
Journal of Computers Vol. 28, No. 1, 2017, pp. 87-103

doi:10.3966/199115592017022801008

87

A Novel Scalable Dual Basis GF(2m) Multiplier Architecture

Liang-Hwa Chen1, Yen-Ching Chang2, Chiou-Yng Lee1, and Po-Lun Chang3

1 Department of Computer Information and Network Engineering,

Lunghwa University of Science and Technology, Taoyuan City 33306, Taiwan

{whallis2000, pp010}@mail.lhu.edu.tw

2 Department of Medical Informatics, Chung Shan Medical University,

Taichung City 40201, Taiwan

nicholas@csmu.edu.tw

3 Department of Electrical Engineering, Lunghwa University of Science and Technology,

Taoyuan City 33306, Taiwan

whc1223@ms7.hinet.net

Received 2 September 2015; Revised 16 December 2015; Accepted 6 April 2016

Abstract. Modern mobile communications and Internet transactions heavily rely on cryptosys-

tems to ensure their security. These cryptosystems such as ECDSA usually rely on arithmetic

operations over finite field GF(2)m . The most important arithmetic operation is multiplication,

thus leading to the high demand for design of efficient multiplier. In this paper, based on the

Hankel matrix-vector representation of dual basis multiplication, a novel low-complexity scal-

able digital circuit architecture for dual basis GF(2)m multiplication is derived and proposed.

This scalable architecture adopts most significant digit (MSD) first scheme and can perform m-

bit multiplications with substantially smaller d-bit digits, and thus is feasible for implementing

ECC cryptosystems such as ECDSA in resource-constrained environments such as embedded

systems and smart cards. Analytical results exhibit that both area and time-area complexities of

the proposed scalable architecture are substantially lower than those of the non-scalable archi-

tectures. Moreover, due to its features of regularity, modularity and concurrency, the proposed

architecture is highly promising for VLSI implementations.

Keywords: elliptic curve cryptography (ECC), finite field, dual basis, Hankel matrix-vector,

scalable multiplier

1 Introduction

Mobile communications and Internet transactions have become more and more popular in recent years,

leading to increasing concern over the issue about integrity of transmitted data, against eavesdropping or

unauthorized data altering. The advances in cryptography research thus have received increasing interest

as well [1-3]. Cryptography and coding theory frequently involve finite field arithmetic operations, espe-

cially for the binary finite field GF(2)m . In particular, the elliptic curve cryptography (ECC) [4], which

has become increasingly popular owing to its ability to realize a robust cryptosystem in smart cards, mo-

bile phones and other resource-constrained environments, requires finite field arithmetic operations. The

National Institute for Standards and Technology (NIST) has recommended the elliptic curve digital sig-

nature algorithm (ECDSA) standard [5], in which five GF(2)m , i.e. for 163, 233, 283, 409m = and 571,

are used to achieve adequate security. Among the basic arithmetic operations over GF(2)m , multiplica-

tion is the most important and time-consuming computation. Other complex arithmetic operations, in-

cluding exponentiation, division and multiplicative inversion, can be performed by repeating multiplica-

A Novel Scalable Dual Basis GF(2m) Multiplier Architecture

88

tions, subsequently explaining the high demand for efficient design and implementation of the finite field

multiplier with a low complexity.

For finite field GF(2)m , three conventionally adopted bases are polynomial basis (PB), normal basis

(NB) and dual basis (DB) to represent its elements. Each representation has its own distinct advantages.

For instance, the polynomial basis multiplier does not require basis conversion and is characterized by its

regularity and simplicity. The normal basis multiplier is quite effective in performing squaring an ele-

ment in the finite field. The dual basis multiplier needs the least number of gates that leads to the smallest

chip area demand for VLSI implementation [6]. Pertinent literature in recent years has generally classi-

fied most finite field multipliers on these bases as bit-serial [7,8] and bit-parallel architectures [9-12].

Cryptography applications such as the above-mentioned ECDSA heavily rely on finite fields of large

values of m (160 or higher) to achieve a sufficient level of security. To implement such cryptosystems,

although the bit-serial architecture requires less chip area, its throughput is too slow. Conversely, the bit-

parallel architecture is typically faster yet more complex and requires a significantly larger chip area and

power consumption. Digit-serial architectures [13-15] have been proposed to facilitate the trade-off be-

tween throughput performance and hardware complexity. These architectures are based on a cut-set sys-

tolization scheme to accelerate the computational process. However, such an architecture has a space

complexity similar to that of the original bit-level multiplier design, making it infeasible for implement-

ing cryptosystems that require a large number of operand bits in resource-constrained environments.

Scalable architectures [16-18] have subsequently been developed to satisfy the demands for implement-

ing ECC cryptosystems such as ECDSA in resource-constrained environments. As a combination of se-

rial and parallel schemes, the scalable architecture requires smaller chip area than that of the digit-serial

architecture. In the scalable architecture, each m-bit operand word in the GF(2)m field is separated into

/k m d= ⎡ ⎤⎢ ⎥ d-bit sub-words which are also termed as digits. Two operand words are multiplied in digits

with a serial scheme while two digits are multiplied with a parallel scheme. Digit size d is normally se-

lected to be substantially smaller than the operand bit length m. Thus, a substantially smaller hardware

area multiplier (for d-bit operands) that can be easily implemented in resource-constrained environments

is sufficient to perform all of the m-bit multiplications. Additionally, considering the trade-off between

throughput performance and hardware complexity allows the scalable architecture to generate an optimal

realization in hardware implementation by selecting an appropriate scalable factor, i.e. digit size d, espe-

cially in cases involving implementation of ECC cryptosystems in resource-constrained environments.

Furthermore, the scalable architecture is flexible in terms of re-usage. Assume that a multiplier has been

designed for 768-bit operand words. This multiplier cannot be applied directly to a system with an oper-

and length of 1024 bits. The non-scalable (bit-parallel) multiplier must be re-designed to comply with

system requirements. Conversely, the scalable architecture does not require a change in the core multi-

plier. By simply adjusting the size of the register array to satisfy the required longer operand length and

reusing the core multiplier, the scalable multiplier can be applied to the new system. Doing so also makes

it possible to achieve multiplications over the five GF(2)m used in ECDSA with only one size (such as

20d =) of the core multiplier in order to obtain different levels of security. This feature is highly attrac-

tive for implementing ECDSA in resource-constrained environments such as smart cards and handset

devices.

Scalable multiplication architectures have been developed for PB [17] and NB [18]. Correspondingly,

this work presents a novel low-complexity scalable digital circuit architecture for dual basis (DB) multi-

plication over GF(2)m . We first propose an algorithm for dual basis GF(2)m multiplication based on the

Hankel matrix-vector representation. Then, the corresponding low-complexity scalable and systolic digi-

tal multiplier circuit architecture is designed and proposed. This scalable multiplier architecture adopts

most significant digit (MSD) first scheme and is feasible for finite fields GF(2)m generated by irreduci-

ble trinomials. Analytical results indicate that both area and time-area complexities of the proposed archi-

tecture are significantly lower than those of conventional digit-serial and bit-parallel multipliers. Addi-

tionally, for a given field size m of GF(2)m , the optimal digit size d can also be easily obtained from the

analytical results to achieve the optimal trade-off between throughput performance and hardware com-

plexity.

