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Abstract. Nowadays, many large-scale scientific and engineering applications are usually con-

structed as dependent task graphs, or called workflows, for describing complex interrelated 

computation and communication among constituent software modules or programs. Therefore, 

scheduling workflows efficiently becomes an important issue in modern parallel computing en-

vironments, such as cluster, grid, and cloud. Task clustering is one of the major categories of 

task graph scheduling approaches, aiming at reducing inter-task communication costs. In this 

paper, we propose three new task clustering approaches, Critical Path Clustering Heuristic 

(CPCH), Larger Edge First Heuristic (LEFH), and Critical Child First Heuristic (CCFH), which 

are expected to achieve better task graph execution performance by trying to minimize the com-

munication costs along execution paths. The proposed schemes were evaluated with a series of 

simulation experiments and compared to a typical clustering based task graph scheduling ap-

proach in the literature. The experimental results indicate that the proposed CPCH, LEFH, and 

CCFH heuristics outperform the typical scheme significantly, up to 21% performance improve-

ment in terms of average makespan for workflows of large Communication-to-Computation Ra-

tio (CCR). 

Keywords: execution time reduction, task clustering, workflow scheduling 

1 Introduction 

As modern high-performance computing applications are becoming even more complex and computa-

tion-demanding, many large-scale scientific and engineering applications are now usually constructed as 

dependent task graphs, or called workflows, due to large amounts of interrelated computation and com-

munication, where different tasks within a task graph might execute distinct programs and have data or 

execution dependency among them [1-2]. Most workflow applications can be represented by Directed 

Acyclic Graphs (DAG) for describing inter-task dependencies [3]. Fig. 1 is a workflow example of DAG 

structure. Each node represents a task which executes a specific program. The number next to each node 

means the required execution time of the task. Each edge represents the inter-task dependency. The num-

ber next to an edge means the inter-task data transmission cost. A workflow scheduler has to schedule 

and allocate each task according to the dependencies specified in the workflow definition. 

However, in practice, a workflow application is usually not developed by drawing an arbitrary DAG, 

but instead developed with some kind of tools based on a specific programing model, e.g. YAWL [6] and 

BPEL [7]. The underlying programming model usually has some characteristics that would restrict the set of 

DAGs that can be developed with it. Therefore, most workflow applications have more regular structures 

than the general DAG in Fig. 1. As discussed in [4-5], fork-join is a common and major construct widely 

appearing in the restricted DAG structures of many real workflow applications developed based on popu 
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Fig. 1. A workflow example of DAG structure 

lar workflow programming models, e.g. YAWL [6] and BPEL [7]. Fig. 2 is an example of such fork-join 

DAG-based workflows consisting of a series of sequence patterns and fork-join structures. A sequence 

pattern is the kind of paths in a DAG where each node has exactly one child except the last node. The set 

of tasks in a sequence pattern have to be executed sequentially. For example, tasks {1, 2}, tasks {5, 6}, 

and tasks {10, 11} are typical sequence patterns in Fig. 2. A fork-join structure in a DAG is usually used 

to represent potential execution parallelism. It starts with a fork node and ends with a join node, contain-

ing several sequence patterns between these two nodes. A fork node has more than one child and a join 

node has more than one parent. In a fork-join structure, the number of children of the fork node is equiva-

lent to the amount of parents of the join node. The set of sequence patterns in a fork-join structure can be 

executed in parallel if there are enough computational resources. In Fig. 2, there are two fork-join struc-

tures: tasks {2, 3, 4, 5} and tasks {6, 7, 8, 9, 10}. Nodes 2 and 6 are fork nodes and nodes 5 and 10 are 

join nodes. Tasks 3 and 4 represent potential execution parallelism in the first fork-join structure. Fork 

and join nodes usually are the intersections of sequence patterns and fork-join structures, and participate 

in both a sequence pattern and a fork-join structure. For example, node 2, a fork node, is the intersection 

of the sequence pattern {1, 2} and the fork-join structure {2, 3, 4, 5}, while node 10, a join node, is the 

intersection of the fork-join structure {6, 7, 8, 9, 10} and the sequence pattern {10, 11}. Since fork-join 

DAG captures the underlying structure of most real workflow applications [4][5], in this paper we focus 

on the scheduling issues of fork-join DAG-based workflows. 

