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Abstract. Pointing at optimization design of hull form based on SBD (simulation based design) 

technology, a new neural network approximation technique is proposed. First, through using 

PSO (particle swarm optimization) algorithm training FRBF (flexible radial basis function) neu-

ral network weights, PSO-FRBF neural network algorithm is proposed. By comparison and 

analysis of the wave resistance coefficient of different methods, applicability and superiority of 

the new algorithm is proved. Then, Wigley hull is taken as example, with the principal dimen-

sions and parameters as design variables, and variation of displacement as constraint condition, 

the total resistance optimization model is established through introducing PSO-FRBF wave re-

sistance coefficient approximation model. Then the simulated annealing algorithm is used in the 

ship hull optimal design, and a reliable and reasonable optimized ship hull is obtained. The new 

neural network can provide fine technical support for related ship optimization design stage. 

Keywords: approximate accuracy,  FRBF neural network, hull form optimization, PSO algorithm 

1 Introduction 

Ship hull optimization is the core section of ship preliminary design which is related to the comprehen-

sive performances. The traditional method that mainly points at resistant performance optimization for 

more type ship and a guidance for modifying ship hull according to designer’s experience .So the design 

dominated by experience which lacks of scientific and systemic evaluation system [1-2], as in Fig. 1. In 

recent years, with the development of computer technology and the progress of numerical calculation, 

Computational Fluid Dynamics (CFD) plays more important part in the field of ship performance calcu-

lation. Combining optimization techniques with CFD technology, development of design based on simu-

lation technology (SBD) [3] takes the ship optimization design into a new situation, which reflects the 

advanced thought “design driven by performance”, as in Fig. 2.  

For complex engineering optimization design, it is almost impossible to perform the high precision 

CFD solver in every step of the optimization. Approximate model is used to replace the real calculation 

model, so that to get the optimization solution that satisfied engineering precision under the time of al-

lowing calculation, which becomes an effective way of solving this problem [4]. So efficient and accu-

rate approximation technique is necessary for effectively applying SBD to optimization design of ship, 

namely through the establishment of approximate model of ship performance calculation to solve some 

problems causing by high-precision CFD solver in the process of optimization such as response time, 

high calculation cost and so on. 

Artificial neural networks with distributed parallel processing, nonlinear mapping, adaptive learning 

and robustness characteristics, which makes it in sample fitting, regression analysis, data mining, etc. are 

widely used. BP neural network technology becomes one of the typical approximation techniques cur-

rently because of its excellent ability to approximate nonlinear function, but the network is more sensitive 

in initial setting of the internal parameters, namely robustness is poor, Zhang Haipeng used the new neu-

ral network algorithm (IPSO-BP) caused by built the improved PSO optimization algorithm (IPSO)in  
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Fig. 1. Traditional ship hull design pattern 

 

Fig. 2. Ship hull optimization design based on SBD 

the BP (back propagation) neural network in the formation of a Marine-scale modeling, demonstrated 

ISPO-BP’s the effectiveness and superiority. Radial basis function (RBF) neural network have been 

widely used in the fields of modeling and control of nonlinear systems because of its unique topology 

and global approach capabilities [5]. But RBF neural network design robustness to the practical applica-

tion of the generalization ability is limited, so the development of high applicability of self-organizing 

RBF neural network is significant. Yingwei [6] who introduced deletion policy to adjust the network 

topology proposed minimum resources (MRAN) neural network, but the lack of synchronization adjust-

ment of internal parameter led to slow convergence speed of the network. By introducing optimization 

algorithm the size of RBF network structure optimization is an effective way to improve network per-

formance [7-8], but the optimization process lead to the structure of the network to pay lengthy computa-

tional cost. Growth trim type RBF (GGAP-RBF) neural networks [9] based on the importance increase or 

decrease the number of neurons in the hidden layer and thus design network structure, but the selection of 

initial parameters is closely related to the global sample data, which to some extent limits its practical 

application. Flexible RBF (FRBF) neural networks [10] based on neuron’s activity and repair guidelines 

to adjust network structure, while achieving internal self-correcting of network parameters, and can en-

sure the convergence of the network structure in the dynamic changes, can overcome many shortcomings 

such as long computing time of self-organizing RBF neural network, poor ability of internal parameter 

adjustment and poor convergence. However, with the rapid descent method conventional FRBF trained 

internal weight, which will bring the shortcomings that the iterative process is easy to fall into local 

minimum and poor robust. 
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In this paper, particle swarm (PSO) optimization algorithm is used instead of rapid descent method of 