The rest of this paper is organized as follows: Section 2 briefly reviews the dual basis multiplication

Journal of Computers Vol. 28, No. 1, 2017

89

over GF(2)m . Section 3 then introduces the proposed novel scalable algorithm and architecture for dual

basis multiplication over GF(2)m . Next, Section 4 discusses its time and space complexities. Conclu-

sions are finally drawn in Section 5.

2 Preliminaries

As is well known, the finite field GF(2)m can be viewed as a vector space of dimension m over GF(2) ,

i.e. {0, 1}, where the field is generated by the irreducible polynomial 1

0 1 1
() m m

m
F x f f x f x x−

−

= + + + +…

of degree m, where the coefficients GF(2)
i
f ∈ for 0, 1, , 1i m= −� . Assume that α denotes a root of

()F x . Then, any element A in the finite field GF(2)m can be represented as 2

0 1 2
A a a aα α= + + +�

1

1

m

m
a α

−

−

+ , where the coordinates GF(2)
i
a ∈ for 0, 1, , 1i m= −� . The set { }2 1

1, , , ,
m

α α α
−

… is called

the polynomial basis (PB) inGF(2)m .

Definition 1. A basis { }0 1 1
, , ,

m
β β β

−

… in GF(2)m is called the dual basis (DB) to the polynomial basis

(PB) { }2 1
1, , , ,

m

α α α
−

… if the following condition is satisfied [7]:

1,
()

0,

i

j

if i j
Tr

if i j
γα β

=⎧
= ⎨

≠⎩
 (1)

where ()Tr • is the trace function from GF(2)m to GF(2) , and GF(2), 0m

γ γ∈ ≠ . □

For any two elements A and B in GF(2)m represented in polynomial and dual basis respectively, i.e.

1

2 1

0 1 2 1

0

m

m i

m i

i

A a a a a aα α α α

−

−

−

=

= + + + + =∑� (2)

1

0 0 1 1 1 1

0

m

m m i i

i

B b b b bβ β β β
−

− −

=

= + + + =∑� (3)

where the coordinates , GF(2)
i i
a b ∈ . Their product C AB= represented in dual basis, i.e.

1

0 0 1 1 1 1

0

m

m m i i

i

C c c c cβ β β β
−

− −

=

= + + + =∑� (4)

where the coordinates GF(2)
i
c ∈ , can be computed with the following discrete-time Wiener-Hopf equa-

tion (DTWHE) [19]:

0 0 1 1 0

1 1 2 1

1 1 2 2 1

m

m

m m m m m

c b b b a

c b b b a

c b b b a

−

− − − −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

�

�

� � � � � �

�

 (5)

where
0 1 1 1 1

, for 0, 1, , 1.
m i i i m i m
b f b f b f b i m

+ + − + −
= + + + = −� � The above equation is derived as follows:

First, the coordinates
i
b of B can be obtained as ()i

i
b Tr Bγα= because

0 0 1 1 1 1

0 0 1 1 1 1

() (())

() () ()

, for 0, 1, , 1

i i

m m

i i i

m m

i

Tr B Tr b b b

b Tr bTr b Tr

b i m

γα γα β β β

γα β γα β γα β

− −

− −

= + + +

= + + +

= = −

�

�

�

A Novel Scalable Dual Basis GF(2m) Multiplier Architecture

90

from Definition 1. Next, since α is a root of 1

0 1 1
() m m

m
F x f f x f x x−

−

= + + + +… , i.e. () 0F α = , thus,

2 1

0 1 2 1

m m

m
f f f fα α α α

−

−

= + + + +�

1

1 2 1

0 1 2 1

0

m
m i i i i i m i j

m j

j

f f f f fα α α α α α

−

+ + + + − +

−

=

= + + + + =∑� (6)

Let us define
m i
b

+
 as ()m i

Tr Bγα
+ . Then, according to (6), we get

1 1

0 0

1

0 1 1 2 2 1 1

0

() () ()

, for 0, 1, , 1

m m
m i i j i j

m i j j

j j

m

j i j i i i m i m

j

b Tr B Tr f B f Tr B

f b f b f b f b f b i m

γα γ α γα

− −

+ + +

+

= =

−

+ + + − + −

=

⎛ ⎞
= =⎜ ⎟

⎝ ⎠

= = + + + + = −

∑ ∑

∑

�

� �

 (7)

Based on Definition 1, the coordinates
i
c of C can also be obtained as ()i

i
c Tr Cγα= . Given that C AB= ,

1

0

m i

ii
A aα

−

=

=∑ and, according to (7), we obtain

1 1

0 0

1

0 1 1 2 2 1 1

0

() () () ()

, for 0, 1, , 1.

m m
i i i j i j

i j j

j j

m

j i j i i i m i m

j

c Tr C Tr AB Tr a B a Tr B

a b a b a b a b a b i m

γα γα γα α γα

− −

+

= =

−

+ + + − + −

=

⎛ ⎞
= = = =⎜ ⎟

⎝ ⎠

= = + + + = −

∑ ∑

∑ � �

 (8)

The DTWHE in (5) is then obtained by expressing (8) in matrix form. Next, if we define the following

vectors:
0 1 1

[, , ,]
m

a a a
−

= �A ,
0 1 1

[, , ,]
m

f f f
−

= �F and ()

1 1[, , ,],
i

i i i m
b b b

+ + −
= �B for 0, 1, , 1i m= −� ,

then, (7) and (8) can also be expressed as

()i

m i
b

+
= �B F (9)

()i

i
c = �B A (10)

where “� ” denotes the inner product operation of two vectors. Notably, (0)

0 1 1[, , ,]
m

b b b
−

= = �B B .

Here, an example is given for illustration: Let 3m = , then,
0 1 2

[, ,]a a a=A ,
0 1 2

[, ,]f f f=F and
(0)

0 1 2[, ,]b b b= =B B . Next, according to the above derivations, we get
(1)

1 2 3[, ,],b b b=B
(2)

2 3 4[, ,],b b b=B where (0)

3b = �B F
0 0 1 1 2 2
f b f b f b+ += and (1)

4b = �B F

0 1 1 2 2 3
f b f b f b+ += . Thus, the product vector

(0) (1) (2)

0 1 2

0 0 1 1 2 2 0 1 1 2 2 3 0 2 1 3 2 4

[, ,] [, ,]

[, ,]

c c c

a b a b a b a b a b a b a b a b a b

= =

= + + + + + +

� � �C B A B A B A

is obtained.

Based on (9) and (10), Lee et al. [9] developed a bit-parallel systolic DB multiplier circuit architecture

consisting of 2
m cell, which comprises the following digital logic gates: one AND gate, one XOR gate

and two 1-bit latches. Owing to the regularity of its architecture, this DB multiplier is feasible for VLSI

implementation. However, for a large field size of binary finite fields such as the five GF(2),m

163, 233, 283, 409 and 571,m = adopted by ECDSA, the corresponding large space complexity 2()O m

makes such a multiplier infeasible for implementing in constrained hardware environments such as smart

cards and mobile handsets. To overcome this problem, the next section introduces a novel scalable

scheme for DB multiplication that divides the m-bit operand word into several d-bit digits and, then, it-

eratively applies a smaller scale multiplier to achieve the complete m-bit multiplication.