 

Fig.2. An example of fork-join DAG-based workflows 

The time period from the submission of a workflow to its completion is usually called makespan, 

which is a common criterion used to compare the performance of different workflow scheduling algo-

rithms. Apparently, a shorter makespan indicates a better execution performance. In this paper, we use 

the average makespan of a set of different workflows to measure and compare the performance of various 

scheduling algorithms under study. 

Task graph scheduling in parallel and distributed environments, in general, is a NP-complete problem 

[8-9]. Therefore, many heuristic methods have been proposed [3, 10-14]. Heuristic-based task graph 

scheduling algorithms usually can be classified into three types: (1) list-based, (2) clustering-based, and 
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(3) duplication-based. Minimizing inter-task communication costs plays an important role in producing 

better workflow execution schedules. Clustering-based heuristics were shown to be more effective than 

list-based heuristics for minimizing inter-task communication costs and thus reducing workflow execu-

tion makespan in many cases, especially for workflows of fork-join DAG structure [4, 19]. Although 

duplication-based heuristics also have the advantage of reducing inter-task communication costs, they are 

less effective than others when considering modern shared parallel computing platforms, e.g. cluster, grid, 

and cloud. This is because task duplication consumes extra computational resources. Reduction of inter-

task communication is achieved at the cost of increased computation workload induced by task duplica-

tion. For single workflow scheduling, the duplicated tasks usually utilize the resources which would be 

idle otherwise, and therefore would not hurt the start time of other tasks. However, for modern shared 

parallel computing platforms, e.g. cluster, grid, and cloud, where it’s common that several workflows are 

running simultaneously, the duplicated tasks of one workflow would compete with tasks of other work-

flows for resources, and thus delay the finish time of workflows. Since clustering-based approaches are 

superior to list-based and duplication-based methods in most cases, in this paper we focus on the study of 

clustering-based scheduling approaches for fork-join DAG-based workflows. 

Among various clustering-based task graph scheduling methods [4, 15-19], Path Clustering Heuristic 

(PCH) is a typical one and was developed for dealing with fork-join based task graphs specifically, which 

has been shown effective in [4, 19]. PCH partitions a task graph of fork-join structure, e.g. Fig. 2, into 

several task groups first, and then allocates these task groups onto processors. PCH builds a task group 

by performing a depth-first search on the task graph until reaching a task ts which has an unscheduled 

predecessor. The task ts is not included in the current task group. Therefore, a join node with several 

predecessors will always be clustered with the last predecessor reaching it. However, such kind of clus-

tering doesn’t always minimize critical communication costs for workflow execution. In this paper, we 

propose three new task clustering approaches, Critical Path Clustering Heuristic (CPCH), Larger Edge 

First Heuristic (LEFH), and Critical Child First Heuristic (CCFH), which are expected to achieve better 

workflow execution performance than existing methods by trying to minimize the communication costs 

along execution paths. The proposed task clustering approaches were evaluated through a series of simu-

lation experiments. Experimental results indicate that the proposed approaches outperform the previous 

PCH scheme significantly, up to 21% performance improvement in terms of average makespan for work-

flows of large Communication-to-Computation Ratio (CCR). 

The remainder of this paper is organized as follows. Section 2 discusses related works on task graph 

scheduling, especially the clustering heuristics. Section 3 describes and discusses our CPCH, LEFH, and 

CCFH approaches. Section 4 evaluates and compares our three approaches with PCH through a series of 

simulation experiments. Section 5 concludes this paper. 