traditional FRBF neural networks to train connection weights, optimizing traditional FRBF training proc-

ess and proposing FRBF neural network algorithm based on PSO (PSO-FRBF). By comparison and 

analysis of the wave resistance coefficient of different methods, applicability and superiority of the new 

algorithm is proved. Then, Wigley hull is taken as example, with the principal dimensions and parame-

ters as design variables, and variation of displacement as constraint condition, the total resistance optimi-

zation model is established through introducing PSO-FRBF wave resistance coefficient approximation 

model. Then the simulated annealing algorithm is used in the ship hull optimal design, and a reliable and 

reasonable optimized ship hull is obtained. The new neural network can provide good technical support 

for related ship optimization design stage. 

2 FRBF Neural Network 

Radial basis function (RBF) neural network that mainly referenced biological local regulation and over-

lapping acceptance of regional knowledge, is kind of artificial neural network which employed local re-

ception area for executing the function mapping. The basic structure of RBF is denoted as a three-level 

feedforward network, that including input layer, hidden layer and output layer, shown in Fig. 3. 

 

Fig. 3. Radial basis function neural networks 

Radial basis function (RBF) neural network technology becomes one of typical approximation tech-

nologies because of its excellent ability to approximate nonlinear function. The output of RBF neural 

network is as follows: 
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Where: 
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2x x x≤ ≤  is the central value of the kth neuron, 
mn

A  is its variance. 

The definition of the mean square deviation of RBF Neutral Network is defined as formula 3: 
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Where: 
d
y is the expected value of the output of the network, y is the actual output value, T is the step 

value of the network. 

Though RBF Neutral Network possesses its own topological structure to achieve global approximation 

capability, its inner structure needs to be adjusted to adapt to various application problems. Otherwise, 

RBF neural network approximation ability is related with the number of hidden layers, the number of 

hidden layer neurons, initial connection weights of the network, learning rate and other factors, the net-

work is sensitive to the initial setting of the internal parameters, namely robustness is poor, so for popula-

tion samples with obvious nonlinear characteristics, it’s not easy to obtain approximation model excellent 

in learning precision and approaching capability in a short time .Thus, it is of great significance to realize 

the self organizing function of RBF Network. Based on the liveness and restoration of each neuron, 

FRBF Network [10] can modulate its inner structure on its own, plus, it can realize the self correcting of 

the inner parameters of the net work. Its excellent ability of self organizing made it possible to be applied 

in diverse problems. 

The definition of the liveness of neuron k in the concealing layer of FRBF is as follows: 
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Where: 
0

∇  is the smaller real to avoid that when ( , )y x z  equals to zero the formula has no solution. 

The restoration principle of FRBF Neutral Network is put forward according to biological nervous sys-

tem. The joint strength between two neurons can be described as formula 5: 

 ( ; ) ( ) ( | )M X Y H X H Y X= −  (5) 

Where: fR is the Shannon entropy [11] of neutron X, 
pv

R  is the entropy of neutron Y based on the 

condition of X. 

When ,S  the strength of interactive information can be shown as formula 6: 
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The value of m reflects the dependency of neutron X and Y. Larger value m presents that the interactive 

information is strong, and then its joint strength can be enhanced. While smaller value m or when value m 

approaches zero depicts weak interactive information. Thus, the connection can be broken to avoid com-

plicated non-essential structure. This modulating method can be named as FRBF Neutral Network resto-

ration principle. 

FRBF Neutral Network is operated due to the following procedures: 

STEP 1: Judging the liveness of neutrons according to formula 4, then split the active neutrons to pro-

duce new neutrons of high liveness. 

STEP 2: Using the restoration principle above to adjust the structure of the network to avoid non-

essential structure, which eventually enhance computational efficiency. 

STEP 3: Modulating the connection weight of neutron k in the concealing layer, central value and var-

iance, the paper takes in formula 7 as follows: 
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is the weight vector, Re  is the output vector, 
m

A  is the step of parame-

ters in [0,1], 
r

L , the error of each step is shown in formula 8: 
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While operating the algorithm, it is necessary to judge and adjust due to this to increase the computing 

efficiency. The flexible modulating mechanism of FRBF Neutral Network is close to the process mode of 

nerve cells in human’s head. Thus, it possess high bionic which means it has more advantages than nor-

mal self organization neutral network. 

3 PSO-FRBF Neural Networks 

By the formula (7) shows, the connection weights training of FRBF algorithm is based on the fast descent 

method, and therefore it has the following drawbacks [12]: 

(1) Gradient descent when searching the current best value is easy to fall into local minimum, resulting 

in reduction of the results’ accuracy; 

(2) Long training time, hard to convergence; 

(3) Network robustness, sensitive the results for parameters. 

