reducing system development

time will enhance product value. Therefore, in this study, we have adopted a prototyping method

by cloud-based system development to shorten development time. We plan to found out that

such methods can be used to quickly generate the complete system, but the resulted system is

still missing some important features or related files. In this paper, a UI-Driven approach was

applied on the prototyping method. The methodology is illustrated with the help of a case study

on Heroku cloud platform. We discussed and proposed the program design on the applied proto-

type which deployed edcloud system of Heroku cloud platform and in addition to shorten the

development time for developers and customers in communications. The prototype can be de-

veloped through a storyboard and UI (user interface)-Driven approach to provide a more accu-

rate and fast system development process. The case study showed that the proposed method was

efficient for user to develop a software system in cloud platform.

Keywords: cloud platform, Heroku, Prototyping, Software system development

1 Introduction

Much attention has focused on techniques to bring products to the market more quickly for recent dec-

ades. Cross functional teams are important for developers to accomplish successful fast cycle develop-

ment [1-2, 12]. In recent years, due to the rapid development of cloud software service platform, many

software companies have invested in the development of cloud services platform. The demand for soft-

ware deployment and application software systems is getting bigger and bigger. In the meanwhile, com-

plexity and heterogeneity of software system are also increasing [13]. It’s a new problem to complete the

system prototype in cloud quickly.

Every cloud-based tool for developers has its own development processes and characteristics [3, 14].

Due to many different ways of the development services, the choice of developer tools is not easy for

individuals to learn how to code and to build new cloud or mobile Apps in a short time. However, the

* Corresponding Author

Program Design in Cloud Platform Based on Prototype Development Approach

112

method and processes to produce an application system in cloud are already fixed for every developer

tool.

In this paper, we tried to develop a set of software engineering method to integrate developer tools in

cloud service from different provider. Based on the proposed, developer can deal with possible effects.

For example, additional working time may delay the development schedule, budget overrun may result in

poor quality of software and soon. The causes of these problems are that the technology of software de-

velopment in cloud from the current IT(information technology) industry is not yet mature. As a result,

the development of a software system needs to include experts in various fields (domain expert) [8-9] to

ensure that the software is in line with the demand. If methods, processes and supporting tool of software

development system cannot be integrated with each other, it will not obtain the desired performance.

In this paper, a UI(user interface)-Driven approach was applied on the prototyping method. The meth-

odology is illustrated with the help of a case study on Heroku cloud platform. We discussed and proposed

the program design on the applied prototype which deployed cloud system of Heroku cloud platform and

in addition to shorten the development time for developers and customers in communications. The proto-

type can be developed through a storyboard and UI-Driven approach to provide a more accurate and fast

system development process.

2 Background and Related Work

System reduce development process largely is an important consideration for the development of cloud

software program since we need to curtail the development time, service cost, or other external factors

for soft development. In this article, we describes the separation between the user and the developer tools

by an interface-driven approach combined with software storyboard mode, interface and programming

concepts, and use of the domain connection management technology, management methods, resolving

domain name restrictions, and the context of the development. For developers, the UI provided faster

solutions to deal with the above criterion.

2.1 UI design

In order to meet different requirements, software designer needs to develop of different kinds of systems

and to follow the most important specifications of users. Therefore, the UI is the first consideration of a

prototype development method when different users expected different interface, specially unique inter-

face for their owned. In the initial phase of system development, the developer construct a customized

system according to the different needs from different users, i.e., user requirement [10-11]. In the system

requirement phase, we needs to design the interface and image icon for developers and users. The devel-

oper can then extends the interface to class, methods and the class diagram [4-7]. For the development of

a cloud application service, one can design the process and dynamic model of the system that fitted the

user’s demand by UI-driven user interface design method in the requirement phase. Furthermore, the

developer extended categories, methods and related modeling class diagram of the model through the

process and the UI-Driven by design. That is more clear and efficient than the traditional development

methods in the web-based service platform.