2 Related Work 

Most heuristic-based workflow scheduling algorithms usually can be classified into three types: (1) list-

based, (2) clustering-based, and (3) duplication-based. List-based heuristic approaches [20-23] first as-

sign a priority to each task within a workflow and then maintain a list of all unscheduled tasks according 

to the decreasing order of their priority values. The scheduler repeatedly schedules the tasks onto proces-

sors based on the list. How to minimize communication cost is an important issue for many kinds of par-

allel job scheduling systems [24]. For workflows, the main idea of clustering-based scheduling algo-

rithms [15-18, 25] is to reduce communication delay by clustering the tasks of heavy communication into 

the same group and then scheduling an entire task group onto the same processor. Duplication-based 

heuristic methods [26-29] duplicate a task on the set of processors where its successors run in order to 

minimize inter-task communication costs and thus improve the overall makespan of an entire workflow. 

Clustering-based heuristics have been shown to be more effective than other heuristics in many cases, 

especially for workflows of fork-join DAG structure [4, 19]. Therefore, in this paper we focus on the 

study of clustering-based approaches. Several task clustering approaches for workflow scheduling have 

been proposed in the literature [25], including linear clustering [30-31], single edge clustering [31-32], 

list scheduling as clustering [17-18], and Path Clustering Heuristic (PCH) [4, 19]. The linear clustering 

algorithm [30-31] repeats to find the critical path among the tasks not yet been clustered into any group. 

In linear clustering only dependent tasks would be clustered into the same group [16, 25]. The main part 

of the single edge clustering algorithm [31-32] sorts edges in decreasing order of their weights. The 
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weights then become the priority of grouping. For each edge, the clustering algorithm checks if zeroing 

the edge would lead to a new schedule shorter or equal to the original schedule. If yes, the two clusters 

connected by this edge are merged into a single cluster. This clustering approach has high computational 

complexity. The list scheduling as clustering algorithm [17-18] is actually an adapted list scheduling 

approach. In each step of the algorithm, it deals with a node and considers all the edges pointing to that 

node for zeroing. 

Path Clustering Heuristic (PCH) was proposed for scheduling fork-join DAG-based workflows and 

has been shown to be effective in [4, 19]. PCH adopts a two-step framework for workflow scheduling. At 

the first step a clustering scheme is used to partition a workflow into several task groups. Then, in the 

second step a heuristic is applied to allocate these task groups onto processors. In this paper, we adopt the 

same scheduling framework as PCH and develop several new task clustering schemes to further improve 

workflow execution performance. 

3 Task Clustering Approaches  

In this paper, we focus on the workflows containing fork-join structures, which can be represented by a 

Directed Acyclic Graph (DAG), G (V, E, w, c), where:  

‧ V is the set of tasks, tn ∈ V, |V| = number of tasks; 

‧ E is the set of directed edges, en ∈  E, |E| = number of edges; 

‧ w is computation cost of a task, e.g. wi is the computation cost of task i; 

‧ c is communication cost of an edge, e.g. ci,j is the communication cost between tasks i and j. 

Each workflow starts at one node, named the entry node, and finishes at one node, named the exit node. 

Each node in the workflow is a task representing a specific job or program to execute and each edge 

represents the data dependence between two tasks. Each task starts its execution only after receiving all 

data from its parent tasks. 

The following defines several task attributes which will be used in describing the workflow scheduling 

algorithms: 

‧ Priority:  
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 representing the earliest time that task i is ready for execution 

‧ Earliest finish time: 

 

i i i
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 representing the earliest time that task i can finish its execution. 

Workflow scheduling can be viewed as the spatial and temporal assignment of the constituent tasks to 

processors. The spatial assignment is the allocation of tasks to the processors. The temporal assignment is 

the attribution of a start time to each task. It is usually assumed that data transfer between two tasks as-

signed to the same processor incurs no communication costs when discussing workflow scheduling [25]. 

A schedule is feasible if and only if all nodes n and edges e in a workflow comply with the following 

conditions 1 and 2 [25]. 

‧ Condition 1: exclusive processor allocation 

 For any two nodes, ni and nj, allocated to the same processor, either ts(ni) < tf(ni) <= ts(nj) < tf(nj) or 

ts(nj) < tf(nj) <= ts(ni) < tf(ni), where ts is the start time of a task and tf is its finish time. 

