
Journal of Computers Vol. 28, No. 1, 2017, pp. 43-56

doi:10.3966/199115592017022801004

43

Task Clustering Heuristics for Efficient Execution Time

Reduction in Workflow Scheduling

Kuo-Chan Huang1, Di-Syuan Gu1, Hsiao-Ching Liu1, and Hsi-Ya Chang2

1 Department of Computer Science, National Taichung University of Education

Taichung 403, Taiwan, ROC

kchuang@mail.ntcu.edu.tw, ejeu67195@gmail.com, unlimited_19800830@yahoo.com.tw

2 National Center for High-Performance Computing

Hsinchu 300, Taiwan, ROC

9203117@nchc.narl.org.tw

Received 10 June 2015; Revised 24 August 2015; Accepted 14 September 2015

Abstract. Nowadays, many large-scale scientific and engineering applications are usually con-

structed as dependent task graphs, or called workflows, for describing complex interrelated

computation and communication among constituent software modules or programs. Therefore,

scheduling workflows efficiently becomes an important issue in modern parallel computing en-

vironments, such as cluster, grid, and cloud. Task clustering is one of the major categories of

task graph scheduling approaches, aiming at reducing inter-task communication costs. In this

paper, we propose three new task clustering approaches, Critical Path Clustering Heuristic

(CPCH), Larger Edge First Heuristic (LEFH), and Critical Child First Heuristic (CCFH), which

are expected to achieve better task graph execution performance by trying to minimize the com-

munication costs along execution paths. The proposed schemes were evaluated with a series of

simulation experiments and compared to a typical clustering based task graph scheduling ap-

proach in the literature. The experimental results indicate that the proposed CPCH, LEFH, and

CCFH heuristics outperform the typical scheme significantly, up to 21% performance improve-

ment in terms of average makespan for workflows of large Communication-to-Computation Ra-

tio (CCR).

Keywords: execution time reduction, task clustering, workflow scheduling

1 Introduction

As modern high-performance computing applications are becoming even more complex and computa-

tion-demanding, many large-scale scientific and engineering applications are now usually constructed as

dependent task graphs, or called workflows, due to large amounts of interrelated computation and com-

munication, where different tasks within a task graph might execute distinct programs and have data or

execution dependency among them [1-2]. Most workflow applications can be represented by Directed

Acyclic Graphs (DAG) for describing inter-task dependencies [3]. Fig. 1 is a workflow example of DAG

structure. Each node represents a task which executes a specific program. The number next to each node

means the required execution time of the task. Each edge represents the inter-task dependency. The num-

ber next to an edge means the inter-task data transmission cost. A workflow scheduler has to schedule

and allocate each task according to the dependencies specified in the workflow definition.

However, in practice, a workflow application is usually not developed by drawing an arbitrary DAG,

but instead developed with some kind of tools based on a specific programing model, e.g. YAWL [6] and

BPEL [7]. The underlying programming model usually has some characteristics that would restrict the set of

DAGs that can be developed with it. Therefore, most workflow applications have more regular structures

than the general DAG in Fig. 1. As discussed in [4-5], fork-join is a common and major construct widely

appearing in the restricted DAG structures of many real workflow applications developed based on popu

Task Clustering Heuristics for Efficient Execution Time Reduction in Work-flow Scheduling

44

Fig. 1. A workflow example of DAG structure

lar workflow programming models, e.g. YAWL [6] and BPEL [7]. Fig. 2 is an example of such fork-join

DAG-based workflows consisting of a series of sequence patterns and fork-join structures. A sequence

pattern is the kind of paths in a DAG where each node has exactly one child except the last node. The set

of tasks in a sequence pattern have to be executed sequentially. For example, tasks {1, 2}, tasks {5, 6},

and tasks {10, 11} are typical sequence patterns in Fig. 2. A fork-join structure in a DAG is usually used

to represent potential execution parallelism. It starts with a fork node and ends with a join node, contain-

ing several sequence patterns between these two nodes. A fork node has more than one child and a join

node has more than one parent. In a fork-join structure, the number of children of the fork node is equiva-

lent to the amount of parents of the join node. The set of sequence patterns in a fork-join structure can be

executed in parallel if there are enough computational resources. In Fig. 2, there are two fork-join struc-

tures: tasks {2, 3, 4, 5} and tasks {6, 7, 8, 9, 10}. Nodes 2 and 6 are fork nodes and nodes 5 and 10 are

join nodes. Tasks 3 and 4 represent potential execution parallelism in the first fork-join structure. Fork

and join nodes usually are the intersections of sequence patterns and fork-join structures, and participate

in both a sequence pattern and a fork-join structure. For example, node 2, a fork node, is the intersection

of the sequence pattern {1, 2} and the fork-join structure {2, 3, 4, 5}, while node 10, a join node, is the

intersection of the fork-join structure {6, 7, 8, 9, 10} and the sequence pattern {10, 11}. Since fork-join

DAG captures the underlying structure of most real workflow applications [4][5], in this paper we focus

on the scheduling issues of fork-join DAG-based workflows.