2.2 Storyboard

When making a movie, an animation, a television show, a music video or a commercial, a series of illus-

trations that briefly summarize the key scenes and all events of them is called a storyboard [8]. That was

usually done before the film is actually shot. Illustrations describe the essential details needed to commu-

nicate the scene-specific information and include the use of graphical notations and additional text de-

scriptions. Storyboard is a fast and economic way to express the idea, mirror mode, the length of time,

dialogue or special effect of what the visual media is going to look like before actually shooting. While in

the present study, we applied the concept of storyboard technology. The technology used in the movie

storyboard to describe the story is now using pictures to tell the user’s needs, like “When I saw it I knew

what I want” (IKIWISI) [15]. In general, this phenomenon exists in all software development. Therefore,

the UI are designed by this relationship between user and software system. Visual communication are

used to confirm the needs of the user and let user know the system process.

Journal of Computers Vol. 27, No. 4, 2016

113

At present product markets, tool kits for software development needs to have the relevant software

tools, such as SoftScore. It identify and establish tools to assist the user to confirm the process and needs.

It usually provide simulate functions which are similar to the way of playing a movie. It also allows users

and developers to confirm the appearance and functionality of the system. That is easier to understand

than the traditional file-based expression mode. SoftScore comply with TDD (test-driven development),

can be annotated test method and system functions, export demand model becomes PDF file, output Use

Case of UML (unified modeling language) and test cases.

2.3 Prototyping

For the software system development in cloud, it is difficult to have a complete specification of the de-

sired system, especially for that required the time to market issue. In the cloud service platform, we usu-

ally obtain a complete and accurate specification of the system by the template design, providing users a

quick reference system screen, and gradually corrected process. It is useful especially for some of the

time to market software system development. Since users often have only a vague idea of the system, it is

difficult to express completely and accurately overall requirement on the system. Developers is also un-

clear to the problem to be solved or the user’s demand.

With the increasing of development functions, users may have new demands. Since the new system

environment has changed, the system is also asked to change as the user requirements. Developers may

encounter some problem that are not expected in the original design stage of the process. It is difficult to

pre-describe the specification about the changes of user’s demands in advance. Similarly misunderstand-

ing in communication will also become the developer’s obstacle to the success of the system.

In this study, we focused on software engineering and discussed about prototype development life cy-

cle. Prototype development life cycle was divided into five stages. First, perform the initial analysis. Sec-

ondly, define the prototype objective. Thirdly, specify the prototype. Fourth, construct the prototype.

Fifth, evaluate the prototype and recommend change (see Fig. 1).

Fig. 1. Prototype development life cycle

3 The System Architecture

In this paper, we presented the system architecture to explain the relationship between the development

environments. Each subsystem is shown in Fig. 2. In the stage for finding user’s requirements, develop-

ers may have the customer’s needs like views, events, and actions by UI description through the way of

the script. After making the decision in the script, the user can set the system elements, the attribute ele-

ment, and the element type by the appropriate related components in accordance with the instructions to

complete the system. Then components and event information will pass to the responsible subsystem for

corresponding actions. In this stage, information will first send to the database, if objects are appropriate,

they may be retained in the database. The responsible subsystem of connection for action will display the

information of components and events through the approach of the separation between before the scene

and behind the scene. For the details of the component settings and the connection relationship, they will

be done behind the scenes by setting parameters. The simulated virtual environment will then be obtained

by compiler of the development environments. Finally, confirmation have to check the user’s needs and

the script. If it is correct, that means the resulting system is correct.

Program Design in Cloud Platform Based on Prototype Development Approach

114

Fig. 2. System Architecture

4 Research Methods and Prototype Development Process Storyboard

For the prototype development in cloud base systems, we applied the Python language and Heroku plat-

form combined with cloud application architecture for our research. First, situational settings of the

storyboard can determine the relevant part of the required elements and components for system develop-

ment. By the reuse methodology, one can easily load the required components from the previous system

and construct a system prototype. Situational simulations can help users confirm the system prototype.

The storyboard prototype developing process is shown in Fig. 3.