‧ Condition 2: precedence constraint 
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 For any two nodes, ni and nj where ni is the parent of ni, ts(nj) >= tf(ni) if ni and nj are allocated to the 

same processor, and ts(nj) >= tf(ni) + ci,j if ni and nj are allocated to different processors. 

The required execution time of a workflow on a parallel computing platform is defined to be its ma-

kespan. In this paper, we deal with the workflow scheduling problem which is to determine a feasible 

schedule for a specific workflow on a particular parallel computing platform with the aim of achieving an 

as-short-as-possible makespan. 

Typical clustering-based workflow scheduling approaches, e.g. PCH [4, 5], usually adopt an iterative 

two-step framework as shown in Algorithm 1. The first step within the iterative procedure, i.e. line 3, 

adopts a particular task clustering scheme to find a group of unscheduled tasks, which varies in different 

clustering-based methods. Then, in the second step, i.e. line 4, a heuristic is applied to allocate the task 

group onto a processor based on some performance criterion, which is usually the Earliest Finish Time 

(EFT) of the task group in most methods. In this paper, we develop three new task clustering heuristics 

for clustering-based workflow scheduling approaches to improve workflow execution performance, i.e. 

makespan. 

 

Algorithm 1: Clustering-based workflow scheduling 

Input: a DAG-based workflow to be scheduled on a parallel platform for execution 

Output: an schedule arranging the workflow’s execution on the parallel platform 

1. Compute all tasks’ attributes 

2. while there are unscheduled nodes do 

3.     group ⇐  get_next_task_group() 

4.     allocate(group) 

5. end while 

6. return the workflow’s execution schedule 

 

Algorithm 2 in the following presents the scheme used in PCH to cluster a set of tasks into a task 

group. PCH repeatedly applies the scheme to build task groups of a workflow until no unclustered task is 

left. The clustering process starts with n, the unclustered node with highest priority, as described at line 2. 

Line 3 includes the node n as the first node of the new cluster. It then performs a depth-first search start-

ing from node n until reaching a task which has an unclustered predecessor, as described through line 4 

to line 12. Line 13 returns the task group built. 

 

Algorithm 2 Get_next_task_group for PCH 

Input: the set of tasks in a workflow, which are not included in any task group yet 

Output: a new task group produced by the task clustering heuristic 

1. group ←φ 

2. n ← unscheduled node with highest Priority 

3. group ← group ∪ n 

4. while (n has unscheduled successors) do 

5.       nsucc ← successori of n with highest Pi＋ESTi  

6.        if (nsucc has an unscheduled predecessor) 

7.       break; 

8.    else 

9.          group ← group ∪ nsucc 

10.          n ← nsucc 

11.      end if 

12. end while 

13. return group 

 

Fig. 3 is an example where PCH builds 4 task groups: {1, 2, 3, 6}, {4, 7}, {5, 9}, and {8, 10, 11} first. 

Then, the computation cost of each task group can be computed based on the computation cost of each 

task within the group, and the communication costs between different task groups can be calculated ac-

cording to the communication cost on corresponding edges. After that, PCH allocates the task groups 

onto processors. The lower part of Fig. 3 shows an example where PCH allocates the task groups onto 3 
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processors. The makespan for this workflow execution is 180. 
 

 

Fig. 3. Example of task clustering and scheduling in PCH 

Looking at the above example carefully, we can find that PCH does not always produce the best task 

clustering results. For example, in Fig. 3, it might be better if node 6 and node 9 are put into the same 

group for communication cost minimization since node 6 has a larger computation cost than node 5 and 

is therefore on the critical path. Zeroing the communication cost between node 6 and node 9 can effec-

tively shorten the length of critical path and hence reduce the makespan of the entire workflow. The 

above observation motivated our work in this paper to develop new task clustering schemes to further 

improve workflow execution performance. The following subsections presents three new task clustering 

heuristics which differ in how they handle fork nodes or join nodes. 