Fig.2. An example of fork-join DAG-based workflows

The time period from the submission of a workflow to its completion is usually called makespan,

which is a common criterion used to compare the performance of different workflow scheduling algo-

rithms. Apparently, a shorter makespan indicates a better execution performance. In this paper, we use

the average makespan of a set of different workflows to measure and compare the performance of various

scheduling algorithms under study.

Task graph scheduling in parallel and distributed environments, in general, is a NP-complete problem

[8-9]. Therefore, many heuristic methods have been proposed [3, 10-14]. Heuristic-based task graph

scheduling algorithms usually can be classified into three types: (1) list-based, (2) clustering-based, and

Journal of Computers Vol. 28, No. 1, 2017

45

(3) duplication-based. Minimizing inter-task communication costs plays an important role in producing

better workflow execution schedules. Clustering-based heuristics were shown to be more effective than

list-based heuristics for minimizing inter-task communication costs and thus reducing workflow execu-

tion makespan in many cases, especially for workflows of fork-join DAG structure [4, 19]. Although

duplication-based heuristics also have the advantage of reducing inter-task communication costs, they are

less effective than others when considering modern shared parallel computing platforms, e.g. cluster, grid,

and cloud. This is because task duplication consumes extra computational resources. Reduction of inter-

task communication is achieved at the cost of increased computation workload induced by task duplica-

tion. For single workflow scheduling, the duplicated tasks usually utilize the resources which would be

idle otherwise, and therefore would not hurt the start time of other tasks. However, for modern shared

parallel computing platforms, e.g. cluster, grid, and cloud, where it’s common that several workflows are

running simultaneously, the duplicated tasks of one workflow would compete with tasks of other work-

flows for resources, and thus delay the finish time of workflows. Since clustering-based approaches are

superior to list-based and duplication-based methods in most cases, in this paper we focus on the study of

clustering-based scheduling approaches for fork-join DAG-based workflows.

Among various clustering-based task graph scheduling methods [4, 15-19], Path Clustering Heuristic

(PCH) is a typical one and was developed for dealing with fork-join based task graphs specifically, which

has been shown effective in [4, 19]. PCH partitions a task graph of fork-join structure, e.g. Fig. 2, into

several task groups first, and then allocates these task groups onto processors. PCH builds a task group

by performing a depth-first search on the task graph until reaching a task ts which has an unscheduled

predecessor. The task ts is not included in the current task group. Therefore, a join node with several

predecessors will always be clustered with the last predecessor reaching it. However, such kind of clus-

tering doesn’t always minimize critical communication costs for workflow execution. In this paper, we

propose three new task clustering approaches, Critical Path Clustering Heuristic (CPCH), Larger Edge

First Heuristic (LEFH), and Critical Child First Heuristic (CCFH), which are expected to achieve better

workflow execution performance than existing methods by trying to minimize the communication costs

along execution paths. The proposed task clustering approaches were evaluated through a series of simu-

lation experiments. Experimental results indicate that the proposed approaches outperform the previous

PCH scheme significantly, up to 21% performance improvement in terms of average makespan for work-

flows of large Communication-to-Computation Ratio (CCR).

The remainder of this paper is organized as follows. Section 2 discusses related works on task graph

scheduling, especially the clustering heuristics. Section 3 describes and discusses our CPCH, LEFH, and

CCFH approaches. Section 4 evaluates and compares our three approaches with PCH through a series of

simulation experiments. Section 5 concludes this paper.

2 Related Work

Most heuristic-based workflow scheduling algorithms usually can be classified into three types: (1) list-

based, (2) clustering-based, and (3) duplication-based. List-based heuristic approaches [20-23] first as-

sign a priority to each task within a workflow and then maintain a list of all unscheduled tasks according

to the decreasing order of their priority values. The scheduler repeatedly schedules the tasks onto proces-

sors based on the list. How to minimize communication cost is an important issue for many kinds of par-

allel job scheduling systems [24]. For workflows, the main idea of clustering-based scheduling algo-

rithms [15-18, 25] is to reduce communication delay by clustering the tasks of heavy communication into

the same group and then scheduling an entire task group onto the same processor. Duplication-based

heuristic methods [26-29] duplicate a task on the set of processors where its successors run in order to

minimize inter-task communication costs and thus improve the overall makespan of an entire workflow.