Fig. 3. Prototype development process storyboard

Before the system development, developers and users have to complete the identification of system

needs. That is extremely important and will result in reducing post-modification of the system develop-

ment and the development gap between developers and users. Through the pattern of the system proto-

type, the display will demonstrate and discuss with the user dynamically, such that system requirements

can be more clearly communicated and confirmed with the user. Therefore, we try to carry out the part of

system requirement which input by the way of visualization tools. The input process was done by just

clicking through the interface between the user and the system. Then, the system will automatically ana-

lyze the components, actions and events from the user’s input to complete the development process.

4.1 Reuse component

There are many approaches for component reuse in different applications, e.g., copying and pasting, in-

herited class, framework architecture, application programming interface, etc. In this study, we used the

combination of cloud services platform to implement the prototype development approach and each sys-

tem function was treated as a component. Each component has its own attributes, operations, relation-

ships and reuse class. Component functions includes sending e-mail, storing messages, attach files and

others.

Operations are the functions of system elements and have the corresponding basic specifications but

Journal of Computers Vol. 27, No. 4, 2016

115

each of them does not have the real entity. Some of the properties of a component is the name, color, size

and other characteristics. Hierarchical relationship with other elements contains separated class relations

and class inheritance relationship.

4.2 Situational Setting

About the arrangement of situational setting, the relationship between the object and the event will be

represented by the way of the finite state machine. The object selected by the user will transfer from the

current state to the next state. There is a dynamic link between two states, which is the produced event.

Each object will inherit the characteristics of the previous component by the concept of component reuse

and adding or deleting attributes are also available to the new component. The relationship of component

reuse is shown in Fig. 4.

Start

Component

New

Sub

Component Relation

linking

EventAdd item Create

Create

,

Fig.4. Component reuse

4.3 Scenario storyboard in cloud development

In the past, we had to understand the usage of different API (application programming interface) and

apply the system development process and project correspondence when engineer needed to establish a

set of software applications since they must be converted to the corresponding event in system functions.

Concerning about the software development, the delay time will result in higher investment costs since

new developers need to understand many learning tools before he is going to modify the system.

In this study, we developed an email system in cloud like Heroku system by the storyboard concept.

We tried to work with the requirement for developing capabilities include a script for a story. The story

of the script of the system operation functions was scheduled and established research on component

testing part. The system development through a script is like to select in Lego model. Each component

automatically cascaded its corresponding API. It adapted NoSQL (not only structured query language)

data form in the database setting. Developers do not need to gradually develop by the basic system. They

directly construct the system through the cloud service PaaS (platform as a service) platform, combined

with the script storyboard. Each individual element can be built by component reuse.

We show our studies on e-mail service developing items in Table 1. In order to send and receive e-

mail functions. It commonly illustrates how to use these principles to quickly complete the development

functions. The first one is the sending e-mail functionality, although there are many available functions in

the development process in accordance with the instructions in Heroku platform API add-on. Optional

components can be provided by different developers, like receiving e-mail function. For receiving e-mail,

one must include more steps of the basis of cloud based system to complete the function. Heroku did not

include a system function for user to build an e-mail service solution. For the DNS MX records, devel-

opment must rely on other mail service providers to let the letter send to Heroku platform. Furthermore,

we used the platform for handling incoming mail, and defined all function to story items. When users can

select different developing function according to their own needs, the creation of the web e-mail service

systems will be done. Since they choose component on the storyboard about e-mail items in the system,

the system will automatically create the corresponding web code, database system, and functions embed-

Program Design in Cloud Platform Based on Prototype Development Approach

116

ded in the system that they tried to develop. Table 1 shows the corresponding component architecture of

mail service developing items.

Table1. Mail service developing items

Story board items Reuse component * Cloud based API

Sending email 3rd written libraries for sending mail under Heroku

platform

Heroku add-ons

Mail bonding provided by mail service vendor ISP such as Google mail

Binding to Heroku platform by 3rd written libraries Heroku add-ons

Email receiving

Display status Heroku components

Note. *: defend the component on the cloud systems helping with recuse in different story board development.