3.1 A Critical Path Clustering Heuristic 

In PCH [4][5], a join node with several predecessors will always be clustered with the predecessor which 

is the last one to reach it. However, such a clustering approach doesn’t always minimize the communica-

tion costs during workflow execution and might lead to a degraded performance. In the following, we 

propose a Critical Path Clustering Heuristic (CPCH) for task clustering, which tries to minimize inter-

task communication costs by clustering a join node with the predecessor on the longest path going 

through it. 

Fig. 4 is an example illustrating how CPCH works. Taking node 9 for example, it would be clustered 

with node 5, as shown in Fig. 3, when using the PCH algorithm [4]. On the other hand, since the longest 

path going through node 9 is {1, 2, 3, 6, 9}, our CPCH chooses to cluster node 9 with node 6. Finally, 

CPCH partitions the workflow into 4 task groups: {1, 2, 3, 6, 9, 11}, {4, 7}, {5}, {8, 9} and leads to a 

makespan of 165, shorter than the schedule produced by PCH in Fig. 3. 
 

 

Fig. 4. An example of CPCH 
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Algorithm 3 describes the CPCH scheme in details. The clustering process starts with n, the unsched-

uled node with highest priority, as described at line 1. For each successor of n, lines 4 to 10 check 

whether n is on the longest path from the entry node to it. For those successors whose longest paths do 

not go through n, their priority values, Li, are set to -1 for excluding them from current task group. If no 

successors’ longest path goes through n, the task clustering process stops, as described at lines 11 to 12, 

and the task group built so far is returned at line 19. Otherwise, the successor on the longest path, with 

the largest Li, will be included in current task group and the task clustering process repeats to explore the 

successors of the new node, as described at lines 13 to 17. 

 

Algorithm 3 Get_next_task_group_for CPCH 

Input: the set of tasks in a workflow, which are not included in any task group yet 

Output: a new task group produced by the task clustering heuristic 

1. n ← the unscheduled node with highest priority 

2. group ← n 

3. while (n has unscheduled successors) do 

4.      for each successor i of n do 

5.          if  n is on the longest path from the entry node to successor i then 

6.              Li = ESTi + Pi 

7.          else 

8.              Li = -1 

9.          end if 

10.       end for 

11.       if there exists no Li > 0 then  

12.           break 

13.       else 

14.           nsucc ← successor i of n with the largest Li 

15.          end if 

16.          group ← group∪nsucc 

17.         n ← nsucc  

18. end while 

19. return group 

3.2 Larger Edge First Heuristic 

The above CPCH approach focuses on how to cluster join nodes and adopts the same clustering scheme 

as PCH to deal with fork nodes, where the child with the largest ESTi + Pi will be included into the task 

group. Sometimes the child with the largest communication cost to the fork node will not be included 

into the task group because it has a smaller Pi. In this section we present a new task clustering approach, 

called Larger Edge First Heuristic (LEFH), which adopts a greedy method to deal with the fork node, 

always clustering a fork node and the child with the largest communication cost to it into the same task 

group. 

Fig. 5 is an example for illustrating the potential advantage of LEFH. Fig. 5 (a) shows the task groups 

and the resultant schedule produced by CPCH and Fig. 5 (b) is for LEFH. Taking node 3 for example, it 

would be clustered with node 5 when using CPCH. On the other hand, since node 3 has a larger commu-

nication cost to node 6 than to node 5, LEFH chooses to cluster node 3 with node 6. Finally, LEFH gen-

erates 4 task groups: {1, 2, 4, 8}, {3, 6}, {5, 9}, {7, 10, 11} and leads to a makespan of 125, shorter than 

the schedule produced by CPCH in Fig. 5 (a). 