Clustering-based heuristics have been shown to be more effective than other heuristics in many cases,

especially for workflows of fork-join DAG structure [4, 19]. Therefore, in this paper we focus on the

study of clustering-based approaches. Several task clustering approaches for workflow scheduling have

been proposed in the literature [25], including linear clustering [30-31], single edge clustering [31-32],

list scheduling as clustering [17-18], and Path Clustering Heuristic (PCH) [4, 19]. The linear clustering

algorithm [30-31] repeats to find the critical path among the tasks not yet been clustered into any group.

In linear clustering only dependent tasks would be clustered into the same group [16, 25]. The main part

of the single edge clustering algorithm [31-32] sorts edges in decreasing order of their weights. The

Task Clustering Heuristics for Efficient Execution Time Reduction in Work-flow Scheduling

46

weights then become the priority of grouping. For each edge, the clustering algorithm checks if zeroing

the edge would lead to a new schedule shorter or equal to the original schedule. If yes, the two clusters

connected by this edge are merged into a single cluster. This clustering approach has high computational

complexity. The list scheduling as clustering algorithm [17-18] is actually an adapted list scheduling

approach. In each step of the algorithm, it deals with a node and considers all the edges pointing to that

node for zeroing.

Path Clustering Heuristic (PCH) was proposed for scheduling fork-join DAG-based workflows and

has been shown to be effective in [4, 19]. PCH adopts a two-step framework for workflow scheduling. At

the first step a clustering scheme is used to partition a workflow into several task groups. Then, in the

second step a heuristic is applied to allocate these task groups onto processors. In this paper, we adopt the

same scheduling framework as PCH and develop several new task clustering schemes to further improve

workflow execution performance.

3 Task Clustering Approaches

In this paper, we focus on the workflows containing fork-join structures, which can be represented by a

Directed Acyclic Graph (DAG), G (V, E, w, c), where:

‧ V is the set of tasks, tn ∈ V, |V| = number of tasks;

‧ E is the set of directed edges, en ∈ E, |E| = number of edges;

‧ w is computation cost of a task, e.g. wi is the computation cost of task i;

‧ c is communication cost of an edge, e.g. ci,j is the communication cost between tasks i and j.

Each workflow starts at one node, named the entry node, and finishes at one node, named the exit node.

Each node in the workflow is a task representing a specific job or program to execute and each edge

represents the data dependence between two tasks. Each task starts its execution only after receiving all

data from its parent tasks.

The following defines several task attributes which will be used in describing the workflow scheduling

algorithms:

‧ Priority:

,
()

 ,if task i is the exit node of the workflow

+ max (+) , otherwise
j i

i

i
i i j j

t succ n

w

P
w c P

∈

⎧⎪
= ⎨
⎪⎩

 succ(ni) : the set of immediate successors of task i.

‧ Earliest start time:

i

() ,

0 , if t is the entry node of the workflow

max (+ +) , otherwisei

th pred ti h h h i

EST
ETS w c

∈

⎧⎪
= ⎨
⎪⎩

 representing the earliest time that task i is ready for execution

‧ Earliest finish time:

i i i
EFT EST w= +

 representing the earliest time that task i can finish its execution.

Workflow scheduling can be viewed as the spatial and temporal assignment of the constituent tasks to

processors. The spatial assignment is the allocation of tasks to the processors. The temporal assignment is

the attribution of a start time to each task. It is usually assumed that data transfer between two tasks as-

signed to the same processor incurs no communication costs when discussing workflow scheduling [25].

A schedule is feasible if and only if all nodes n and edges e in a workflow comply with the following

conditions 1 and 2 [25].

‧ Condition 1: exclusive processor allocation

 For any two nodes, ni and nj, allocated to the same processor, either ts(ni) < tf(ni) <= ts(nj) < tf(nj) or

ts(nj) < tf(nj) <= ts(ni) < tf(ni), where ts is the start time of a task and tf is its finish time.

‧ Condition 2: precedence constraint

Journal of Computers Vol. 28, No. 1, 2017

47

 For any two nodes, ni and nj where ni is the parent of ni, ts(nj) >= tf(ni) if ni and nj are allocated to the

same processor, and ts(nj) >= tf(ni) + ci,j if ni and nj are allocated to different processors.