Journal of Computers Vol. 28, No. 1, 2017

91

3 Proposed Scalable Dual Basis Multiplier over GF(2m)

Deriving the scalable architecture of DB multiplier initially requires introducing the Hankel matrix-

vector representation.

3.1 Hankel Matrix-vector Representation

Definition 2. An m n× matrix H is referred to as a Hankel matrix if it satisfies the relation

(,) (1, 1)p q p q= + −H H , for 0 2p m≤ ≤ − , 1 1q n≤ ≤ − , where (,)p qH represents the element in the

intersection of row i and column j. □

A Hankel matrix can be determined entirely by the 1m n+ − entries that are located on its first row and

last column. Namely, the matrix can be defined by the corresponding Hankel vector

0 1 2
[, , ,]

m n
h h h

+ −
= �H . For example, the Hankel matrix

0 21

1 32

2 43

3 54

h hh

h hh

h hh

h hh

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

H

has the corresponding Hankel vector
0 1 2 3 4 5

[, , , , ,]h h h h h h=H . With the Hankel matrix-vector represen-

tation, the product of a Hankel matrix H and a vector
0 1 1

[, ,]
n

v v v
−

= �V , i.e. T
HV where T denotes

transpose operator, is denoted as ⊗H V . With such notation, the DB multiplication in (5) can be ex-

pressed as

T T
= = ⊗BC A B A (11)

where
0 1 1 2 2

[, , , , , ,]
m m m

b b b b b
− −

= � �B represents the corresponding Hankel vector of the Hankel matrix

in (5).

3.2 Proposed Algorithm

For the elements A, B and C defined in (2), (3) and (4), repectively, select the digit size as d, and define

k m d= ⎡ ⎤⎢ ⎥ . If the word length m is divisible by d, then m kd= . Otherwise, (1)k d m kd− < < . In this

case, for simplifying the derivation, we can extend A with appending zero bits
1

, ,
m kd
a a

−

� and get the

new word length 'm kd= which is divisible by d. The additionally required bits
2 1 2 2'

, ,
m m

b b
−

−

� in (5)

now are still calculated according to (7). In the resulting C, bits
1'

, ,
m m
c c

−

� are redundant and should be

disregarded. Thus, in the following, we only consider the case where m is divisible by d.

For the element A expressed in (2), we can rewrite it as the combination of the k sub-elements

0 1 1
, , ,

k
A A A

−

� :

(1) (2) 2

1 2 2 1 0

k d k d d d

k k
A A A A A Aα α α α

− −

− −

= + + + + +� (12)

where

2 1

0 0 1 2 1

2 1

1 1 2 2 1

1

1 (1) (1) 1 1

d

d

d

d d d d

d

k k d k d kd

A a a a a

A a a a a

A a a a

α α α

α α α

α α

−

−

−

+ + −

−

− − − + −

= + + + +

= + + + +

= + + +

�

�

�

�

 (13)

Then, the product of A and B, i.e. C can be expressed as:

A Novel Scalable Dual Basis GF(2m) Multiplier Architecture

92

(1) (2) 2

1 2 2 1 0

(1) (2)

1 2 1 0

(1) (2)

1 2 1 0

1 2 1 0

()

((())

k d k d d d

k k

k d k d d

k k

k d k d d

k k

d d d

k k

C BA B A A A A A

BA BA BA BA

E E E E

E E E E

α α α α

α α α

α α α

α α α

− −

− −

− −

− −

− −

− −

− −

= = + + + + +

= + + + +

= + + + +

= + + + +

�

�

�

� �

 (14)

where
i

E denotes the product of B and the sub-element
i

A , i.e.
i

BA which is a dual base element:

,0 0 ,1 1 , 1 1
, for 0,1, , 1

i i i i i m m
E BA e e e i kβ β β

− −

= + + + = −� � � . (15)

The j-th coordinate of
i

E , i.e.
,

GF(2)
i j
e ∈ , can be obtained based on Definition 1 as:

,

1

1 1

1 1

1 1

1 1 1 1

() ()

(())

() () ()

, for 0,1, , 1

j j

i j i i

j d

id id id d

j j j d

id id id d

id j id j id d j d

e Tr E Tr BA

Tr B a a a

a Tr B a Tr B a Tr B

a b a b a b j m

γα γα

γα α α

γα γα γα

−

+ + −

+ + −

+ + −

+ + + − + −

= =

= + + +

= + + +

= + + + = −

�

�

� �

 (16)

Expressing (16) in matrix form, we thus get the corresponding vector of
i

E , i.e.

,0 ,1 , 1
[, , ,]

T T T

i i i i m i
e e e

−

= B� �E A , where

1 1
[, , ,], for 0,1, , 1

i id id id d
a a a i k

+ + −
= = −� �A (17)

are the corresponding vectors of sub-elements
i

A and the corresponding m d× Hankel matrix of element

B is

0 1 2 1

1 2 3

2 3 4 1

1 1 2

d

d

d

m m m m d

b b b b

b b b b

b b b b

b b b b

−

+

− + + −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

B

�

�

�

� � � � �

�

 (18)

For the case that 9m = , 3d = and then 9 3 3k m d= = =⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ as an example, the above
i

A ’s are

0 0 1 2
[, ,]a a a=A ,

1 3 4 5
[, ,]a a a=A ,

2 6 7 8
[, ,]a a a=A and the 9 3× Hankel matrix B is

0 1 2

1 2 3

2 3 4

8 9 10

b b b

b b b

b b b

b b b

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

B

� � �

The above
i

E ’s are then
0 0

T T
= BE A ,

1 1

T T
= BE A and

2 2

T T
= BE A .

The matrix expression corresponding to (14) is thus obtained as

(1) (2)

0 1 1 1 2 1 0

(1) (2)

1 2 1 0

1 2 1 0

[, , ,] () () ()

((())

T T T k d T k d T d T

m k k

T k d T k d T d T

k k

T d T d T d T

k k

c c c α α α

α α α

α α α

− −

− − −

− −

− −

− −

= = + + + +

= + + + +

= + + + +

B B Β B� �

�

� �

C A A A A

E E E E

E E E E

 (19)

The corresponding Hankel vector of the above matrix B (eq. (18)) is then

0 1 1 1 2
[, , , , , , , , ,]

d d m m m d
b b b b b b b

− − + −
= � � �B (20)

With the Hankel matrix-vector representation, eq. (19) can be rewritten as

Journal of Computers Vol. 28, No. 1, 2017

93

(1) (2)

1 2 1 0

1 2 1 0

1 2 1 0

() () ()

((())

((())

T k d k d d

k k

d d d

k k

T d T d T d T

k k

α α α

α α α

α α α

− −

− −

− −

− −

= ⊗ + ⊗ + + ⊗ + ⊗

= ⊗ + ⊗ + + ⊗ + ⊗

= + + + +

�

� �

� �

C B A B A Β A B A

Β A Β A Β A Β A

E E E E

 (21)

where T T

i i i
= = ⊗BE A Β A , for 0,1, , 1i k= −� . Notably, all contents in all parentheses in (21) are dual

basis element vectors. The whole computation thus involves k Hankel multiplications

