
Journal of Computers Vol. 28, No. 1, 2017, pp. 149-166 

doi:10.3966/199115592017022801012 

149 

QBand: Indicating the Implementation 

Distribution of QoS-based Web Service 

Composition Solutions 

Gang Wang1, Zhen-Zhong Zhang2 

1 Department of Computer Science and Technology, Tongji University 

Shanghai 

f_lag@buaa.edu.cn  

2 Institute of Information Engineering, Chinese Academy of Sciences 

Beijing 

Received 16 September 2015;  Revised 30 March 2016;  Accepted 16 April 2016 

Abstract. Considerable researches focus on the improvement of the algorithms of service com-

position while ignoring the flexibility of users to set QoS constraints. Most of them assume that 

users could specify QoS constraints easily. But in reality, there are more considerations in set-

ting QoS constraints. One of them is that a user wants to know the QoS situation of service 

composition solutions which implement the user’s task based on candidate web services avail-

able in the market. Then he can consider both QoS requirements expectations and actual QoS 

implementation levels to set QoS constraints. So we propose a data structure QBand to provide 

more information on QoS implementation levels of current web service compositions imple-

menting the user’s task. It calculates two aspects of information: 1) the QoS boundary of the 

service composition solutions implementing the task based on QoS data of candidate web ser-

vices, 2) the numbers of the service compositions available for each value in QoS boundary. 

QBand provides users an overview of current QoS implementation levels of service composition 

solutions for the users’ task, to assist users during setting QoS constraints. The algorithm can 

also be used for quantitive attributes of other composite system.  

Keywords: QoS implementation levels, requirements engineering, service composition, statisti-

cal description 

1 Introduction 

SOA (Service-Oriented Architecture) is a popular development paradigm for information systems, by 

coupling various web services loosely and quickly to alter business processes of enterprises to meet new 

requirements. Web services as a basic technology for SOA have been more and more used. With con-

tinually increasing web services provided on the Internet, functionally similar web services inevitably 

emerge, and NFRs (Non-Functional Requirements), often called QoS (Quality of Service), play a key 

factor in web service selection. A user’s task may have multiple sub-tasks, and each sub-task could be 

implemented by multiple web services, called candidate web services for a sub-task. For one from the 

candidate web services may be better than the other in one or more QoS attributes or vice versa, there is 

not a unique solution by selecting from these candidate web services for each sub-task and composing of 

them to implement the user’s task. So the user’s QoS constraints and preferences on the task are added to 

differentiate between solutions. Considering QoS, web service composition is a MCDM (Multiple-

Criteria Decision Making) problem, and the criteria herein are QoS attributes, some attributes of which 

may conflict such as cost and performance [1]. The cheapest composition solution of web services may 

usually not have the best performance. It needs to tradeoff among QoS attributes, so finding a solution of 

web service composition to satisfy the user’s QoS requirements is an optimization problem, called QoS-

based web service composition.  



QBand: Indicating the Implementation Distribution of QoS-Based Web Service Composition Solutions 

150 

The process of QoS-based web service composition contains two parts: one is that users set QoS re-

quirement constraints, and the other is that service composition algorithms search for the optimization 

solution to meet QoS constraints. The setting of QoS constraints affects whether the service composition 

algorithms can find the solution the users want. But current research in QoS-based web service composi-

tion focus on web service composition algorithms 0-0, due to the complexity of the combinational opti-

mization problem caused by a large number of web services with different QoS characteristics available. 

Most of them support QoS constraints, but weak facilities are provided to help users to set QoS con-

straints. There are considerations in setting QoS constraints in reality. One of them is that a user wants to 

know the QoS situation of service composition solutions which implement the user’s task based on can-

didate web services in the market. Then he can consider both QoS requirements expectations and actual 

QoS implementation levels to set QoS constraints.  

The above consideration comes from three following situations. First, consider a user wants a service 

composition of response time for a task less than 50 milliseconds. It may happen that no service composi-

tion solution is found if the implementation level of response time of current service composition on the 

web has not reach lower than 50 milliseconds. What’s the lowest response time of current service com-

position on the web for the task? The user wants to know whether the lowest response time is acceptable. 

If it is acceptable, the user adjusts his QoS constraints according to current actual QoS implementation 

levels for getting a service composition solution. Second, consider a user imposes a constraint on re-

sponse time for a task less than 1500 milliseconds. The response time implementation level of the solu-

tion found by web service composition algorithms may not be the cost-effective mainstream implementa-

tion level although the solution might have the other best QoS attributes such as the lowest cost. What’s 

the range of the mainstream implementation level of response time of current service composition for the 

task? The user doesn’t know the range. Third, the user may have ambiguous QoS requirements [7], he 

may just want the composition of web services in one QoS implementation level such as in low QoS, 

medium QoS or high QoS according to his economics. The situation is noticeable in the case of widely 

used services, such as hotel booking, weather forecast services. But the user doesn’t know what ranges 

these QoS implementation levels are, thus doesn’t set the QoS constraints.  

All in all, all these are caused by that the user is not clear about QoS implementation levels of current 

service compositions. It is required that a facility to provide the information on QoS implementation lev-

els of current service composition to assists the users to set their QoS constraints according to their QoS 

requirements expectations, combined with QoS implementation levels of service compositions available 

on the Internet. It needs the calculation of QoS and its corresponding number of service compositions 

implementing the users’ tasks. However, there is the exhaustive method that is the only and primary 

method to fulfil the function currently. The exhaustive method takes much time. A better method needs 

the development. 