The required execution time of a workflow on a parallel computing platform is defined to be its ma-

kespan. In this paper, we deal with the workflow scheduling problem which is to determine a feasible

schedule for a specific workflow on a particular parallel computing platform with the aim of achieving an

as-short-as-possible makespan.

Typical clustering-based workflow scheduling approaches, e.g. PCH [4, 5], usually adopt an iterative

two-step framework as shown in Algorithm 1. The first step within the iterative procedure, i.e. line 3,

adopts a particular task clustering scheme to find a group of unscheduled tasks, which varies in different

clustering-based methods. Then, in the second step, i.e. line 4, a heuristic is applied to allocate the task

group onto a processor based on some performance criterion, which is usually the Earliest Finish Time

(EFT) of the task group in most methods. In this paper, we develop three new task clustering heuristics

for clustering-based workflow scheduling approaches to improve workflow execution performance, i.e.

makespan.

Algorithm 1: Clustering-based workflow scheduling

Input: a DAG-based workflow to be scheduled on a parallel platform for execution

Output: an schedule arranging the workflow’s execution on the parallel platform

1. Compute all tasks’ attributes

2. while there are unscheduled nodes do

3. group ⇐ get_next_task_group()

4. allocate(group)

5. end while

6. return the workflow’s execution schedule

Algorithm 2 in the following presents the scheme used in PCH to cluster a set of tasks into a task

group. PCH repeatedly applies the scheme to build task groups of a workflow until no unclustered task is

left. The clustering process starts with n, the unclustered node with highest priority, as described at line 2.

Line 3 includes the node n as the first node of the new cluster. It then performs a depth-first search start-

ing from node n until reaching a task which has an unclustered predecessor, as described through line 4

to line 12. Line 13 returns the task group built.

Algorithm 2 Get_next_task_group for PCH

Input: the set of tasks in a workflow, which are not included in any task group yet

Output: a new task group produced by the task clustering heuristic

1. group ←φ

2. n ← unscheduled node with highest Priority

3. group ← group ∪ n

4. while (n has unscheduled successors) do

5. nsucc ← successori of n with highest Pi＋ESTi

6. if (nsucc has an unscheduled predecessor)

7. break;

8. else

9. group ← group ∪ nsucc

10. n ← nsucc

11. end if

12. end while

13. return group

Fig. 3 is an example where PCH builds 4 task groups: {1, 2, 3, 6}, {4, 7}, {5, 9}, and {8, 10, 11} first.

Then, the computation cost of each task group can be computed based on the computation cost of each

task within the group, and the communication costs between different task groups can be calculated ac-

cording to the communication cost on corresponding edges. After that, PCH allocates the task groups

onto processors. The lower part of Fig. 3 shows an example where PCH allocates the task groups onto 3

Task Clustering Heuristics for Efficient Execution Time Reduction in Work-flow Scheduling

48

processors. The makespan for this workflow execution is 180.

Fig. 3. Example of task clustering and scheduling in PCH

Looking at the above example carefully, we can find that PCH does not always produce the best task

clustering results. For example, in Fig. 3, it might be better if node 6 and node 9 are put into the same

group for communication cost minimization since node 6 has a larger computation cost than node 5 and

is therefore on the critical path. Zeroing the communication cost between node 6 and node 9 can effec-

tively shorten the length of critical path and hence reduce the makespan of the entire workflow. The

above observation motivated our work in this paper to develop new task clustering schemes to further

improve workflow execution performance. The following subsections presents three new task clustering

heuristics which differ in how they handle fork nodes or join nodes.

3.1 A Critical Path Clustering Heuristic

In PCH [4][5], a join node with several predecessors will always be clustered with the predecessor which

is the last one to reach it. However, such a clustering approach doesn’t always minimize the communica-

tion costs during workflow execution and might lead to a degraded performance. In the following, we

propose a Critical Path Clustering Heuristic (CPCH) for task clustering, which tries to minimize inter-

task communication costs by clustering a join node with the predecessor on the longest path going

through it.

Fig. 4 is an example illustrating how CPCH works. Taking node 9 for example, it would be clustered

with node 5, as shown in Fig. 3, when using the PCH algorithm [4]. On the other hand, since the longest

path going through node 9 is {1, 2, 3, 6, 9}, our CPCH chooses to cluster node 9 with node 6. Finally,

CPCH partitions the workflow into 4 task groups: {1, 2, 3, 6, 9, 11}, {4, 7}, {5}, {8, 9} and leads to a

makespan of 165, shorter than the schedule produced by PCH in Fig. 3.