5 Case Study

In the proposed result, we applied the cloud platform from Heroku cloud system to perform our case

study. It is a new platform from salesforce solution. In cloud platforms, users need to code a program to

integrate different component work together, like the System Integration Company, but from different

requirements, if we can build up all of system’s component, we can ease to reuse different components to

build up the prototype system in software system development market. In the meanwhile, developed the

component of the reuse architecture for software engineering life cycle is much important in cloud sys-

tems.

We built the email service for the case study in this research. Traditionally, we knew that SMTP (Sim-

ple Mail Transfer Protocol) and POP3 server can provide the email services. However, one cannot im-

plement the service by installing the whole environment of email server in the cloud platform. In this

case, we showed how to design a prototype development environment base on storyboard process to pro-

vide email service.

We set up the composition of design elements which can be discovered in a cloud environment and

used repeatedly. After the user surveyed and confirmed all elements in the website, it must be ready for

the email sending and receiving functions. So, in development workflow, we needed to build up different

components, like sending mail, receiving mail and bonding for mail address. About sending e-mail func-

tion, we can use add-ons items from Heroku platform since there are some components can be reuse (see

Fig. 5).

Fig. 5. Case study architecture

In general, the function can be used to send a letter by the following two ways: (1) SMTP, mode (2)

API mode. If you are using the former mode, it is borrowed from Heroku platform as intermediary (mid-

dleware). As long as the specified SMTP server connection status and related information are given, you

can use different provider’s service to send an e-mail message without any coding process. From system

program developer’s point of view, deals with sending e-mail process was the main goal but not coding.

We developed the components for a general purpose on mailing treatment. The following program frag-

Journal of Computers Vol. 27, No. 4, 2016

117

ment was based on Python/Django architecture to send a letter written in the Heroku platform.

───────────

 from email.mime.text import MIMEText

 sent = request.POST['sentemail']

 subj = request.POST['title'].encode('utf-8')

 sentHtml = request.POST['mailcnt'].encode('utf-8')

 import smtplib

 smtp = smtplib.SMTP(“smtp.mailgun.org”, 587)

 smtp.login('xxx.mailgun.org', 'password_from_mailgun')

 # typical values for text_subtype are plain, html, xml

 text_subtype = 'html'

 msg = MIMEText(sentHtml, text_subtype)

 msg['Subject']=subj

 msg['From']=abc@abc.com'

 msg['To']=sent

 msg = smtp.sendmail(abc@abc.com', sent, msg.as_string())

 smtp.quit（）

───────────

The following settings are the SMTP server parameters.

───────────

#using cloud mail server : sendgrid

EMAIL_HOST = 'smtp.sendgrid.net'

EMAIL_HOST_USER = 'appxxxx@heroku.com'

EMAIL_HOST_PASSWORD = 'yourpasswd'

EMAIL_PORT = 587

EMAIL_USE_TLS = True

───────────

In the API mode. We use the API approach in general, you can communicate directly with the host, so

the effectiveness of the way through the SMTP server than a lot better. To find relevant information and

API example of how to write a program, in this case, we try to design using API design the component

can be reuse in other prototype system. Also, before write processing program, to the correlation function

hall (e.g. API Library) fitted to their environment. Various programs language and development frame-

work can be used, there are different installation methods, refer to the documentation and installation

instructions on the official website. We use Python / Django framework, so need to match the corre-

sponding system API library installed.

The following example is the use of mandrill API Library, for example, the user filled contents of the

letter sent directly through the API.