(, 0,1, , 1
i
i k⊗ = −�Β A) and k nested multiplications of d

α to dual basis element vectors. For the case

that 9m = , 3d = and then 3k = , the Hankel vector is

0 1 2 3 4 5 6 7 8 9 10
[, , , , , , , , , ,]b b b b b b b b b b b=B

and the product vector C is

6 3 3 3

2 1 0 2 1 0
() () ()T T T T

α α α α= ⊗ + ⊗ + ⊗ = + +C B A Β A B A E E E

The effect of multiplying a dual basis element vector
0 1 1

[, , ,]
m

e e e
−

� �E by d
α is just a d-bit left-

shifting operation on vector E . That is,

1 1 1
[, , , , , ,]

d

d d m m d m
e e e e eα

+ − + −
= � �E (22)

The latter d shifted-in bits, i.e.
1 1

, , ,
m m m d
e e e

+ + −
� , can be reformed as

1 1 0 1 1 1 1
[, , ,] [(),(), , ()]

m m m d n n n d d
e e e e e e e e e

+ + − + + − −
= + + +� �

when the generating function of GF(2)m is an irreducible trinomial, i.e. () 1m n

F x x x= + + . Thus, these d

shifted-in bits can be generated from the original bits of vector E , i.e.
 0 1 1

, , ,
m

e e e
−

� , with d XOR gates.

The whole d
αE vector can thus be expressed as

1 1 0 1 1 1 1
[, , , , (),(), , ()]d

d d m n n n d d
e e e e e e e e eα

+ − + + − −
= + + +� �E (23)

The detailed derivation is described in Appendix A. For the case that 9m = , 3d = and 3n = as an ex-

ample, 3
αE is just a 3-bit left-shifting operation on vector E , that is,

3

3 4 5 6 7 8 9 10 11 3 4 5 6 7 8 3 0 4 1 5 2
[, , , , , , , ,] [, , , , , , (), (), ()].e eα = = + + +E

Next, we divide T

i i
⊗ = BΒ A A into k parts in order to adopt a smaller size of DB multiplier architec-

ture. From (17) and (18), we can rewrite T

i i
⊗ = BΒ A A as follows:

0
0 0

11 1

1 1 1

T

ii

T

T T i i

i i i

T

k k i k
i

−

−

−

⎡ ⎤⊗⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥⎢ ⎥

⊗⎢ ⎥⎢ ⎥⎢ ⎥⊗ = = = = ⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⊗⎣ ⎦ ⎣ ⎦

B B

B B
B

B B

� � �

B AA

A B A
Β A A A

A B A

 (24)

where

1 2 1

1 2 3

2 3 4 1

1 1 2 2

, for 0,1, , 1

jd jd jd jd d

jd jd jd jd d

jd jd jd jd dj

jd d jd d jd d jd d

b b b b

b b b b

b b b b j k

b b b b

+ + + −

+ + + +

+ + + + +

+ − + + + + −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= = −
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

B

�

�

� �

� � � � �

�

 (25)

are d d× Hankel matrices whose corresponding 1 (2 1)d× − Hankel vectors are

A Novel Scalable Dual Basis GF(2m) Multiplier Architecture

94

1 1 2 2
[, , , , , ,], for 0,1, , 1j jd jd jd d jd d jd db b b b b j k

+ + − + + −
= = −� � �B (26)

From (24), it reveals that each Hankel multiplication,
i

⊗Β A , can be composed of k smaller size of

Hankel multiplications, i.e. , 0,1, , 1j i
j k⊗ = −�Β A . For the case that 9m = , 3d = and then 3k = , the

above 1 5× Hankel vectors jΒ ’s are

 0 1 2
0 1 2 3 4 3 4 5 6 7 6 7 8 9 10

[, , , ,], [, , , ,], [, , , ,]b b b b b b b b b b b b b b b= = =B B B

and the Hankel multiplication
i

⊗Β A can be expressed as:

0
0

1
1

22

i

T T

i i i i

i

⎡ ⎤⊗⎡ ⎤
⎢ ⎥⎢ ⎥⊗ = = = ⊗⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⊗⎣ ⎦ ⎢ ⎥⎣ ⎦

B

B B

B

B A

Β A A A B A

B A

Next, for convenience, let jb denotes the d-bit length sub-vectors:

1 1
[, , ,], for 0,1, ,j jd jd jd db b b j k

+ + −
=� � �b (27)

That is, 0 0 1 1
[, , ,]

d
b b b

−

� �b , 1 1 2 1
[, , ,]

d d d
b b b

+ −
� �b , …, 1 1 1

[, , ,]k m d m d m
b b b−

− − + −
� �b and

1 1
[, , ,]k m m m d
b b b

+ + −
� �b . Then, the (2 1)d − -bit length Hankel vectors jB (eq. (26)) can be further ex-

pressed as:

 1 2 1
[, \], for 0,1, , 1j j j jd db j k+

+ −
= = −�B b b (28)

where 1 2 1
\j jd db+

+ −
b denotes removing the lattermost bit

2 1jd db
+ −

 from 1j+b . Beside, the original Hankel

vector B (eq. (20)) can be composed of 1k + sub-vectors as follows:

 0
1 1

[, , , ,]
k k−

= �B b b b b (29)

For the case that 9m = , 3d = and then 3k = , the above jb ’s are 0 0 1 2
[, ,]b b b�b , 1 3 4 5

[, ,]b b b�b ,

2 6 7 8
[, ,]b b b�b and 3 9 10 11

[, ,]b b b�b . The above jB ’s are then:

0 0 10 1 2 3 4 5

1 1 23 4 5 6 7 8

2 2 36 7 8 9 10 11

[, , , ,] [, \]

[, , , ,] [, \]

[, , , ,] [, \]

b b b b b b

b b b b b b

b b b b b b

= =

= =

= =

B b b

B b b

B b b

Notably, all 0
1 1

, , ,
k−

�b b b can be obtained directly from the coordinate bits of the original input vector

B, i.e.
 0 1 1

, , ,
m

b b b
−

� . However,
1 1

[, , ,]
m m m dk
b b b

+ + −
� �b has to be computed from

0 1 1
, , ,

m
b b b

−

� . As

described in Appendix B, when the generating function of GF(2)m is an irreducible trinomial, i.e.