To this end, we develop a data structure named QBand for providing more information in respect of 

QoS implementation levels of current web service compositions implementing the user’s task. It includes 

two aspects of information: 1) the QoS boundary of the service composition solutions implementing the 

task based on QoS data of candidate web services, 2) the numbers of the service compositions available 

for each value in QoS boundary. Further, we design a kind of spectrogram to visually represent the im-

plementation distribution of the service composition solutions. QBand provides the users an overview of 

current QoS implementation levels of service composition solutions for the user’s task such as the main-

stream QoS implementation level according to the implementation distribution to assist users during set-

ting QoS constraints. The algorithm can also be used for indicating quantitive attributes of other compos-

ite system. 

The remainder of this paper is organized as follows. Section 2 describes the model of QoS-based web 

service composition. Section 3 details the data structure QBand. At the beginning of Section 3, it de-

scribes the definition and semantics of QBand. Then Section 3 describes QBand operations, its appear-

ance and evaluates it. Section 4 illustrates how QBand works and evaluate it. Section 5 presents our pro-

totype implementation to show the scenario using QBand. Section 6 discusses the related work. Finally, 

Section 7 concludes. 



Journal of Computers Vol. 28, No. 1, 2017 

151 

2 Model Description of QoS-Base Web Service Composition 

This paper uses the symbols in Fig. 1 to represent the execution logic of tasks. In Fig. 1, 
i
t  represents a 

task to complete. There are four basic execution logic: sequence, switch, parallel and loop. Most of com-

plex execution logic can be implemented through the combinations of four basic execution logic. The 

parameter k represents the estimated number of iterations in a loop construct determined by the way in [1, 

8]. The parameter u used as a subscript represents the first task in the loop, and v used as a subscript 

represents the last task in the loop. 

 

Fig. 1. Four basic execution logic 

Fig. 2 uses the symbols in Fig. 1 to represent an example of a complex task. This complex task in-

cludes 9 sub-tasks 
1
t , 

2
t , ..., 

9
t  which covers four basic execution logic. 

 

Fig. 2. An example of combination to fulfill a complex task 

There are several candidate web services for each task 
i
t . Candidate web services can complete the 

task 
i
t . The difference between them is non-functional/QoS attributes, such as response time and cost. 

Web service composition is shown in Fig. 3. Assuming a complex task, marked as T, requires m sub-

tasks to finish labeled 
1
t , 

2
t , ..., 

m
t . Each sub-task 

i
t , has a 

i
n  corresponding web service candidates, 

labelled 
,1i

ws ,
,2i

ws , ,..., and 
,

i
i n

ws . 

 

Fig. 3. The process of web service composition: Each task 
i
t  has 

i
n  candidate web services. Choose one 

candidate web service for each task, to accomplish complex tasks T 

To complete the complex task T, we need to select a candidate web service for each sub-task. A web 

service composition solution is called an execution plan. For example, the web service composition solu-

tion (
1,1

ws ., 
2,1

ws ,..., 
,1m

ws ) is an execution plan of the complex task T. 

For a complex task, there may be many web service composition solutions. Each web service composi-



QBand: Indicating the Implementation Distribution of QoS-Based Web Service Composition Solutions 

152 

tion solution has a different QoS characteristics obtained from the component web services. Selection of 

composition solutions has become a problem. Currently, there are several approaches for QoS-aware web 

service composition. But most approaches are concerned about web service composition algorithm itself, 

while ignoring the flexibility for users to set QoS. Most of them require QoS constraints given in form of 

numbers. They are based on a hypothesis: the user can explicitly give or describe their non-functional 

requirements or QoS. But in fact, the hypothesis is weak because of the vagueness of users about non-

functional requirements on their tasks and the lack of the information about the QoS of web services on 

the market. 

3 QBand: Indicating QoS Implementation Levels of Service Composition Solutions for 

the Task 

This section is the main part of this paper including three subsections. To indicate the QoS implementa-

tion levels of web service composition solutions for a task, Subsection 3.1 introduces the functions and 

definition of QBand. Subsection 3.2 introduces QBand operations to calculate QoS implementation levels. 

Finally, Subsection 3.3 introduces a kind of spectrogram to visually represent them, providing an over-

view of current QoS implementation levels to assist users during setting QoS constraints. 

3.1 Functions and Definition of QBand 

In this paper, we propose a data structure QBand (QoS Band) to indicate QoS levels of current web ser-

vice compositions implementing the task. Derived from the requirements that the user is concerned about 

the QoS levels of current service compositions implementing the task, the QBand representing the im-

plementation distribution of QoS-based web service composition solutions has the following two func-

tions: 

1. QoS Boundary of current web service compositions available to implement the task, including the 

minimum and maximum QoS values. 

2. Numbers of current web service compositions available for each value in QoS boundary. 

According to the two functions above, we develop QBand. It has two parts: the storage area and opera-

tions. The pseudo-code description of the QoS band is as follows. The storage area stores QoS informa-

tion and numbers of candidate web services in the array named band. The QBand operations have two 

types: aggregation operations and incremental operations. The aggregation operations are defined to cal-

culate composite QoS information and numbers of service composition solutions to implement the com-

posite task. The incremental operations are defined to update QoS information and numbers of candidate 

web services when new web services for the task come, old web services close, or QoS of existing web 

services change 

 
1 QBand 
2{ 

     /*number each QoS value(qMin+i) can achieve; i is from 0 to the length 
of band(qMax-qMin+1)*/ 

3  integer band[]; 
   /* min QoS in candidate ws for a task*/ 
4  integer qMin; 
   /* max QoS in candidate ws for a task*/ 
5  integer qMax; 
/*QBand aggregation operations: 
used to calculate QBand of the composite task. The implementation of 
QBand operations depends on execution logic and characteristics of QoS 
attributes. E.g. QBand + is used for the QoS attribute response time in 
sequence construct.*/ 