───────────

import mandrill

mandrill_client = mandrill.Mandrill('API key')

message={}

message['from_name']= 'morgan chang'

to=[]

toDir = {}

toDir['email']=request.POST['sentemail']

toDir['name']= ‘Recipient Name'

to.append(toDir)

message['to']=to

subj = request.POST['title'].encode('utf-8')

message['subject'] = subj

sentHtml = request.POST['mailcnt'].encode('utf-8')

message['html'] = sentHtml

message['from_email']=' receiver mail address'

Program Design in Cloud Platform Based on Prototype Development Approach

118

result = mandrill_client.messages.send(message=message)

───────────

The testing messages collected on the web server is shown in Fig. 6 and Fig. 7

Fig. 6. Dashboard transition to UI information system from user define

Fig. 7. The prototype from cloud platform mailbox solution

6 Conclusion

Due to the market requirement will largely affected the system development time, reduce development

time in system will also reduce the overall development cost and improve product value. Therefore, in

order to shorten the development process, we use the prototype development methods combined with

cloud applications form different companies providing service application component to integrate the

system development. A UI-Driven approach was applied on the prototyping method for software system

development. The proposed methodology is illustrated with the help of a case study on the Heroku cloud

platform in this article. We proposed the program design on the applied prototyping development of the

case study to show how to deploy cloud system of Heroku cloud platform and in addition to shorten the

development time for developers and customers in communications. The prototype can be developed

through a storyboard and UI-Driven approach to provide a more accurate and fast system development

process.

Acknowledgement

This paper was supported by a grant from National Science Council MOST 104-2221-E-364-002 and

Hsuan Chuang University.

References

[1] M. Almorsy, J. Grundy, R. Sadus, W. van Straten, D.G. Barnes, O. Kaluza, A suite of domain-specific visual languages for

scientific software application modelling, in: Proc. Visual Languages and Human-Centric Computing (VL/HCC), 2013

IEEE Symposium, 2013.

Journal of Computers Vol. 27, No. 4, 2016

119

[2] E. Guzman, Visualizing emotions in software development projects software visualization (VISSOFT), in: Proc. 2013 First

IEEE Working Conference, 2013.

[3] T. Mastelic, I. Brandic, A. Garcia, Towards uniform management of cloud services by applying model-driven development,

in: Proc. Computer Software and Applications Conference (COMPSAC), 2014.

[4] M. Szlenk, Formal semantics and reasoning about UML class diagram, in: Proc. International Conference on Dependability

of Computer Systems, 2006.

[5] T. Clark, A. Evans, P. Sammut, J. Willans, Applied Metamodelling: A Foundation for Language Driven Development, Xac-

tium, London, 2004.

[6] C. Larman, Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and the Unified Process,

Prentice Hall, Englewood Cliffs, NJ, 2001.

[7] A.B.H. Ali., F. Boufares, A. Abdellatif, Checking constraints consistency in UML class diagrams, Information and Commu-

nication Technologies 2(2006) 3599-3604.

[8] J.S. Jwo, Y. C. Cheng, Pseudo software: a new concept for iterative requirement development and validation, in: Proc. Soft-

ware Engineering Conference, 2007.

[9] M. Lindvall, P. Donzelli, S. Asgari, V. Basili, Towards reusable measurement patterns, in: Proc. Software Metrics, 2005.

[10] N. Maiden, User requirements and system requirements, Software 25(2)(2008) 90-91.

[11] L.W. Bezanson, L.G. Fields, D.O. Knight, M.J. Merritt, B.R. Millard, D.S. Miller., P.R. Rony, Engineering support system

user requirements, Micro 5(5)(1985) 36-51.

[12] B.J. Zirger, J.L. Hartley, The effect of acceleration techniques on product development time, IEEE Transactions on Engi-

neering Management 43(2)(1996) 143-152.

[13] S. Frey, F. Fittkau, W Hasselbring, Search-based genetic optimization for deployment and reconfiguration of software in

the cloud. In: Proc. of the 35th International Conference on Software Engineering (ICSE 2013), 2013.

[14] J. O’Dell, Top 10 cloud-based tools for developers. 〈http://venturebeat.com/2013/08/01/the-top-10-cloud-based-tools-for-

developers/〉, 2013.

[15] B. Boehm, Requirements that handle IKIWISI, COTS, and rapid change, Computer 33(7)(2000) 99-102.

Program Design in Cloud Platform Based on Prototype Development Approach

120

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