() 1m n

F x x x= + + ,
k

b can be reformed as

0 1 1 1 1
[(),(), , ()]

n n n d dk
b b b b b b

+ + − −
= + + +�b (30)

Thus, the d bits of
k

b can be generated from
0 1 1
, , ,

m
b b b

−

�

with d XOR gates. For the case that 9m = ,

3d = , 3n = and then 3k = , the 3 bits of the vector
3

b can then be generated from
0 1 8
, , ,b b b�

with 3

XOR gates, i.e.
9 10 11 3 0 4 1 5 23

[, ,] [(), (), ()].b b b b b b b b b= + + +�b

Next, a MSD (most significant digit) first scalable dual-basis multiplication algorithm with digit size d

is derived based on the above derivations as follows:

Journal of Computers Vol. 28, No. 1, 2017

95

Algorithm 1:

Input:
0 1 1

[, , ,]
m

a a a
−

= �A ,
0 1 1

[, , ,]
m

b b b
−

= �B

Output:
0 1 1

[, , ,]
m

c c c
−

= =�C AB

1. Initial step:

1.1 Clear output vector C

1.2 Construct vectors , 0,1, , 1
i
i k= −�A , from A according to (17)

1.3 Construct vectors , 0,1, , 1j j k= −�b and kb from B according to (27) and (30), respectively

2. Multiplication step:

2.1 For 1 toi k= do

2.2 Clear vector =E []0 1 1 0 1 1
[, , ,] , , ,

m k
e e e

− −

=� �E E E where
0 1
, ,

k−
�E E are d-bit sub-vectors

2.3 For 0 to 1j k= − do

2.4 Set 1 2 1
[, \]j j j jd db+

+ −
=B b b

2.5 Compute ()
T

jj k i−= ⊗E Β A

2.6 Endfor

2.7 Set ()0
0 1 1

[, , ,] ,
T

k k i− −

⎡= = ⊗
⎢⎣

�E E E E Β A () ()1 1, ,

T T

k
k i k i

−

− −

⎤⊗ ⊗
⎥⎦

�Β A Β A ()
T

k i−
= ⊗Β A

2.8 Set d
α=C C by performing the d-bit left-shifting operation on C according to (23)

2.9 Set ()
T

k i−
= + = + ⊗C C E C Β A

2.10 Endfor

3. Return C

Algorithm 1 implements eq. (21) in MSD first scheme (for PB element A). The PB element A is divided

into k sub-vectors (digits) , 0,1, , 1
i
i k= −�A . The DB element B is divided into k sub-vectors

, 0,1, , 1j j k= −�b , and
k

b is generated. The complete product result vector C is obtained after all k

rounds of computations (outer loop) are performed. In each computation round, k smaller size of Hankel

multiplications (j k i−⊗Β A) are performed (inner loop) to construct the required bigger size of Hankel

multiplication (
k i−

⊗Β A). Note that the k sub-vectors
i

A are fed into the computation process in MSD

first manner (from
1k−

A

to

0
A). Next, an illustrative example for Algorithm 1 is provided as follows:

Example 1. Assume that finite field 9GF(2) is constructed from 9 3() 1F x x x= + + and the digit size d is

set to 3. Namely, 9m = , 3n = and 9 3 3k m d= = =⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ . The original binary input vectors are

0 1 2 3 4 5 6 7 8
[, , , , , , , ,]a a a a a a a a a=A ,

0 1 2 3 4 5 6 7 8
[, , , , , , , ,]b b b b b b b b b=B . Then, according to Algorithm 1,

we get

0 0 1 2 1 3 4 5 2 6 7 8

[, ,], [, ,], [, ,]a a a a a a a a a= = =A A A

and

 0 1 20 1 2 3 4 5 6 7 8
[, ,], [, ,], [, ,]b b b b b b b b b= = =b b b

 3 9 10 11 3 0 4 1 5 2
[, ,] [(), (), ()]b b b b b b b b b= = + + +b

It leads to

 0 0 1 5 0 1 2 3 4
[, \] [, , , ,]b b b b b b= =B b b

 1 1 2 8 3 4 5 6 7
[, \] [, , , ,]b b b b b b= =B b b

A Novel Scalable Dual Basis GF(2m) Multiplier Architecture

96

 2 2 3 11 6 7 8 9 10
[, \] [, , , ,]b b b b b b= =B b b .

Next, 3k = computation rounds, according to Algorithm 1, are required to get the desired binary result

vector =C AB . The vector C is initially set to be a zero vector, i.e. (0)
[0,0,0,0,0,0,0,0,0]=C where

the superscript indicates the serial number of computation round. In round 1,
2

⊗Β A is computed at first:

() () () ()(1) (1) (1) (1)
0 1 22 0 1 2 2 2 2

0 1 2 6 3 4 5 6 6 7 8

1 2 3 7 4 5 6 7 7 8 9

2 3 4 8 5 6 7 8 8 9 10

[, ,] , ,

, ,

T T T T

T T

b b b a b b b a b b b a

b b b a b b b a b b b

b b b a b b b a b b b

⎡ ⎤= ⊗ = = ⊗ ⊗ ⊗
⎢ ⎥⎣ ⎦

⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠

E Β A E E E B A B A B A

6

7

8

T

a

a

⎡ ⎤⎛ ⎞⎡ ⎤
⎢ ⎥⎜ ⎟⎢ ⎥
⎢ ⎥⎜ ⎟⎢ ⎥
⎢ ⎥⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠⎢ ⎥⎣ ⎦

Next, take a 3-bit left-shifting operation on (0)
C :

(0) 3 3

[0, 0, , 0] [0, 0, , 0]α α= =� �C

which is still a zero vector due to that (0)
C is a zero vector. The result of round 1 is the summation of the

above two computation results:

(1) (1) (1) (1) (1) (0) 3 (1) (1)

0 1 2 8[, , , ,]c c c c α= = + =�C C E E

Next, in round 2, similar procedures are performed:
1

⊗Β A is computed at first:

() () () ()(2) (2) (2) (2)
0 1 21 0 1 2 1 1 1

0 1 2 3 3 4 5 3 6 7 8

1 2 3 4 4 5 6 4 7 8 9

2 3 4 5 5 6 7 5 8 9 10

[, ,] , ,

, ,

T T T T

T T

b b b a b b b a b b b a

b b b a b b b a b b b

b b b a b b b a b b b

⎡ ⎤= ⊗ = = ⊗ ⊗ ⊗
⎢ ⎥⎣ ⎦

⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠

E Β A E E E B A B A B A

3

4

5

T

a

a

⎡ ⎤⎛ ⎞⎡ ⎤
⎢ ⎥⎜ ⎟⎢ ⎥
⎢ ⎥⎜ ⎟⎢ ⎥
⎢ ⎥⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠⎢ ⎥⎣ ⎦

(1)
C is then left-shifted with 3-bits:

(1) 3 (1) (1) (1) (1) 3 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)

0 1 2 8 3 4 5 8 3 0 4 1 5 2[, , , ,] [, , , , , (), (), ()]c c c c c c c c c c c c c cα α= = + + +� �C .

Then, take the summation to get the result of round 2:

(2) (2) (2) (2) (2) (1) 3 (2)

0 1 2 8[, , , ,]c c c c α= = +�C C E

Next, in round 3,
0

⊗Β A is computed:

() () () ()(3) (3) (3) (3)
0 1 20 0 1 2 0 0 0

0 1 2 0 3 4 5 0 6 7 8

1 2 3 1 4 5 6 1 7 8 9

2 3 4 2 5 6 7 2 8 9 10

[, ,] , ,

, ,

T T T T

T T

b b b a b b b a b b b a

b b b a b b b a b b b

b b b a b b b a b b b

⎡ ⎤= ⊗ = = ⊗ ⊗ ⊗
⎢ ⎥⎣ ⎦

⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠

E Β A E E E B A B A B A

0

1

2

T

a

a

⎡ ⎤⎛ ⎞⎡ ⎤
⎢ ⎥⎜ ⎟⎢ ⎥
⎢ ⎥⎜ ⎟⎢ ⎥
⎢ ⎥⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠⎢ ⎥⎣ ⎦

(2)
C is left-shifted with 3-bits:

(2) 3 (2) (2) (2) (2) 3 (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)

0 1 2 8 3 4 5 8 3 0 4 1 5 2[, , , ,] [, , , , , (), (), ()]c c c c c c c c c c c c c cα α= = + + +� �C .