6   QBand + (QBand q1, QBand q2); 
7   QBand ×(QBand q1, QBand q2); 
8   QBand ×(float p, QBand q2); 
9   QBand max(QBand q1, QBand q2); 
10  QBand pow(integer k, QBand q1); 
/*QBand incremental operations: 

used to update the QBand of the task when candidate web services for 
the task change.*/ 



Journal of Computers Vol. 28, No. 1, 2017 

153 

11   QBand in+  (QBand q1, QBand q2); 
12   QBand in−  (QBand q1, QBand q2); 
13 } 
 
The semantic description of QBand is shown in Fig. 4. We use the array index to represent QoS values 

and the array to hold the achieving number of each QoS value, which makes data structure small and runs 

faster than in the form of the linklist. The first element of the QBand array is the number of service com-

position solutions, whose QoS attribute is the minimum value. The ith element indicates the number of 

service compositions whose QoS attribute value is the minimum plus the index ith. It is the same until the 

maximum QoS attribute value. 

 

Fig. 4. Internal structure of QBand and its meaning 

3.2 Operations of QBand 

To fulfil the above two functions, on the one hand, we should get the QoS of the service composition 

solutions implementing the user’s task. Candidate web services are published on the Internet by using 

UDDI (Universal Description Discovery and Integration). The composite QoS of the service composition 

solutions needs to be calculated based on QoS data of candidate web services available on the market. 

The calculation methods are adopted from the widely used methods in the works [1, 8] shown in Table 1. 

In Table 1, m represents the number of tasks in a sequence construct aforementioned in Section 2, p 

represents the number of parallel tasks in a parallel construct, 
i
p  represents the probability of the case i 

in a switch construct where
1

1

n

i

i

p

=

=∑ , k represents the estimated number of iterations in a loop construct. 

Table 1. QoS calculation of composite web services. 

 sequence parallel switch loop 

response time 
m

i

i 1

rt

=

∑
 

p

i 1 iMax (rt )
=  

n

i i

i 1

(p *rt )
=

∑
 

k*rt 

availability 
m

i

i=1

a∏
 

p

i

i=1

a∏
 

n

i i

i 1

(p *a )
=

∑
 

ak 

reliability 
m

i

i=1

r∏
 

p

i

i=1

r∏
 

n

i i

i 1

(p *r )
=

∑
 

rk 

cost 
m

i

i 1

c
=

∑
 

p

i

i 1

c

=

∑
 

n

i i

i 1

(p *c )
=

∑
 

k*c 

 

On the other hand, we calculate the corresponding numbers of service composition solutions available 

of each value in QoS boundary. For the simple task which has no subtask, the corresponding number of 

each QoS value could be counted by candidate services implementing the task of this QoS value directly, 

but for the complex task with sub tasks, it should be solved that how the numbers of the service composi-

tion solutions are gotten based on the calculated numbers implementing the subtasks should be solved. 

The feature of execution logic of the complex task, characteristics of QoS attributes and realization on the 

above defined QBand array should be considered. To address it, we define five corresponding operations 

for QBand. 

Because of the similarity of QBand operations, we just show addition of two vectors in QBand space 

to explain how to calculate composite QoS QBand. Its details are given in the following pseudo codes, 

and the working way of QBand + is generally described in the Process part at the beginning of the pseudo 

codes. 

 



QBand: Indicating the Implementation Distribution of QoS-Based Web Service Composition Solutions 

154 

/*calculate the QBand of the composite task t12 based on the QBand q1 of 
the sub-task t1 and the QBand q2 of the sub-task t2. 
Process: 
1) calculate the QoS boundary implementing the task t12, create a new 

QBand of the task t12 (line2-4) 
2) calculate the numbers of the service composition in the QoS boundary 

(line5-9) 
The principle of QBand + is shown in Fig. 5*/ 
1 QBand + (QBand q1, QBand q2) { 
2    integer qMin = q1.qMin + q2.qMin; 
3    integer qMax = q1.qMax + q2.qMax; 
4    QBand q = new QBand(qMin, qMax); 
5    for (integer i = 0; i < q1. band.length; i++) { 
6        for (integer j = 0; j < q2. band.length; j++) { 
7            q.band[i + j] += q1.band[i] * q2.band[j]; 
8         } 
9    } 
10     return q; 
11 } 
 

Example of QBand Addition: The operands in QBand addition are QoS properties which of composite 

web services are calculated by the way of summing shown in Table 1. Here we use Response Time (RT) 

as example. The value of RT is the time it takes to respond to a request for web service. Let q1 is the RT 

QBand of a task t1 and q2 is the response time QBand of the sequential task t2, then the range of the 

response time of the composite task of t1+t2 is [q1.qMin + q2.qMin, q1.qMax+q2.qMax]. In Fig. 5, 

q1.band [q1.qMin+1] means there are two candidate web services for t1 with a RT value of [q1.qMin+1]. 

The algorithm takes one element from q1.band to get the number of services with a RT value of 

[q1.qMin+i], and takes one element of q2.band to get the number of services with a RT value of 

[q1.qMin+j], then multiplies them up to get the number of service compositions with a RT value of 

[q1.qMin+i+q2.qMin+j] for the task t12. As shown in Fig. 5, it is calculated just by q1.band [i]* q2.band 

[j], and the number of service compositions with a RT value of [q1.qMin+i+q2.qMin+j] is just held in the 

q12.band [i+j]. This is partial number of service compositions with a RT value of 

[q1.qMin+i+q2.qMin+j]. We get all numbers by using two loops. The numbers are held in q12.band [i+j]. 