Fig. 4. An example of CPCH

Journal of Computers Vol. 28, No. 1, 2017

49

Algorithm 3 describes the CPCH scheme in details. The clustering process starts with n, the unsched-

uled node with highest priority, as described at line 1. For each successor of n, lines 4 to 10 check

whether n is on the longest path from the entry node to it. For those successors whose longest paths do

not go through n, their priority values, Li, are set to -1 for excluding them from current task group. If no

successors’ longest path goes through n, the task clustering process stops, as described at lines 11 to 12,

and the task group built so far is returned at line 19. Otherwise, the successor on the longest path, with

the largest Li, will be included in current task group and the task clustering process repeats to explore the

successors of the new node, as described at lines 13 to 17.

Algorithm 3 Get_next_task_group_for CPCH

Input: the set of tasks in a workflow, which are not included in any task group yet

Output: a new task group produced by the task clustering heuristic

1. n ← the unscheduled node with highest priority

2. group ← n

3. while (n has unscheduled successors) do

4. for each successor i of n do

5. if n is on the longest path from the entry node to successor i then

6. Li = ESTi + Pi

7. else

8. Li = -1

9. end if

10. end for

11. if there exists no Li > 0 then

12. break

13. else

14. nsucc ← successor i of n with the largest Li

15. end if

16. group ← group∪nsucc

17. n ← nsucc

18. end while

19. return group

3.2 Larger Edge First Heuristic

The above CPCH approach focuses on how to cluster join nodes and adopts the same clustering scheme

as PCH to deal with fork nodes, where the child with the largest ESTi + Pi will be included into the task

group. Sometimes the child with the largest communication cost to the fork node will not be included

into the task group because it has a smaller Pi. In this section we present a new task clustering approach,

called Larger Edge First Heuristic (LEFH), which adopts a greedy method to deal with the fork node,

always clustering a fork node and the child with the largest communication cost to it into the same task

group.

Fig. 5 is an example for illustrating the potential advantage of LEFH. Fig. 5 (a) shows the task groups

and the resultant schedule produced by CPCH and Fig. 5 (b) is for LEFH. Taking node 3 for example, it

would be clustered with node 5 when using CPCH. On the other hand, since node 3 has a larger commu-

nication cost to node 6 than to node 5, LEFH chooses to cluster node 3 with node 6. Finally, LEFH gen-

erates 4 task groups: {1, 2, 4, 8}, {3, 6}, {5, 9}, {7, 10, 11} and leads to a makespan of 125, shorter than

the schedule produced by CPCH in Fig. 5 (a).

Algorithm 4 in the following describes the LEFH scheme in details. The difference between LEFH and

CPCH lies in line 6 where Li is set to the communication cost between node n and its successor i. This

arrangement allows a fork node to be clustered with the successor with the largest communication cost to

it, while retaining the advantage of CPCH that clusters a join node with the parent on the longest path

going through it.

Task Clustering Heuristics for Efficient Execution Time Reduction in Work-flow Scheduling

50

Fig. 5. An example illustrating the advantage of LEFH; (a) CPCH; (b) LEFH

Algorithm 4 Get_next_task_group for LEFH

Input: the set of tasks in a workflow, which are not included in any task group yet

Output: a new task group produced by the task clustering heuristic

1. n ← the unscheduled node with highest priority

2. group ← n

3. while (n has unscheduled successors) do

4. for each successor i of n do

5. if n is on the longest path from the entry node to successor i then

6. Li = cn,i //the communication cost between node n and its successor i

7. else

8. Li = -1

9. end if

10. end for

11. if there exists no Li > 0 then

12. break

13. else

14. nsucc ← successor i of n with the largest Li

15. end if

16. group ← group∪nsucc

17. n ← nsucc

18. end while

19. return group

3.3 Critical Child First Heuristic

This section presents another new task clustering approach, called Critical Child First Heuristic (CCFH),

which tries to make a compromise between PCH and LEFH when dealing with the fork node. CCFH

takes not only the communication cost but also the computation cost into consideration when evaluating

each child of a fork node. It clusters a fork node with the child of the largest total cost of computation and

communication to it. The algorithm of CCFH is similar to Algorithm 3 while line 6 is changed to Li =

ESTi + wi.