The result of round 3 is then obtained:

(3) (3) (3) (3) (3) (2) 3 (3)

0 1 2 8[, , , ,]c c c c α= = +�C C E

This result, i.e. (3)
C , is just the desired product vector =C AB .

Journal of Computers Vol. 28, No. 1, 2017

97

3.3 Proposed Architecture

Based on Algorithm 1, the proposed MSD scalable circuit architecture for dual-basis multiplication over

GF(2)m is constructed (Fig. 1). This architecture is mainly composed of four registers for storing input

vectors A, B, output vector C and product result
k i−

⊗Β A respectively, one kernel d d× systolic Hankel

multiplier, one summation circuit (⊕) and one transformation circuit (d
α block) for vector C. The ker-

nel d d× systolic Hankel multiplier (Fig. 2 (a)) is applied to perform the Hankel matrix-vector multipli-

cation j k i−⊗B A , and is composed of 2
d U-cell. Each U-cell (Fig. 2 (b)) consists of the following digital

logic gates: one AND gate, one XOR gate and two 1-bit latches. Here, the AND gate and XOR gate are

used to multiply and add two bits in GF(2) , respectively. The latches are used for synchronization of the

computation. A corresponding LSD first scalable multiplier architecture had been proposed in [20] which

is a little more complicated then this MSD architecture due to the unavoidable usage of multiplexers and

switch circuits.

Fig. 1. Proposed MSD scalable DB GF(2)m multiplier architecture

(a) (b)

Fig. 2. (a) d d× Systolic Hankel multiplier applied to perform j k i−⊗B A for 4d = ,

(b) Detailed circuit of a U-cell (symbol ● denotes 1-bit latch)

In the proposed MSD multiplier architecture, the sub-vector
k i−

A is sent into the kernel d d× systolic

Hankel multiplier (Fig. 2 (a)) through the d bits
0 1 1

[, , ,]
d

a a a
−

� on the upper side to perform the Hankel

multiplication j k i−⊗B A . In the mean time, the Hankel vector jB is sent into the kernel multiplier

A Novel Scalable Dual Basis GF(2m) Multiplier Architecture

98

through 2 1d − bits
0 1 1 2 2

[, , , , , ,]
d d d

b b b b b
− −

� � on the upper and right sides. Meanwhile, a d-bit zero

vector is sent into the multiplier from the left side. The d-bit product outcome j k i−⊗B A is then obtained

from the d bits
0 1 1

[, , ,]
d

c c c
−

� on the right side of this kernel multiplier.

Back to Fig. 1, register A consists of k d-bit latches (
0 1 1
, , ,

k−
�A A A) and register B consists of 1k +

d-bit latches (0 1 1, , , ,k k−

�b b b b). They all function as circular-shift registers. Register E also comprises k

d-bit latches which are used to store the outputs of the kernel d d× systolic Hankel multiplier, i.e.

0
k i−

⊗B A , 1
k i−

⊗B A , …, 1k
k i

−

−

⊗B A . The
d

α block consists of d XOR gates and is applied to perform

the
d

α transformation for a dual basis vector as described in (23). Register C is then responsible for ac-

cumulating and outputting the result vector C .

As the computation process begins, register C is initially cleared (step 1.1). Register A is stored the k

sub-vectors
0 1 1
, , ,

k−
�A A A which are divided from input vector A (step 1.2). Register B is stored 1k +

sub-vectors, 0
1 1

, , , ,
k k−

�b b b b which are divided and generated from input vector B (step 1.3). Next,

owing to the frequency of the clock signal CLK1 for registers B and E is set to be k times that of the

clock signal CLK2 for registers A and C, k CLK1 cycles occur during one CLK2 cycle. As a result, the k

Hankel multiplication results, i.e. 0
1k−

⊗B A , 1
1k−

⊗B A , …, 1
1

k
k

−

−

⊗B A , are sequentially outputted from

the kernel Hankel multiplier and stored into register E during one CLK2 cycle (step 2.3-2.7). When the

next CLK2 cycle starts, register C has been set to the sum of the d
α transformation of its previous con-

tent and the content of register E (step 2.8-2.9). Meanwhile,
2k−

A is shifted to the top of register A and

sent into the kernel Hankel Multiplier; the second computation round begins. After k computation rounds

completed, the desired result vector
0 1

()T d
α= ⊗ + ⊗ +�C B A B A (1)

1() k d

k
α

−

−

+ ⊗B A (eq. (21)) is then

accumulated in register C.

4 Complexity Analysis

4.1 Time and Space Complexities

The proposed MSD scalable DB multiplier architecture contains one kernel d d× systolic Hankel multi-

plier (Fig. 2 (a)) which consists of 2
d U-cells. Each U-cell (Fig. 2 (b)) consists of one AND gate, one

XOR gate and two 1-bit latches. The summation circuit (⊕) and the d
α block consist of m XOR gates

and d XOR gates, respectively. Additionally, registers A, C and E are all composed of k d-bit latches,

respectively. Registers B then consists of 1k + d-bit latches. Thus, for the proposed MSD scalable DB

multiplier architecture, totally
2

d AND gates,
2

d d kd+ + XOR gates and 2
4 2kd d d+ + 1-bit latches

are required. Table 1 lists these gate counts.

Table 1. Comparisons between various multiplier architectures over GF(2)m

Multiplier Ibrahim et al. [14] Chang et al. [15] Lee et al. [9] Proposed (Fig.1)

Basis Dual Dual Dual Dual

Architecture Digit-serial Digit-serial Bit-parallel Scalable

Space complexity:

2-input AND gate 2
2kd 2

kd 2
m

2
d

2-input XOR gate 2
2kd 2

kd kd d+ + 2
m 2

d d kd+ +

1-bit latch 6kd 2
2 3 1kd kd d+ + − 2

2m m+ 2
4 2kd d d+ +

1to2 SW 0 0 m 0

2 to1MUX d 0 m 0

Critical path delay time 2
A X MUX L

T dT T T+ + +
A X L

T T T+ +
A X L

T T T+ +
A X L

T T T+ +

Latency (unit = cycle) 2k 1kd d k+ + − 2m 2
2 2k d+ −

/k m d= ⎡ ⎤⎢ ⎥ , d: the selected digit size

‘#’ denotes “count of ”; SW: switch circuit, MUX: multiplexer

Journal of Computers Vol. 28, No. 1, 2017

99

As for the computation latency of the proposed scalable multiplier, Algorithm 1 clearly indicates that k

computation rounds and then k Hankel matrix-vector computations in each round are required. Hence,

totally 2
k Hankel matrix-vector computations are required to perform a complete m-bit multiplication.