 

Fig. 5. Illustration of QBand addition. q12.band[1] has two sources: one is q1.band[0]*q2.band[1],  

the other is q1.band[1]*q2.band[0] 

We define zero and unit elements in QBand space like real vector space:  

qBand0 {band={1};qMin= qMax=0;} so that qBand+ qBand0= qBand 

qBand1 {band={1};qMin= qMax=1;} so that qBand×qBand1= qBand 

Because we use integral array index to represent the QoS, we scale them to deal with QoS attributes in 

form of float. For example, the availability of a web service is 0.95 we can scale 0.95 to 95. To deal with 

arising float during QBand operations, we round them. QBand ×(float p, QBand q2) is an example: 

 

 

q1.qMin  q1.qMin+2=q1.qMax  

1) q12.band [q1.qMin+i+q2.qMin+j- (q1.qMin+q2.qMin)] =q12.band [i+j], 

2) q12.band [i+j] +=q1.band [q1.qMin+i-q1.qMin]* q2.band [q2.qMin+j-q2.qMin],  

3) q12.band [i+j] +=q1.band[i]*q2.band[j]  

e.g. q12.band [1] =q1.band [0]*q2.band [1] +q1.band [1] + q2.band [0]  

 q12=q1+q2   …   

q2.qMin  q2.qMax  q2.qMin+1  

q1.qMin+q2.qMin  

 

q1.qMin+1  

QoS value:  

q1.qMax+ q2.qMax  

1 2 2 2 1 3 



Journal of Computers Vol. 28, No. 1, 2017 

155 

/* QBand × is used in the switch construct 
Process: 
1) calculate the QoS boundary of the task in the switch construct, cre-
ate a new QBand for the task t12 (line2-4) 
2) calculate the numbers of the services for the task in the boundary 
(line5-8)*/ 

1 QBand ×(float p, QBand q1) { 
   /* p represents the execution probability of the case in a switch con-

struct. p * q1.qMin may be float, we round them to make sure the form 
of QoS is integer*/ 

2    integer qMin = Math.ceil(p * q1.qMin); 
3    integer qMax = Math.ceil(p * q1.qMax); 
4    QBand q = new QBand(qMin, qMax); 
5    for (integer i = 0; i < q1.band.length; i++) { 
6        integer index = Math.ceil(p * (q1.qMin + i)); 
7        q.band[index - qMin] += q1.band[i]; 
8    } 
9    return q; 
10 } 
 

With the above defined QBand operations, we can calculate QBand of the task based on the calculated 

QBand of the subtasks. The calculation is a recursive process because a task can be composed of subtasks. 

First, we should define a data structure to describe the task. Although the definition of the task may differ 

in the implementation, its description contains the following information 

 
1 Task { 

/*composite type (parallel, switch, loop) or simple type*/ 
2 Category;  

/*QoS data of candidate services implementing the task;  
statistic QoS and numbers of services are calculated from them.*/ 

3 wsq; 
    /* executive probability of the branch task in the switch construct*/ 
4  p; 

/* loop number, p and k are determined by the way in [1, 8]./ 
5    k; 

      /* the information about the branches contained in the parallel con-
struct or switch construct*/ 

6    List branches;  
     /* point to the successive task/ 
7 Task *next; 
8 } 
 

The recursive process of the QBand calculation is: 

 
/* get the composite QBand of the task, we calculate QBand of each execu-
tion logic and accumulate them (line3-6)*/ 
1 QBand getCompositeQBand(Task t) { 
2 QBand q = qBand0; 
3 while (t != null) {  
4 q = q+ getComponentQBand(t); 
5 t = t.getNext(); 
6 } 
7 return q; 
8 } 
 
/*according to the execution logic, use the corresponding function to get 
QBand of the sub-task*/ 
1 QBand getComponentQBand (Task t) { 
 /*get the category of the execution logic of the sub-task, 
    according to the category of the execution logic, use the corresponding 

function to get QBand of the sub-task*/ 
2  if (t.getCategory()==X)) return getXQBand(t); 
3 } 
 

Because of the similarity of functions for the four execution logic, we just show getParallelQBand() 

and getQBand(), omitting other similar getXBand (). 



QBand: Indicating the Implementation Distribution of QoS-Based Web Service Composition Solutions 

156 

/*used for accumulative QoS attributes, e.g. response time*/ 
1 QBand getParallelQBand(Task t) { 
2 QBand q = qBand0; 

/*get parallel component tasks in composite task t;*/ 
3 List<Task> tList = t.getPTasks(); 
4 for (Task ptask to : tList) { 
5 q = QBand.max(q, getCompositeQBand(ptask)); 
6 } 
7 return q; 
8 } 
 
/* According to qos of candidate web services for the sample task t, form 
the QBand of t*/ 
1 QBand getQBand(Task t) { 

/* get the min and max qos of candidate web services for t, initialize a 
new QBand according to the min and max qos*/ 

2 QBand q = new Q(t.getMinQoS(), t.getMaxQoS()); 
/* get the numbers of the service compositions available for each value 
in QoS boundary and form the QBand of t*/ 

3 q.setBand(t.getWSQ()); 
4 return q; 
5 } 
 
Incremental calculation of QBand. When new web services for a task come, old web services close, 

or QoS of existing web services change, QBand for the task may change. To avoid recalculation from the 

beginning, we define internal addition and subtraction of QBand for a task to achieve incremental calcu-

lation. “Internal” means all the QBand operands representing the QoS implementation levels of the same 

task. 