Fig. 6 is an example comparing LEFH and CCFH for illustrating the potential benefits of CCFH. Tak-

ing node 3 for example, it is clustered with node 6 in LEFH because node 3 has a larger communication

cost to node 6 than to node 5. On the other hand, node 3 is clustered with node 5 when using CCFH since

node 5 has a larger total cost of computation and communication than node 6. Finally, CCFH generates 4

task groups, {1, 2, 4, 7}, {3, 5, 9, 11}, {6}, {8, 10}, and leads to a makespan of 147, shorter than the

schedule produced by LEFH.

Journal of Computers Vol. 28, No. 1, 2017

51

Fig. 6. An example illustrating the advantage of CCFH; (a) LEFH; (b) CCFH

4 Performance Evaluation

This section presents a series of simulation experiments which evaluate the proposed task clustering ap-

proaches in terms of average makespan. The makespan measures the time period between the start and

completion of a workflow. We compare the proposed CPCH, LEFH, and CCFH with the PCH scheme

[4].

We implemented a DAG generator to produce synthetic workflows of fork-join structures for the fol-

lowing simulation experiments. The generated workflows can be broadly classified into two types: sin-

gle-level fork-join, e.g. Fig. 6, and double-level fork-join, e.g. Fig. 2. Each workflow contains one entry

node and one exit node, and at each level there might be three to six fork-join structures randomly. The

DAG generator can generate workflows with different CCR values [25]: 0.1, 1, and 10. It assigns a ran-

dom weight to each node and edge according to the specified CCR value. The computing resources for

executing the workflows are assumed to be a speed-homogeneous parallel system. Each experiment was

conducted with 100 different synthetic workflows and the average makespan was calculated.

Fig. 7 and Fig. 8 show the experimental results of the single-level and double-level fork-join work-

flows, respectively, under different CCR values. The performance shown in the figures is the improve-

ment ratio compared to PCH. It is clear that all the three proposed approaches achieve better performance,

in term of average makespan, than PCH since they adopt an improved task clustering approach to dealing

with the join nodes. The performance improvement ratio rises as CCR increases, up to 21% performance

improvement. The three proposed approaches, CPCH, LEFH, and CCFH, differ mainly in how they han-

dle the fork nodes. CPCH outperforms LEFH and CCFH when CCR is small, e.g. 0.1 in the figures. This

is because the advantage of LEFH and CCFH based on zeroing the larger communication cost between a

fork node and its successors becomes less significant when CCR is low, only small communication costs

being saved. This is also revealed in that LEFH performs even worse than CCFH for low CCR values

since LEFH only considers the communication costs while CCFH also takes successors’ computation

costs into account. On the other hand, LEFH and CCFH achieve better performance than CPCH for me-

dium and large CCR values, e.g. 1 and 10 in the figures. Moreover, LEFH performs the best for large

CCR value, e.g. 10 in the figures, since it always zeroes the largest communication cost between a fork

node and its successors and this advantage is amplified with large CCR values.

In the following, we evaluate the proposed approaches with workflows of different branch lengths in

the fork-join structure, where the CCR value is 1. Fig. 9 and Fig. 10 show the performance results of

single-level and double-level fork-join workflows, respectively. The experimental results show that the

proposed CPCH, LEFH and CCFH approaches outperform PCH consistently through different branch

lengths.

In the following, we evaluate the proposed approaches with the workflow structure of a real-world ap-

plication, LIGO [33]. The CCR value in this experiment is low. The workflow structure of LIGO is

shown in Fig. 11. The experimental results in Fig. 12 show that the proposed CPCH, LEFH, and CCFH

approaches outperform PCH, achieving more than 2% performance improvement in terms of average

makespan, similar to the cases of CCR=0.1 in Fig. 8 and Fig. 9.

Task Clustering Heuristics for Efficient Execution Time Reduction in Work-flow Scheduling

52

Fig. 7. Performance results of single-level fork-join workflows

Fig. 8. Performance results of double-level fork-join workflows

Fig. 9. Performance with different branch lengths for single-level fork-join structure

Journal of Computers Vol. 28, No. 1, 2017

53

Fig. 10. Performance with different branch lengths for double-level fork-join structure

Fig. 11. Workflow structure of LIGO

Fig. 12. Performance results for LIGO

In summary, the above experimental results, based on both synthetic workflows and a real workflow

application, show that all our three proposed approaches outperform PCH [4] in a variety of different

scenarios, including different levels of fork-join structure, CCR, and branch lengths. The relative strength

of the three proposed approaches varies in different scenarios. In general, the performance improvement

ratio grows as CCR increases. For smaller CCR, CPCH performs the best, while LEFH outperforms oth-

ers for large CCR value, e.g. 10 in the figures, since it zeroes the largest communication cost between a

fork node and its successors.