In response to these shortcomings, we introduce particle swarm (PSO) optimization algorithm [13], 

and propose neural network FRBF (PSO-FRBF) based on PSO training, shown in Fig. 4. PSO optimiza-

tion algorithm based on bionic modern group theory, whose optimization process has many advantages 

than rapid descent method with wide range, multi-direction and the degree of group collaboration. So 

using PSO algorithms to substitute rapid descent method of FRBF algorithm to train connection weights, 

which can improve FRBF Neural network performance, improve training efficiency, and avoid local 

minima, enhance the generalization capability of the network. 

In the PSO algorithm, the properties of particles include speed and position. Dimensional particle ve-

locity vector for each individual shall not exceed the maximum limit speed vmax (vmax> 0). Position vector 

is defined by connection weights and threshold of hidden layer neurons with FRBF network. 

Traditional learning factor of PSO algorithm is usually chosen to a constant based on experience, the 

learning factor of IPSO optimization algorithm is changed based on the “S”-type curve with an iterative 

process, such as formula (9), thereby allowing the particle swarms have big “cognitive” section in the 

early iterations, and in later iterations with large “social” section, at the same time the change of two are 

fairing smooth, to a greater extent to ensure algorithm converge to the global optimal solution. 
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Fig. 4. Flow chart of PSO-FRBF 

Where: c1 and c2 represent learning factors of PSO algorithm’s “cognitive” section and the “social” 

section respectively, a is a parameter that can control the degree of both the decline easing; kmax is the 

maximum number of iterations, k is the current iteration number. 

Particle group fitness used FRBF algorithm at each time step mean square ( )MSE t , PSO optimization 

models is shown as the formula (10): 
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4 The Establishment of C
w
 Neural Network Model 

4.1 Sample Generation  

This paper is based on the mathematical Wigley hull in low speed section (Fr = 0.2) to optimized of the 

main dimensions and type line, using Michell integral method [14] which has higher accuracy for low-

speed thin resistance prediction to calculate the wave resistance coefficient
w

C . Due to its long time of 

numerical calculation, we need to establish neural network model which approximately forecasts wave 

resistance coefficient 
w

C with suitable accuracy. 

The design variables are determined for the main dimensions and the overall shape of the ship, where 

the main dimensions are shown by the waterline length L, water width B, draft T; Hull shape is repre-

sented as the original data points
0
( , )y x z  multiplied by ship modification function ( , )x zω [15], as shown 

in equations (11) and (12): 
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Where: ( ) ( , )f ay p z  indicates the changed lateral half of the data points, both in the cross-section of the 

interface; ( , )p zω is the ship hull modify function, which
max

/ 2p L= ,
0 0

0p z= = ,
0 max

2p p p≤ ≤ ; 
mn

A is 

the control variables which indicates the changes range that is , 1,2,3m n =  and therefore a total of 

nine
mn

A , avoiding directly using data points as a design variable, so that effectively reducing the dimen-

sion of the optimization problem. Therefore, the design variables of this article are: L, B, T, 

( , 1,2,3)
mn

A m n = and a total of 12. 

It shows a total of 12 input variables, 1 output variables. We require a lot of experimental design point 

(the training of the sample) located in the design space when training the neural network. The quantity 

and distribution of the neural network the degree of uniformity directly affects its accuracy. Michell nu-

merical integration method is used to generate 800 samples, of which 400 for network training, and the 

remaining 400 for testing network generalization. 

4.2 Training and Testing of Neural Network 

For comparative analysis, we respectively use: (1) RBF network method, (2) FRBF network method, (3) 

PSO-FRBF network method shown in Fig. 4 for training sample to built 
w

C  neural network model. 

The parameters of the method chosen as follows: Three types of neural network layers are 3, the num-

ber of input layer, an intermediate layer and output layer neurons are (12, 6, 1), the convergence thresh-

old mean square MSE = 1×10-7, the maximum iteration number is 3000; RBF and FRBF method used 

rapid descent method to train weights, using gradient descent method to train center neurons value and 

variance. PSO-FRBF method, the number of initial particles is 100, and learning factor is 0.5. 

Testing the trained neural network which using generated samples, the results of comparison of the fit-

ting are shown in Fig. 5; error curve is shown in Fig. 6, the error err is shown as formula (13); The train-

ing of various types of neural networks is shown in Table 1. 

 ( )0 0w w w
err C C C= −  (13) 

Where 
0w

C  is test sample values, 
w

C  is calculated values. 