 
/*QBand in+  is used to update the QBand of the task when new candidate web 
services are provided. 
q1 is the QBand of the task, q2 is the QBand formed by the new web services 
for the task. 
Process: 
To update the QBand of the task, 
1) update the QoS boundary of the task, because the new minimum or maxi-
mum QoS may exist when new web services are provided. Create a new QBand 
for the task (line2-4) 
2) accumulate the numbers of the services for the task in the QoS bound-
ary (line5-12)*/ 

1 QBand in+  (QBand q1, QBand q2){ 
2 integer qMin = q1.qMin < q2.qMin ? q1.qMin: q2.qMin; 
3 integer qMax = q1.qMax > q2.qMax ? q1.qMax: q2.qMax; 
4 QBand q = new QBand(qMin, qMax); 

/* add the numbers of the old web services and the numbers of the new 
web services according to the same QoS value*/ 

5 for (integer i = 0; i < q.band.length; i++){ 
6 if (q1.qMin <= qMin + i <= q1.qMax) { 
7 q.band[i] += q1.band[qMin + i - q1.qMin]; 
8 } 
9 if (q2.qMin <= qMin + i <= q2.qMax) { 
10 q.band[i] += q2.band[qMin + i - q2.qMin]; 
11 } 
12 } 
13 return q; 
14 } 
 

Example of Internal QBand Addition: The operands in internal QBand addition are any QoS properties. 

Here we still use response time as example. Let q1 is the response time QBand of a task t1, and three new 

web services for the task t1 come, the response times of the three services are q1.qMin+1, q1.qMin+2 

and q1.qMin+3 individually, then the response time QBand of the three new web services is q2. The new 

QBand of the task t1 is q12. In contrast with the old QBand q1, q12.qMax becomes bigger because the 

new service with a RT value of [q1.qMin+2] joins in the candidate service set. The numbers of achieved 

QoS values for the task t1 update. For example, there are two candidate web services for t1 with a RT 

value of [q1.qMin+1]. With a new service of a RT value of [q1.qMin+1] joins in the candidate service set. 



Journal of Computers Vol. 28, No. 1, 2017 

157 

The numbers of achieving the RT value of [q1.qMin+1] increases from 2 to 3 shown in the new QBand 

q12 in Fig. 6. 

 

Fig. 6. Illustration of QBand internal addition 

/*QBand in−  is used to update the QBand of the task when candidate web ser-
vices is not provided. 
q1 is the QBand of the task, q2 is the QBand formed by the removed web 
services from the candidate service set of the task. 
Process: 
To update the QBand of the task, 
1) create a new QBand for the task (line2-4) 
2) subtract the number of the removed services for the task in the QoS 

boundary (line5-7) 
3) modify the QoS boundary (line8)*/ 

1 QBand in−  (QBand q1, QBand q2){ 
2 integer qMin = q1.qMin; 
3 integer qMax = q1.qMax; 
4 QBand q = new QBand(qMin, qMax); 
5 for (integer i = 0; i < q.band.length; i++) { 
6   q.band[i] = q1.band[qMin+i-q1.qMin]- q2.band[qMin+i-q2.qMin]; 
7 } 
8 Trim(q);// remove the zero elements in the two ends of q.band, and 

update q.qMin and q.qMax 
9 return q; 
10} 
 
Example of Internal QBand Subtraction: The operands in internal QBand subtraction are any QoS 

properties. Here we still use response time as example. Let q1 is the response time QBand of a task t1, 

and two old web services for the task t1 close, the response times of the two services are q1.qMin+2 and 

q1.qMin+3 individually, then the response time QBand of the two old web services is q2. The new 

QBand of the task t1 is q12. With the old service of a RT value of [q1.qMin+3] close, the maximum RT 

in candidate services becomes q1.qMin+2. Thus the qMax of the new QBand q12 becomes q1.qMin+2. 

The function “Trim (q)” deals with this problem. The numbers of achieved QoS values for the task t1 

update. For example, there are two candidate web services for t1 with a RT value of [q1.qMin+1]. With 

an old service of a RT value of [q1.qMin+2] close. The numbers of achieving the RT value of 

[q1.qMin+2] decreases from 2 to 1 shown in the new QBand q12 in Fig. 7. 

The QBand q1 is the old QBand of a task t1, q2 is the QBand of closing services from the candidate 

service set, so q1 and q2 have the following relationships: 

 q1.qMin q2.qMin, q1.qMax q2.qMax≤ ≥  (1) 

 i [0,q2.bank.length]∀ ∈ → (q2.ban[i] q1.bank[q2.Min + i q1.qMin]≤ −  (2) 

We call q1 ≥  q2 when q1 and q2 have the relationships. 

The QBand q12 is the QBand of left candidate services for the task t1. To make q12 valid, which 

means q12.band[i] ≥  0, q1 should be greater than or equal to ( ≥ ) q2. 



QBand: Indicating the Implementation Distribution of QoS-Based Web Service Composition Solutions 

158 

 

Fig. 7. Illustration of QBand internal subtraction 

In the case that QoS of existing web services change, we use internal QBand subtraction and addition 

to update the QBand. We consider the changing services as closing web services with old QoS values and 

new web services with changing QoS values. For example, assuming the RT value of a web service 

changes from [q1.qMin+2] to [q1.qMin+1], then it’s considered that a web service of RT value of 

[q1.qMin+2] closes and a web service of RT value of [q1.qMin+1] adds into the candidate service set. 

We call QBand operations between tasks as QBand inter-operations such as QBand addition between 

tasks. It has the following relationship between QBand inter-operations and internal operations. 

 

in in
q (q1 q2) = (q q1) (q q2)± ±。 。 。  (3) 

where q1 and q2 are the QBand for the same task, 。is the QBand operators for the different tasks. 