Each Hankel matrix-vector computation performed with the kernel d d× systolic Hankel multiplier (Fig.

2 (a)) requires a latency of 2 1d − clock cycles (CLK1). Moreover, due to the feedback structure of the

summation circuit for register C, the final resultant vector C is obtained after k computation rounds.

Each computation round involves k clock cycles to let register E be filled with
k i−

⊗Β A (i.e., 0
k i−

⊗B A ,

1
k i−

⊗B A , …, 1k
k i

−

−

⊗B A) and then send this content forward to register C. Thus, the total latency re-

quired to obtain the desired complete result of vector C is 2
2 2k d+ − clock cycles. Additionally, the

critical path delay is the time duration required by each U-cell in the kernel d d× systolic Hankel multi-

plier. This time duration is
A X L

T T T+ + where
A

T ,
X

T and
L

T refer to the time delay of a 2-input AND

gate, a 2-input XOR gate and an 1-bit latch, respectively. Table 1 summarizes the above space complex-

ity (count of logic gates) and time complexity (latency and critical path delay) of the proposed scalable

multiplier architecture where “# 2-input AND gate” means “count of 2-input AND gates”. Similarly, “#

2-input XOR gate”, “# 1-bit latch”, “# 1to2 SW (switch)” and “# 2 to1MUX (multiplexer)” mean re-

spectively the counts of these 4 kinds of logic gates. Table 1 also compares the proposed multiplier archi-

tecture with other non-scalable multipliers (bit-parallel [9] and digit-serial ones [14,15]). According to

this table, the proposed scalable multiplier architecture has a lower space complexity in terms of total

gate count (2()O d) than the non-scalable architectures (2()O m and 2()O kd for bit-parallel and digit-

serial ones, respectively).

4.2 Tradeoff between Throughput and Hardware Complexity

Next, we more closely examine the trade-off between throughput performance and hardware complexity

for a given word length m, where the time-area complexity in terms of product of transistor count and

latency in ns is calculated. The 2-input XOR gate, 2-input AND gate, 1to2 SW (switch) circuit, 2 to1

MUX (multiplexer) and 1-bit latch are composed of 6, 6, 6, 6 and 8 transistors, respectively [21]. Real

circuits such as XOR gate M74HC86 (12ns
X

T =), AND gate M74HC08 (7ns
A

T =), Latch gate

M74HC279 (13ns
L

T =) and MUX gate M74HC257 (11ns
MUX

T =) are utilized to estimate the latency in

ns [22]. Thus, according to Table 1, the total transistor count of the proposed multiplier architecture is

calculated as 2
28 38 14d kd d+ + . Its latency in ns, i.e. the product of critical path delay and latency in

cycles, is 2(7 12 13)(2 2)k d+ + + − ns. In the same manner, the total transistor counts of the digit-serial

multipliers of Chang [15] and Ibrahim [14] are calculated as 2
28 30 14 8kd kd d+ + − and

2
24 48 6kd kd d+ + , respectively. Their latencies are 32(1)kd d k+ + − ns and 2 (7 24 11 13)k d+ + + ns,

respectively. To illustrate the effectiveness of our proposed scalable architecture in performing large size

of m-bit multiplication with substantially smaller d-bit digits in order to achieve adequate security in re-

source-constrained environments such as embedded systems, the five finite fields adopted by ECDSA, i.e.
163GF(2) , 233GF(2) , 283GF(2) , 409GF(2) and 571GF(2) are tested. Fig. 3 (a) shows the total transistor

counts versus selected digit size d for 233GF(2) , indicating that the transistor count of the proposed scal-

able multiplier architecture is always lower than that of the other two digit-serial multipliers. Fig. 3 (b)

illustrates the time-area complexity, i.e. the product of total transistor count and latency in ns, versus

selected digit size d for 233GF(2) . According to this figure, the proposed scalable multiplier architecture

has a lower time-area complexity than the other two digit-serial multiplier architectures when digit size

6d > . A minor limitation is that once d is chosen to be too small (such as 12<), the latency increases

rapidly. For the other four finite fields, i.e. 163GF(2) , 283GF(2) , 409GF(2) and 571GF(2) , similar type of

complexity plots can be obtained, e.g. Figs. 4 (a) and (b) are the plots for 409GF(2) . The superiority of

the proposed multiplier architecture over conventional ones is thus clearly demonstrated. Moreover, ac-

cording to Figs. 3 (b) and 4 (b), the optimal digit size d can be easily selected in practice (18d = for
233GF(2) , and 32 for 409GF(2) , respectively) to achieve the minimal time-area complexity, i.e. the opti-

A Novel Scalable Dual Basis GF(2m) Multiplier Architecture

100

mal trade-off between throughput performance and hardware complexity for the proposed scalable multi-

plier architecture. Table 2 lists the optimal digit size d of the proposed architecture to achieve the mini-

mal time-area complexity for the five GF(2)m adopted by ECDSA. For efforts to implement ECDSA in

resource-constrained environments such as smart cards and embedded systems with the proposed scal-

able multiplier architecture, Table 2 provides a valuable reference.

(a) (b)

Fig. 3. (a) Transistor count versus digit size d for 233GF(2) ,

 (b) Time-area product versus digit size d for 233GF(2)

Table 2. Optimal digit size d of the proposed multiplier for GF(2)m adopted by ECDSA

m 163 233 283 409 571

dopt 15 18 26 32 36

(a) (b)

Fig. 4. (a) Transistor count versus digit size d for 409GF(2) ,

 (b) Time-area product versus digit size d for 409GF(2)

5 Conclusions

This work develops a novel low-complexity scalable architecture for dual basis multiplications over

GF(2)m . The proposed multiplier architecture is derived from the Hankel matrix-vector representation of

dual basis multiplication. Due to its scalability, this architecture can perform m-bit multiplications with

substantially smaller d-bit digits, and thus is feasible for implementing ECC cryptosystems such as

ECDSA in resource-constrained environments such as embedded systems and smart cards. Analytical

results exhibit that both area and time-area complexities of the proposed scalable architecture are

substantially lower than those of the non-scalable architectures. Besides, this scalable architecture can

Journal of Computers Vol. 28, No. 1, 2017

101

achieve a satisfactory trade-off between hardware complexity and throughput performance by

appropriately selecting its digit size. The proposed architecture is also highly promising for VLSI

implementations due to its regularity, modularity and concurrency. As for the future work, we would like

to implement our scalable architecture on a real FPGA development board and verify its effectiveness.

Furthermore, a real VLSI chip implementation is also an interesting future work.

References

[1] D.E.R. Denning, Cryptography and Data Security, Addison-Wesley Longman Publishing Co., Reading, 1983.

[2] A. Menezes, P.V. Oorschot, S. Vanstone, Handbook of Applied Cryptography, CRC Press, 1996.

[3] M.Y. Rhee, Cryptography and Secure Communications, McGraw-Hill, Singapore, 1994.

[4] N. Kobliz, Elliptic curve cryptography, Math. Computation 48(1987) 203-209.

[5] National Institute for Standards and Technology, Digital Signature Standard, FIPS Publication 186-2, 2000.