Table 1. Neural networks’ training situation 

Network Training step Training time (s) Target MSE MSE 

RBF 3000 482 1×10-7 4.2×10-3 

FRBF 3000 461 1×10-7 8.7×10-7 

PSO-FRBF 1215 170 1×10-7 9.9×10-8 

 

It shows in Fig. 5 the various types of network can simulate the distribution of samples of the general 

trend, but the accuracy is different; error distribution of Fig. 6 illustrates the PSO-FRBF algorithm has 

higher simulation accuracy. 

PSO-FRBF network has many advantages in the aspects of establishing the wave resistance coefficient 

approximate models, in which having high simulate precision, fast speed, good stability and reliability, 

effectively out of the local minimum, and has broad prospects in the field of ship optimization application. 

5 Ship Hull Optimization 

5.1 Introduction of Ship Optimization  

Ship concept design is on the top of overall design process, via the creation and evaluation of mounts of 

projects, the optimal project baseline can be obtained. Development of naval ship optimization model 

provides the quality platform for ship integrated design. As the core, optimization model can combine  
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Fig. 5. Test results comparison Fig. 6. Test results error comparison 

appropriate optimization algorithm to generate mounts of projects from predetermined design space, then 

combining evaluation method, the optimal design baseline can be quickly formed for further detailed 

design. 

Ship optimization model is used as the key progress in stage of naval ship concept design and projects 

evaluation, which supports the spiral design and evaluation software model. It is composed by the overall 

performance evaluation module, analysis of the projects feasibility analyzing module, evaluation module 

(including evaluation of efficiency, risk and cost), that the group of modules has the data coupling rela-

tionship. Optimization model takes the main system projects and design constraints as input, and naval 

ship projects which are expressed by a series of design variables as output.  

The optimal process contains these key technologies: establishment technology of accurate ship opti-

mization model, quick creation of ship projects based on optimization algorithm technology, and multiple 

projects evaluation technology. Among these technologies, optimization model establishment need 

mounts of the empirical data and real ship test accumulation, and abundant optimization model library 

has been developed since the development of integrated design mode for more than half a century. There-

fore the two key technologies after are concerned here and research will be done from intelligent optimi-

zation and evaluation algorithm 

5.2 Establish of Optimization Model  

Design Variable. In this paper, the design variables are identified by whole ships’ principal dimensions 

and the overall shape of a ship, in which the principal dimensions are represented by the waterline length 

L, waterline width B, draft T; The modification of the hull shape can represented by the original data 

points
0
( , )y x z multiplied hull modification function ( , )x zω , as shown in equations (14) and (15): 
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Where : ( ) ( , )f ay x z represents before (after) half of the lateral data points of the hull after changed, both 

in the mid ship-section of the interface; ( , )x zω is modification function of hull form, which
max

/ 2x L= , 

0 0
0x z= = ,

0 max
2x x x≤ ≤ ;

mn
A is to characterize the magnitude of the control variables, in this paper m, 

n=1,2,3, therefore a total of nine 
mn

A ,thus avoiding using direct data points as a design variable, effec-

tively reduces the dimension of the optimization problem. 

Therefore, the design variables of this article are: L, B, T, and ( , 1,2,3)
mn

A m n = ; Definition of changes 

of the design variables (design space) is according to equation (16): 
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Where: 
iup

V and
ilow

V  are on behalf of each design variables’ upper and lower limits respectively, 
0i

V  is 

the female value of the corresponding variable, α  is the control parameter, in the paper takes 0.2. 

Constraint Condition. Constraint condition is shows as equation (17): 
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Where: ∇  and 
0

∇  are optimal and initial hull form’s volume, which can be calculated utilizing Simp-

son method according to data points ( , )y x z ; ε  is a small amount, to ensure that the displacement volume 

of optimized ship is not below the lower limit: 
0

(1 )ε∇ ≥ − ∇ , in this paper takes 0.6%. The constraint 

condition ensures the feasibility of the optimization program, and can achieve drag down on the premise 

of not change much displacement volume. 

Objective Function. In this paper, using the total resistance
t

R as the objective function, according to 

Hughes viewpoint, the total resistance is divided into wave - making resistance 
w

R , frictional resis-

tance fR , and viscous pressure resistance 
pv

R , namely: 

 ( )21

2
t w f pv w f pvR R R R U S C C Cρ= + + = + +  (18) 

Where: U  is the speed, S  is wet surface area. 