With the two internal QBand operations and Eq. (3), we can update the QBand of users’ task incre-

mentally instead of recalculation from the beginning. Let q1 is the QBand of a task t1 and q2 is the 

QBand of the task t2, q12 old is the QBand of the composite task of t1。t2, q12old = q1。q2. q2inc is the 

incremental (positive or negative changing) QBand of the task t2 caused by changing candidate services 

for the task t2. Then q12new change q12old from with the increment q1。q2。q2inc 

 

new in inc in inc
q12 q1 (q2 q2 ) (q1 q2) (q1 q2 )= ± = ± =� � �

old in inc
q12 (q1 q2 )± �  (4) 

3.3 Appearance of QBand 

The QBand, indicating the QoS implementation levels of web service composition solutions for a task, 

provides an unintuitive for human users in the array named band in the structure of QBand like [2 3 3…1] 

shown in Fig. 4. To represent the distribution of the service composition solutions visually, we develop a 

kind of grey-scale diagram to represent QBand. We call it QBand spectrogram. Different gray scales 

represent numbers of web service composition for the complex task. The higher a grey-scale value is, the 

more combinations of different candidate services in one QoS value are. The advantage of the spectro-

gram is to use the contrast between white and black to show the distribution and natural clusters of ser-

vice compositions which can be perceived intuitively by human. An example of combination to fulfill a 

complex task and corresponding data structure is shown in Fig. 8. We design 5 web services with differ-

ent characteristics of QoS used for candidate web services for each task. The amount of service composi-

tion of this complex task is about 6
1.95 10× . The corresponding QBand for the complex task is shown in 

Fig. 9. As shown by the QBand spectrogram, 594ms is the q.qMin, the minimum RT of web service 

composition for the complex task and 1854ms is the q.qMax, the maximum RT. The bigger q.band[i] is, 

the brighter the corresponding of the figure is. Different gray scales represent RT levels of web service 

composition for the complex task. The higher a RT gray-scale value is, the more combinations of differ-

ent candidate services in this value are. In this spectrogram of RT implementation levels, 909ms RT has 

maximum grayscale which means the most service composition of 909ms RT for the complex task.  

1  

q1.qMin  q1.qMin+3=q1.qMax  

q12=q1 -in q2  

2  2  

q2.qMin=q1.qMin+2  q2.qMax  

1  1  

1  

q12.qMin=q1.qMin  

q1.qMin+1  
QoS value:  

1  1  1  

q1.qMin+2  

q1.qMin+2=q12.qMax  

QBand: q1  

0  

QBand: q2  



Journal of Computers Vol. 28, No. 1, 2017 

159 

 

Fig. 8. An example of combination to fulfill a complex task and corresponding data structure 

 

Fig. 9. QBand spectrogram for response time 

The QBand spectrogram provides the user intuitive information about the current QoS implementation 

levels of web service composition for his complex task, and then the user can select the range according 

to their QoS requirements and current QoS implementation levels shown in Fig. 13 and Fig. 14. The 

spectrogram provides users with an overview of QoS implementation levels of web service composition, 

and helps users to determine QoS constraints of their composite services. The QBand spectrogram is just 

for one QoS property. Each QoS property has its own QBand spectrogram. 

4 Illustration and Evaluation 

4.1 Illustration of the calculation of QBand 

We use a brief example task in Fig. 10 to illustrate how QBand calculates the QoS implementation levels 

of web service composition for the user’s task, including the QoS boundary of the service composition 

solutions and the numbers of the service compositions available for each value in QoS boundary. We 

compare QBand with the exhaustive method, which is the primary and only method to fulfil the same 

function currently to show why QBand is better than the exhaustive method to fulfil the same function. 

The simple example task contains 3 sequential sub-tasks 
1
t , 

2
t and 

3
t . The subtask 

1
t  has 3 candidate 

web services with the same QoS property response time of 10ms. QBand (
1
t ) is shown in Fig. 10. It con-

tains the meaning that 
1
t  has 3 candidate web services with RT of 10ms.  

2
t  also has 3 candidate web 

services. Two of them have RT of 10ms. The other one has RT of 11ms. QBand (
2
t ) is shown in Fig. 10.  

3
t  has 2 candidate web services whose RT is 9ms. To get the RT values of the composite task of 

1
t +

2
t +

3
t  and the numbers of service composition for each RT value, i.e. get the RT implementation lev-

els of web service composition for the task, first we get the RT implementation levels of web service 

composition for the task 
1
t +

2
t , then we get the QBand (

1
t +

2
t +

3
t ). According to combinational principle, 

the amount of service composition of the composite task 
1
t +

2
t  is 9, and the RT values are 20 and 21ms. 

The service composition of 20ms RT can be produced by 
1
,1ws  and 

2
,1ws , or 

1
,1ws  and 

2
,2ws . The 

amount of service composition of 20ms RT is 6. The service composition of 21ms RT can be pro duced 

by 
1
,1ws  and 

2
,3ws , or 

1
,2ws  and 

2
,3ws . The amount of service composition of 21ms RT is 3. The 

exhaustive method lists all service composition and counts the corresponding numbers of service compo-

sition for each RT value number. The calculation number of the exhaustive method is 3*3=9. 3 is the 

number of candidate web services for 
1
t , and the other 3 is the number of candidate web services for 

2
t . 

CT  CT 

: link next task  

CT: Composite Task  

t1 t2 

t3 

t4 

t6 

t7 

t5 t9 

t8 

k

p

1

p

2

Category: switch   Category: parallel  

Loop CT 



QBand: Indicating the Implementation Distribution of QoS-Based Web Service Composition Solutions 

160 

On the contrast, to get the RT implementation levels of web service composition for the task 
1
t +

2
t , 

QBand knows there are 3 candidate services of 10ms RT for 
1
t  and there are 2 candidate services of 

10ms RT and 1 candidate services of 11ms RT for 
2
t . Based on these information, QBand method figures 

out the RT values of service composition of the composite task 
1
t +

2
t  are 20ms and 21ms. The amount of 

service composition of 20ms RT is 3*2=6. The amount of service composition of 21ms RT is 3*1=3. The 

calculation number of the QBand method is 1*2=2. 1 is the length of QBand (
1
t ), and 2 is the length of 

QBand (
2
t ). In the same way, we can get the RT implementation levels of web service composition for 

the task 
1
t +

2
t +

3
t , the calculation number of the exhaustive method is 3*3*2=18 while that of QBand 

method is 1*2*1=2. By comparing the calculation number of the two methods, we can see the QBand 

method has better performance to get QoS implementation levels compared with the exhaustive method 

intuitively. 