Algorithm 4 in the following describes the LEFH scheme in details. The difference between LEFH and 

CPCH lies in line 6 where Li is set to the communication cost between node n and its successor i. This 

arrangement allows a fork node to be clustered with the successor with the largest communication cost to 

it, while retaining the advantage of CPCH that clusters a join node with the parent on the longest path 

going through it. 
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Fig. 5. An example illustrating the advantage of LEFH; (a) CPCH; (b) LEFH 

Algorithm 4 Get_next_task_group for LEFH 

Input: the set of tasks in a workflow, which are not included in any task group yet 

Output: a new task group produced by the task clustering heuristic 

1. n ← the unscheduled node with highest priority 

2. group ← n 

3. while (n has unscheduled successors) do 

4.      for each successor i of n do 

5.          if  n is on the longest path from the entry node to successor i then 

6.              Li = cn,i //the communication cost between node n and its successor i 

7.          else 

8.              Li = -1 

9.          end if 

10.       end for 

11.       if there exists no Li > 0 then  

12.           break 

13.       else 

14.           nsucc ← successor i of n with the largest Li 

15.          end if 

16.          group ← group∪nsucc 

17.         n ← nsucc  

18. end while 

19. return group 

3.3 Critical Child First Heuristic 

This section presents another new task clustering approach, called Critical Child First Heuristic (CCFH), 

which tries to make a compromise between PCH and LEFH when dealing with the fork node. CCFH 

takes not only the communication cost but also the computation cost into consideration when evaluating 

each child of a fork node. It clusters a fork node with the child of the largest total cost of computation and 

communication to it. The algorithm of CCFH is similar to Algorithm 3 while line 6 is changed to Li = 

ESTi + wi.  

Fig. 6 is an example comparing LEFH and CCFH for illustrating the potential benefits of CCFH. Tak-

ing node 3 for example, it is clustered with node 6 in LEFH because node 3 has a larger communication 

cost to node 6 than to node 5. On the other hand, node 3 is clustered with node 5 when using CCFH since 

node 5 has a larger total cost of computation and communication than node 6. Finally, CCFH generates 4 

task groups, {1, 2, 4, 7}, {3, 5, 9, 11}, {6}, {8, 10}, and leads to a makespan of 147, shorter than the 

schedule produced by LEFH. 
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Fig. 6. An example illustrating the advantage of CCFH; (a) LEFH; (b) CCFH 

4 Performance Evaluation 

This section presents a series of simulation experiments which evaluate the proposed task clustering ap-

proaches in terms of average makespan. The makespan measures the time period between the start and 

completion of a workflow. We compare the proposed CPCH, LEFH, and CCFH with the PCH scheme 

[4]. 

We implemented a DAG generator to produce synthetic workflows of fork-join structures for the fol-

lowing simulation experiments. The generated workflows can be broadly classified into two types: sin-

gle-level fork-join, e.g. Fig. 6, and double-level fork-join, e.g. Fig. 2. Each workflow contains one entry 

node and one exit node, and at each level there might be three to six fork-join structures randomly. The 

DAG generator can generate workflows with different CCR values [25]: 0.1, 1, and 10. It assigns a ran-

dom weight to each node and edge according to the specified CCR value. The computing resources for 

executing the workflows are assumed to be a speed-homogeneous parallel system. Each experiment was 

conducted with 100 different synthetic workflows and the average makespan was calculated. 
 

Fig. 7 and Fig. 8 show the experimental results of the single-level and double-level fork-join work-

flows, respectively, under different CCR values. The performance shown in the figures is the improve-

ment ratio compared to PCH. It is clear that all the three proposed approaches achieve better performance, 

in term of average makespan, than PCH since they adopt an improved task clustering approach to dealing 

with the join nodes. The performance improvement ratio rises as CCR increases, up to 21% performance 

improvement. The three proposed approaches, CPCH, LEFH, and CCFH, differ mainly in how they han-

dle the fork nodes. CPCH outperforms LEFH and CCFH when CCR is small, e.g. 0.1 in the figures. This 

is because the advantage of LEFH and CCFH based on zeroing the larger communication cost between a 

fork node and its successors becomes less significant when CCR is low, only small communication costs 

being saved. This is also revealed in that LEFH performs even worse than CCFH for low CCR values 

since LEFH only considers the communication costs while CCFH also takes successors’ computation 

costs into account. On the other hand, LEFH and CCFH achieve better performance than CPCH for me-

dium and large CCR values, e.g. 1 and 10 in the figures. Moreover, LEFH performs the best for large 

CCR value, e.g. 10 in the figures, since it always zeroes the largest communication cost between a fork 

node and its successors and this advantage is amplified with large CCR values. 