In this paper, the low-speed boat (F r <0.3) were optimized using the Michell integral method to calcu-

late the wave making resistance coefficient 
w

C , because the form is simple and for low-speed ship has a 

higher resistance prediction accuracy; frictional resistance coefficient fC uses 1957ITTC formula; the 

viscous pressure resistance coefficient 
pv

C using Baptista milk formula, such as equation (19) as follows: 
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Where: Re is Reynolds number, 
m

A  is the mid-ship section area, 
r

L  is run length, in this paper takes 

/ 2L . 

Usually the optimization of hull form is only for one design speed; due to the change of resistance with 

speed (or the Froude number Fr) often show significant nonlinear, this approach does not reflect the hull 

form of drag reducing demand for other speeds, with some limitations. Fr=0.20 is commonly used in the 

navigation of ships, which can represent typical low speed, and it is necessary to select a certain number 

of other values around it. In order to optimize the ship can have better resistance performance at different 

speeds, in this paper aiming at four Froude number (Fr = 0.1, 0.15, 0.2, 0.25) in the low speed range of 

the resistance were calculated, and the weighting to be integrated, such as formula (20). 
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Where: 
all

R  is the total resistance of 4 Fr after integration; ( )
ti r

R F is the total resistance of each Fr; 

i
γ is the different weights, reflecting the importance of different speed, to meet 1

i
γ =∑ , The weight 

needs to be settled targetedly according to the different design objectives of different practical problems. 

In this paper, as an example, considering that the economic speed in the sailing is most commonly used, 
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therefore the Fr of economic speed under the corresponding weight is set to the maximum, for this reason, 

weights are taken as 0.1, 0.2, 0.5, and 0.2. 

And using penalty function to integrate the constraint condition (4) into the optimization goal, then ob-

tain the optimal model, as shown in the formula (21): 

0

1 2
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min ( ) min max 0, max(0, )
all

Fitness V R M M yε
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Where: V is design variables set, Fitness represents optimization objective, namely the fitness func-

tion value; γ is weights of different Froude numbers, 
1

M , 
2

M  is the penalty coefficient. In order to make 

the algorithm can clearly identify the infeasible solutions beyond the constraints and eliminate them af-

terwards, penalty coefficient is usually a very large number; therefore, it is set as 1000 in this paper. 

5.3  Wigley Hull Optimization 

Wigley hull is taken as example, Wigley hull function is shown as formula (22). 
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Where x, y, and z are coordinates of all data points. The number of waterline and station line is taken to 

11.  

Fitness value decline curve of optimization iterative process is shown in Fig. 7. Comparative cross-

sectional line of optimized ship and parent ship is shown in Fig. 8. 

The optimal design variables are: [2.04, 0.239, 0.103, 0.08, 0.09, 0.15, 0.14, 0.14, 0.15, 0.13, 0.05, 

0.09]. Thus the optimized ship has a large width and shallow draft, which can ensure a substantially con-

stant displacement and a fine resistance performance, and this result shows the effectiveness of optimiza-

tion method. 

From Fig. 7, optimization process can be seen, which shows that the iterative process almost stopped 

nearby 300 steps, thus the ship hull optimization method is effective for calculation, and total resistance 

of the ship optimization effect is obvious. Fig. 8 shows that, optimal ship hull changes greatly: optimized 

ship has a large width and shallow draft, which can ensure a substantially constant displacement; three 

cross-sectional line of stem slightly inward depression, leading to thin shape of stem, so that the inlet 

angle decreases, header wave resistance slows, which help to reduce the wave resistance. Compared with 

parent ships, it is thinner, which can make the ship having more streamlined feature and help to reduce 

viscous pressure resistance. Thereby it indicates that the optimization method is reasonable. 

  

Fig. 7. Iterative curves of optimization Fig. 8. Section lines of optimal and original 
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6 Conclusion 

In this paper, particle swarm optimization (PSO) algorithm is used instead of rapid descent method of 

traditional FRBF neural networks to train connection weights, optimizing traditional FRBF training proc-

ess and proposing FRBF neural network algorithm based on PSO (PSO-FRBF). By comparison and 

analysis of the wave resistance coefficient of different methods, applicability and superiority of the new 

algorithm is proved. And PSO-FRBF approximate model of wave resistance is introduced to optimization 

process based on SBD, obtaining a smooth rational optimization ship, which proved the accuracy of ap-

proximate models that established by PSO-FRBF and the feasibility of the main scale ship models’ the 

joint optimization method. The new neural network can provide good technical support for related ship 

optimization design stage. In the future, the properties of the neural network and applicability of different 

optimization algorithms are expected to be studied. 
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