 

Fig. 10. Illustration of exhaustive method and QBand method to form QoS implementation levels of ser-

vice compositions 

4.2 Evaluation of QBand 

In the above statement, we use a simple example task in Fig. 10 to illustrate how QBand works. The ex-

ample task just has sequence logic, one of four execution logic for the brief of illustration. To validate 

our approach, we carried out experiments using a complex task in Fig. 8 which contains all the four basic 

logic aforementioned. We compared our approach with the exhaustive method to calculate the QoS im-

plementation levels of web service composition solutions for the complex task. First, 5 candidate web 

services are assigned for each task. The QoS of these web services are randomly generated by Ja-

va.Math.random() in each experiment. The experiment number is 10. It is shown that QBand has better 

and stable performance than the exhaustive method in Fig. 11. The average time that QBand consumed is 

2.15ms while that of the exhaustive method is 317ms. The performance difference between them is obvi-

ous. 

We compared the results of QoS values and the corresponding service composition solutions calcu-

lated by the exhaustive method and QBand method, they are same. This makes sure the correctness of 

our approach (See Table 2). Since the data obtained experimentally is large, this paper only picks out 30 

data for demonstration. Table 2 is the comparison of values of response time and the number of the cor-

responding service composition solutions calculated by the exhaustive method and QBand method. The 

results are consistent by comparison. 



Journal of Computers Vol. 28, No. 1, 2017 

161 

 

Fig. 11. Comparison of time consumed between exhaustive method and QBand method to form current 

QoS implementation levels of service composition solutions 

Table 2. Comparison of the web service composition solutions calculated by the exhaustive method and 

QBand method (partial, 30 in this table) 

response 

time (ms) 
QBand 

exhaustive 

method 

response 

time (ms)
QBand 

exhaustive 

method 

response 

time (ms) 
QBand

exhaustive 

method 

601 445 445 611 716 716 621 852 852 

602 441 441 612 621 621 622 998 998 

603 538 538 613 654 654 623 942 942 

604 464 464 614 734 734 624 992 992 

605 497 497 615 779 779 625 1009 1009 

606 526 526 616 743 743 626 1103 1103 

607 613 613 617 707 707 627 1061 1061 

608 560 560 618 896 896 628 1132 1132 

609 568 568 619 844 844 629 1133 1133 

610 593 593 620 865 865 630 1225 1225 

 

We increased the number of candidate web services by the step size of 5 for further validation. The 

experiment number is still 10 in every increment of the step. The results are shown in Table 3. When the 

number of candidate web services is 10, the amount of service compositions for this complex task is 9
10 . 

The number of service compositions increased by 512 times, compared with the former. The average 

time that QBand consumed in the experiments doesn’t increase quickly while that of the exhaustive 

method increases by two orders of magnitude from 2
3.17 10×  to 4

5.19 10× . The performance difference 

between them further increases. When the number of candidate web services becomes 15, the amount of 

service compositions increases by about 38 times again, and the average time taken by the exhaustive 

method becomes too long to be acceptable. Although the time of QBand also increases, it increases 

slowly. It is acceptable compared to the time of the exhaustive method. During the experiments, we com-

pared the RT implementation levels produced by the exhaustive method and QBand method, and all the 

results are the same, ensuring the correctness of our approach. 

Table 3. Comparison of the average time consumed between the exhaustive method and QBand method 

in the cases of different candidate web services. ws is short for web services. ms=milliseconds 

Number of ws  5  10  15  

T1(ms)=Time(exhaustive method)  2
3.17 10×   

4
5.19 10×   

6
2.13 10×   

T2(ms)=Time(QBand method)  2.15  3.8  17.58  

T2/T1  2
1.47 10×   4

1.37 10×   5
1.21 10×   



QBand: Indicating the Implementation Distribution of QoS-Based Web Service Composition Solutions 

162 

5 Prototype Implementation 

We developed a prototype implementation to illustrate the QoS-based service composition and the sce-

nario that the users use QBand to set QoS constraints. The dataset used in our case study is QWS [9], an 

open QoS dataset for web service research. We still use the complex task in Fig. 8 as example to show 

the process of using our approach for QoS-based service composition. The initial interface for defining 

QoS constraints is shown in Fig. 12. It shows the functions of the system, including the setting of QoS 

ranges and preferences and the display of QoS constraints that users set. 

 

Fig. 12. Initial interface for defining QoS constraints 

A user has demand on the ranges QoS properties of service composition solutions for his/her task. He 

/She wants QoS properties to reach the degrees such as high, very high and so on among all possible 

composition solutions. But the user doesn’t know that range. Then QBand provides the user the current 

QoS implementation levels of web service composition for his complex task. The user can determine the 

range of QoS properties with the QBand. In Fig. 14, when the cursor lingers over a part of the QBand, the 

corresponding value of the response time to the part displays. Here the user set the range of Response 

Time (874, 969), in which there are more service compositions. 