Task Clustering Heuristics for Efficient Execution Time Reduction in Work-flow Scheduling

54

5 Conclusions

Nowadays, more and more large-scale scientific and engineering applications are usually constructed as

workflows due to complex and large amounts of interrelated computation and communication. Therefore,

scheduling workflow efficiently becomes an important issue in modern parallel computing environments.

Clustering-based approaches are one of the major types of workflow scheduling methods, aiming at re-

ducing inter-task communication costs. In this paper, we propose three new task clustering approaches,

Critical Path Clustering Heuristic (CPCH), Larger Edge First Heuristic (LEFH), and Critical Child First

Heuristic (CCFH), to scheduling workflows of fork-join structure, which have been shown to be the

common structure of many workflow applications [4-5], in parallel systems. The three task clustering

heuristics differ in how they handle fork nodes or join nodes. CPCH minimizes the inter-task communi-

cation cost by clustering a join node with the ancestor on the longest path going through it. LEFH adopts

a greedy heuristic to cluster a fork node with the child having the largest communication cost from it.

CCFH makes a compromise between PCH [4] and LEFH by clustering a fork node with the child of the

largest cost of both communication and computation.

The proposed task clustering approaches have been evaluated with a series of simulation experiments and

compared to PCH [4]. The experimental results indicate that all the three proposed approaches outper-

form PCH consistently through different CCR values. The performance improvement becomes even lar-

ger as CCR increases, up to 21% performance improvement when CCR is 10. More specifically, CPCH

performs the best for small CCR, e.g. 0.1, CCFH achieves the best performance with medium CCR, e.g.

1, and LEFH outperforms the others when CCR is high, e.g. 10. This indicates that task clustering in

workflow scheduling is a complex issue and users should carefully select an appropriate method accord-

ing to the properties of workflow applications.

Acknowledgements

This paper is partially based upon work supported by National Science Council (NSC), Taiwan, under

grants no. NSC101-2221-E-142-002-MY2.

References

[1] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P.J. Maechling, R. Mayani, W. Chen, R.F. Silva, M. Livny, K.

Wenger, Pegasus: a workflow management system for science automation, Future Generation Computer Systems 46(2015)

17-35.

[2] J. J. Durillo, R. Prodan, Multi-Objective Workflow Scheduling in Amazon EC2, Cluster Computing 17(2)(2014) 169-189.

[3] M. Wieczorek, R. Prodan, A. Hoheisel, M. Wieczorek, R. Prodan, A. Hoheisel, Taxonomies of the multi-criteria grid work-

flow scheduling problem, Grid Middleware and Services, 2008.

[4] L.F. Bittencourt, E.R.M. Madeira, A performance-oriented adaptive scheduler for dependent tasks on grids, Concurrency and

Computation: Practice and Experience 20(2008) 1029-1049.

[5] L.F. Bittencourt, E.R.M. Madeira, Fulfilling task dependence gaps for workflow scheduling on grids, in: Proc. of the 3rd

IEEE International Conference on Signal-Image Technology and Internet Based Systems (SITIS), 2007.

[6] YAWL (Yet Another Workflow Language). <http://en.wikipedia.org/wiki/YAWL>, 2015 (accessed 15.06).

[7] BPEL (Business Process Execution Language). <http://en.wikipedia.org/wiki/Business_Process_Execution_Language>,

2015 (accessed 15.06).

[8] R.M. Gary, S.D. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman and

Company, New York, 1979.

[9] D.J. Ullman, NP-complete scheduling problems, Journal of Computer and Systems Sciences 10(1975) 384-393.

Journal of Computers Vol. 28, No. 1, 2017

55

[10] K.C. Huang, Y.L. Tsai, H.C. Liu, Task ranking and allocation in list-based workflow scheduling on parallel computing

platform, The Journal of Supercomputing 71(1)(2015) 217-240.

[11] Y. Wang, W. Shi, E. Berrocal, On performance resilient scheduling for scientific workflows in HPC systems with con-

strained storage resources, in: Proc. of the 6th ACM Workshop on Scientific Cloud Computing, 2015.

[12] L.F. Bittencourt, R. Sakellariou, E.R.M. Madeira, DAG scheduling using a look ahead variant of the heterogeneous earliest

finish time algorithm, in: Proc. of 18th Euromicro Conference on Parallel, Distributed and Network-based Processing, 2010.