In the following, we evaluate the proposed approaches with workflows of different branch lengths in 

the fork-join structure, where the CCR value is 1. Fig. 9 and Fig. 10 show the performance results of 

single-level and double-level fork-join workflows, respectively. The experimental results show that the 

proposed CPCH, LEFH and CCFH approaches outperform PCH consistently through different branch 

lengths. 

In the following, we evaluate the proposed approaches with the workflow structure of a real-world ap-

plication, LIGO [33]. The CCR value in this experiment is low. The workflow structure of LIGO is 

shown in Fig. 11. The experimental results in Fig. 12 show that the proposed CPCH, LEFH, and CCFH 

approaches outperform PCH, achieving more than 2% performance improvement in terms of average 

makespan, similar to the cases of CCR=0.1 in Fig. 8 and Fig. 9. 
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Fig. 7. Performance results of single-level fork-join workflows 

 

Fig. 8. Performance results of double-level fork-join workflows 

 

Fig. 9. Performance with different branch lengths for single-level fork-join structure 
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Fig. 10. Performance with different branch lengths for double-level fork-join structure 

 

 

Fig. 11. Workflow structure of LIGO 

 

 

Fig. 12. Performance results for LIGO 

In summary, the above experimental results, based on both synthetic workflows and a real workflow 

application, show that all our three proposed approaches outperform PCH [4] in a variety of different 

scenarios, including different levels of fork-join structure, CCR, and branch lengths. The relative strength 

of the three proposed approaches varies in different scenarios. In general, the performance improvement 

ratio grows as CCR increases. For smaller CCR, CPCH performs the best, while LEFH outperforms oth-

ers for large CCR value, e.g. 10 in the figures, since it zeroes the largest communication cost between a 

fork node and its successors. 
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5 Conclusions  

Nowadays, more and more large-scale scientific and engineering applications are usually constructed as 

workflows due to complex and large amounts of interrelated computation and communication. Therefore, 

scheduling workflow efficiently becomes an important issue in modern parallel computing environments. 

Clustering-based approaches are one of the major types of workflow scheduling methods, aiming at re-

ducing inter-task communication costs. In this paper, we propose three new task clustering approaches, 

Critical Path Clustering Heuristic (CPCH), Larger Edge First Heuristic (LEFH), and Critical Child First 

Heuristic (CCFH), to scheduling workflows of fork-join structure, which have been shown to be the 

common structure of many workflow applications [4-5], in parallel systems. The three task clustering 

heuristics differ in how they handle fork nodes or join nodes. CPCH minimizes the inter-task communi-

cation cost by clustering a join node with the ancestor on the longest path going through it. LEFH adopts 

a greedy heuristic to cluster a fork node with the child having the largest communication cost from it. 

CCFH makes a compromise between PCH [4] and LEFH by clustering a fork node with the child of the 

largest cost of both communication and computation. 

The proposed task clustering approaches have been evaluated with a series of simulation experiments and 

compared to PCH [4]. The experimental results indicate that all the three proposed approaches outper-

form PCH consistently through different CCR values. The performance improvement becomes even lar-

ger as CCR increases, up to 21% performance improvement when CCR is 10. More specifically, CPCH 

performs the best for small CCR, e.g. 0.1, CCFH achieves the best performance with medium CCR, e.g. 

1, and LEFH outperforms the others when CCR is high, e.g. 10. This indicates that task clustering in 

workflow scheduling is a complex issue and users should carefully select an appropriate method accord-

ing to the properties of workflow applications. 
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