[6] I.S. Hsu, T.K. Truong, L.J. Deutsch, I.S. Reed, A comparison of VLSI architecture of finite field multipliers using dual,

normal, or standard bases, IEEE Transactions on Computers 37(1988) 735-739.

[7] S.T.J. Fenn, M. Benaissa, D. Taylor, GF(2m) multiplication and division over the dual basis, IEEE Transactions on Com-

puters 45(1996) 319-327.

[8] C.W. Wu, M.K. Chang, Bit-level systolic arrays for finite-field multiplications, The Journal of VLSI Signal Processing

10(1995) 85-92.

[9] C.Y. Lee, J.S. Horng, I.C. Jou, Low-complexity bit-parallel multiplier over GF(2m) using dual basis representation, Journal

of Computer Science and Technology 21(2006) 887-892.

[10] C.Y. Lee, C.W. Chiou, Efficient design of low-complexity bit-parallel systolic Hankel multipliers to implement multiplica-

tion in normal and dual bases of GF(2m), IEICE Trans Fundamentals E88-A(2005) 3169-3179.

[11] A. Reyhani-Masoleh, M.A. Hasan, Low complexity bit-parallel architectures for polynomial basis multiplication over

GF(2m), IEEE Transactions on Computers 53(2004) 945-959.

[12] C.Y. Lee, Low complexity bit-parallel systolic multiplier over GF(2m) using irreducible trinomials, IEE Proceedings Com-

puters and Digital Techniques 150(2003) 39-42.

[13] C.H. Kim, C.P. Hong, S. Kwon, A digit-serial multiplier for finite field GF(2m), IEEE Transactions on Very Large Scale

Integration (VLSI) Systems 13(2005) 476-483.

[14] M.K. Ibrahim, A. Aggoun, Dual basis digit serial GF(2m) multiplier, International Journal of Electronics 89(2002) 517-523.

[15] P.L. Chang, L.H. Chen, C.Y. Lee, Low-complexity dual basis digit serial GF(2m) multiplier, ICIC Express Letters 3(2009)

1113-1118.

[16] A.F. Tenca, C.K. Koç, A scalable architecture for modular multiplication based on Montgomery’s algorithm, IEEE Trans-

actions on Computers 52(2003) 1215-1221.

[17] C.Y. Lee, C.W. Chiou, J.M. Lin, C.C. Chang, Scalable and systolic montgomery multiplier over GF(2m) generated by

trinomials, IET Circuits, Devices & Systems 1(2007) 477-484.

[18] C.Y. Lee, C.W. Chiou, Scalable Gaussian normal basis multipliers over GF(2m) using Hankel matrix-vector representation,

Journal of Signal Processing Systems 69(2012) 197-211.

[19] M. Morii, M. Kasahara, D.L. Whiting, Efficient bit-serial multiplication and the discrete-time wiener-Hopf equation over

finite fields, IEEE Transactions on Information Theory 35(1989) 1177-1183.

A Novel Scalable Dual Basis GF(2m) Multiplier Architecture

102

[20] L.H. Chen, P.L. Chang, C.Y. Lee, Y.K. Yang, Scalable and systolic dual basis multiplier over GF(2m), International Journal

of Innovative Computing, Information and Control 7(2011) 1193-1208.

[21] S.M. Kang, Y. Leblebici, CMOS Digital Integrated Circuits: Analysis and Design, McGraw-Hill Professional, New York,

2002.

[22] STMicroelectronics, Logic Selection Guide. <http://www.st.com>

Journal of Computers Vol. 28, No. 1, 2017

103

Appendix A: Effect of Multiplying Dual Basis Vector by d
α

The effect of multiplying a dual basis element vector by d
α is derived as follows: Suppose that there is a

dual basis element vector
0 1 1

[, , ,]
m

e e e
−

� �E whose corresponding dual basis element is

0 0 1 1 1 1m m
E e e eβ β β

− −

+ + +� � . Now, multiplying vector E by d
α , i.e. d

αE , implies multiplying element

E by d
α , i.e.

0 0 1 1 1 1
()d d

m m
E e e eα β β β α

− −

= + + +� . The j-th coordinate of d
Eα can thus be obtained,

based on Definition 1, as

 () (()) () , for 0,1, , 1d j d d j

j d jE Tr E Tr E e j mα γα α γα
+

+
= = = = −�

Thus, we get the vector d
αE as

1 1 1
[, , , , , ,]

d

d d m m d m
e e e e eα

+ − + −
= � �E

From the above equation, it is clear that the effect of multiplying vector E by d
α is just a d-bit left-

shifting operation on vector E . The latter part of coordinates, i.e. the d shifted-in bits,
1 1

, , ,
m m m d
e e e

+ + −
� ,

are defined as (),m i

m i
e Tr Eγα

+

+
� 0,1, , 1i d= −� . When the generating function of GF(2)m is an irre-

ducible trinomial, i.e. () 1m n

F x x x= + + , these bits can be computed as follows: Let α be the root of F(x),

then 1
m n

α α= + which leads to

()() () (1)

() () , for 0,1, , 1

m i m i n i

m i

n i i

n i i

e Tr E Tr E Tr E

Tr E Tr E e e i d

γα γα α γ α α

γα γα

+

+

+

+

= = = +

= + = + = −�

 (A1)

If n and d are selected to satisfy the condition

0 , 2n d m< ≤ ⎡ ⎤⎢ ⎥ , then we get 1 1n d m+ − ≤ − . As a result,

from (A1), the lattermost d bits of d
αE can be reformed as

1 1 0 1 1 1 1
[, , ,] [(),(), , ()]

m m m d n n n d d
e e e e e e e e e

+ + − + + − −
= + + +� �

Namely, these d bits can be generated from the coordinate bits of the original vector E , i.e.

0 1 1
, , ,

m
e e e

−

� , with d XOR gates since the addition of two bits in GF(2) can be performed by a XOR

gate. The whole d
αE vector can thus be expressed as

1 1 0 1 1 1 1
[, , , , (),(), , ()]d

d d m n n n d d
e e e e e e e e eα

+ − + + − −
= + + +� �E

Appendix B: Generating
k

b from
0 1 1
, , ,

m
b b b

−

�

For sub-vector
1 1

[, , ,]
m m m dk
b b b

+ + −
= �b , when the generating function of GF(2)m is an irreducible tri-

nomial, i.e. () 1m n

F x x x= + + , then

()
() ()

(1) () () , for 0,1, , 1

m i m i

m i

n i n i i

n i i

b Tr B Tr B

Tr B Tr B Tr B b b i d

γα γα α

γ α α γα γα

+

+

+

+

= =

= + = + = + = −�

where α is the root of F(x). Thus,

1 1 0 1 1 1 1
[, , ,] [(),(), , ()]

m m m d n n n d dk
b b b b b b b b b

+ + − + + − −
= = + + +� �b

When n and d are selected as

0 , 2n d m< ≤ ⎡ ⎤⎢ ⎥ , we get 1 1n d m+ − ≤ − which leads to the d bits of

k
b

can be generated from
0 1 1
, , ,

m
b b b

−

�

with d XOR gates.

A Novel Scalable Dual Basis GF(2m) Multiplier Architecture

104

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