[13] M. Rahman, R. Ranjan, R. Buyya, Cooperative and decentralized workflow scheduling in global grids, Future Generation

Computer Systems 26(2010) 753-768.

[14] F. Ding, R. Zhang, K. Ruan, J. Lin, Z. Zhao, A QoS-based scheduling approach for complex workflow applications, in:

Proc. of the Fifth Annual ChinaGrid Conference, 2010.

[15] K. Bochenina, N. Butakov, A. Dukhanov, D. Nasonov, A clustering-based approach to static scheduling of multiple work-

flows with soft deadlines in heterogeneous distributed systems, Procedia Computer Science 51(2015) 2827-2831.

[16] J.S. Kim, C.J. Browne, A general approach to mapping of parallel computation upon multiprocessor architectures, in: Proc.

of Int’l Conf. Parallel Processing, 1988.

[17] T. Yang, A. Gerasoulis, DSC: scheduling parallel tasks on an unbounded number of processors, IEEE Transactions on

Parallel and Distributed System 5(9)(1994) 951-967.

[18] M. Wu, D. Gajski, Hypertool: a programming aid for message passing system, IEEE Transactions on Parallel and Distrib-

uted Systems 1(1990) 330-343.

[19] L.F. Bittencourt, E.R.M. Madeira, F.R.L. Cicerre, L.E. Buzato, A path clustering heuristic for scheduling task graphs onto a

grid, in: Proc. of the 3rd ACM International Workshop on Middleware for Grid Computing, 2005.

[20] C.C. Hsu, K.C. Huang, F.J. Wang, Online scheduling of workflow applications in grid environment, Future Generation

Computer Systems 27(6)(2011) 860-870.

[21] Z. Cai, X. Li, J.N.D. Gupta, Heuristics for provisioning services to workflows in XaaS clouds, IEEE Transactions on Ser-

vices Computing PP(99)(2014) 1.

[22] H.R. Boveiri, An efficient task priority measurement for list-scheduling in multiprocessor environments, International

Journal of Software Engineering & Its Applications 9(5)(2015) 233-246.

[23] H.R. Boveiri, List-scheduling techniques in homogeneous multiprocessor environments: a survey, International Journal of

Software Engineering & Its Applications 9(4)(2015) 123-132.

[24] U. Fiore, F. Palmieri, A. Castiglione, A.D. Santis, A cluster-based data-centric model for network-aware task scheduling in

distributed systems, International Journal of Parallel Programming 42(5)(2014) 755-775.

[25] O. Sinnen, Task Scheduling for Parallel Systems, Wiley-Interscience, New York, 2007.

[26] S.G. Ahmad, C.S. Liew, M.M. Rafique, E.U. Munir, S.U. Khan, Data-intensive workflow optimization based on applica-

tion task graph partitioning in heterogeneous computing systems, in: Proc. of 2014 IEEE Fourth International Conference on

Big Data and Cloud Computing (BdCloud), 2014.

[27] J. Zhang, J. Luo, F. Dong, Scientific workflow scheduling in non-dedicated heterogeneous multicluster with advance reser-

vations, Integrated Computer-Aided Engineering 22(3)(2015) 261-280.

[28] B. Kruatrachue, G.T. Lewis, Grain size determination for parallel processing, in: Proc. of IEEE Software, 2010.

[29] X. Tang, K. Li, G. Liao, An effective reliability-driven technique of allocating tasks on heterogeneous cluster systems,

Cluster Computing 17(4)(2014) 1413-1425.

Task Clustering Heuristics for Efficient Execution Time Reduction in Work-flow Scheduling

56

[30] A. Gerasoulis, T. Yang, On the granularity and clustering of directed acyclic task graphs, IEEE Transactions on Parallel

and Distributed Systems 4(6)(1993) 686-701.

[31] V. Sarkar, Partitioning and scheduling parallel programs for execution on multiprocessors, [dissertation] Stanford,

CA: Stanford University, 1987.

[32] A. Gerasoulis, T. Yang, A comparison of clustering heuristics for scheduling directed acyclic graphs on multiprocessors,

Journal of Parallel and Distributed Computing 16(4)(1992) 276-291.

[33] A. Ramakrishnan, G. Singh, H. Zhao, E. Deelman, R. Sakellariou, K. Vahi, K. Blackburn, D. Meyers, M. Samidi, Schedul-

ing data-intensive workflows onto storage-constrained distributed resources, in: Proc. of the Seventh IEEE International

Symposium on Cluster Computing and the Grid, 2007.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