 

Fig. 13. Specifying QoS ranges 

 

Fig. 14. QBand spectrogram for response time 



Journal of Computers Vol. 28, No. 1, 2017 

163 

The prototype implementation provides a preference expression to help users express their preferences 

on QoS attributes of web service based on consumer preference axioms [10]. A user arranges QoS attrib-

utes in preference expression to express his preference order and uses linguistic variables to express the 

degree of his preferences, thus forming the complete information of the user’s preferences on QoS attrib-

utes. Then AHP [11] is used to convert the semantic description of the preference in the expression into 

the preference weights of QoS attributes. In contrast with the diffculty of setting preference weights di-

rectly, it is easy and intuitive for the user to put QoS properties in preference order and specify prefer-

ence degree word between two QoS properties. In Fig. 15, the user expresses RT has highly important 

priority over Availability and Cost. More details are explained in our work [12-13]. 

 

Fig. 15. Expressing the preference with the preference expression 

If the above QoS settings don’t satisfy the user’s QoS requirements, the user can set the exact numeri-

cal range and preference weights. In Fig. 16, the user set Availability (50,100) manually. 

 

Fig. 16. Specifying QoS constraints manually 

The result is shown in Fig. 17. It shows the user’s QoS constraints (QoS ranges and preference weights) 

and the optimization solution of the web service composition.  

 

Fig. 17. Result of composition solution 



QBand: Indicating the Implementation Distribution of QoS-Based Web Service Composition Solutions 

164 

If the solution doesn’t meet the user’s requirement after the user experience the composite web ser-

vices, the user can adjust the QoS constraints based on the QoS of the composition solution and the for-

mer QoS constraints. 

6 Related Work 

With more and more web services published on the Internet, multiple functional similar services could 

appear. Then QoS becomes an important aspect in service selection. And QoS-based web service compo-

sition becomes a hot research topic in service composition. There are some major aspects related or in-

volved in QoS-based service composition, including QoS model, QoS collection and composition algo-

rithm. As an indicator of distinguish similar services, QoS model is proposed in [14-17], including re-

sponse time, reliability, availability, cost and domain properties, etc. QoS data are constantly monitored 

and collected by web service search engines like seekda and WSCE [18] to support QoS-based service 

composition. QoS-based service composition is modelled as constraint satisfied problem. Different ap-

proaches have proposed such as IP (Integer Programming) [19-20], GA [21-23], PSO (Particle Swarm 

Optimization) [24-26] and etc. More details of previous approaches on QoS-based web service composi-

tion can be found in the surveys [2-3, 6]. Most of these approaches focus on implementing service com-

position algorithms itself. They just provide primary ways to input QoS constraints assuming users can 

provide their QoS constraints accurately. On the contrary, users usually don’t define their QoS constraints 

accurately because of their non-clarity of QoS requirements. More comprehensive ways are desirable, to 

help users to complete QoS constraints implicitly or explicitly. 

Fuzzy theory has been introduced to handle vague description of QoS partially [27-29]. In these ap-

proaches, QoS are categorized into several groups, with linguistic variables such as “poor, medium and 

high” to represent these groups. Then web services are assessed based on those QoS values. Fuzzy and 

exact QoS requirements are both supported in [30]. The paper considers the inexperience end users in the 

QoS-based web service selection system. The paper proposes relaxation orders to get the services par-

tially matched with QoS requirements. The advantage of applying fuzzy theory into service selection is to 

assist users to determine vague QoS constraints by using linguistic variables and to deal with subjective 

and vague assessments in service selection according to fuzzy logic. The main issue of these approaches 

is that they require considerable and expert efforts to determine the corresponding boundaries of linguis-

tic variables and membership functions reasonably. What’s the range of the QoS levels such as “poor, 

medium and high” of current service composition for a task? It needs some tools to provide these infor-

mation to reduce the efforts. 

In addition, setting QoS constraints not only depend on users’ QoS requirements expectation, but also 

depend on current QoS of web services provided on the service market. Users want more information 

about the condition of web service on the Internet. They want more information on current QoS imple-

mentation levels of service compositions about their tasks, such as the distribution of service composi-

tions in different QoS levels. To address these issues, it needs the calculation of QoS and its correspond-

ing number of service compositions implementing the users’ tasks. However, there is the exhaustive 

method that is the only and primary method to fulfil the function currently. The exhaustive method takes 

much time. Therefore, we propose a novel data structure called QBand better than the exhaustive method 

to help users specify their QoS requirements expressively and flexibly.  

7 Conclusions and Future Work 

This paper proposes a data structure QBand to help users to set their QoS constraints by providing more 

information about current QoS implementation level of web services implementing the task. QBand op-

erations in QBand space are defined to calculate QBand of composite tasks and update QBand incremen-

tally. QBand is mainly used for quantitive attributes. For qualitative attributes, QBand can be applied to 

them by quantization. For example, the reputation of web services can be quantitated by rating. QBand 

not only is used for indicating the QoS implementation levels of web services, but also for indicating 

quantitive attributes of other system components. QBand assists users to set QoS ranges according to 

current QoS level. With QBand, users can set their QoS constraints according to their QoS requirements 

expectations, combined with current QoS implementation levels of service compositions available on the 



Journal of Computers Vol. 28, No. 1, 2017 

165 

Internet. The algorithm can also be used for indicating quantitive attributes of other composite system, 

such as the products from the assembly line by slight modification. 

At present, we just finish the algorithm design of QBand. There is still work for improvement in future. 

QBand is defined according to several general QoS attributes. It might be slightly modified and extended 

according to the characteristics of the new and specific QoS attributes. Integration of QoS collection 

technologies like seekda.com to provide the QoS data of candidate web services is our next-step main 

work to make the QBand into practice. 

Acknowledgement 

This paper is supported by the National Natural Science Foundation of China under Grant No. 61170087, 

61133010 and 61520106006. 

References 

[1] Z. Liangzhao, B. Benatallah, A.H.H. Ngu, M. Dumas, J. Kalagnanam. H. Chang, QoS-aware middleware for web services 

composition, IEEE Transactions on Software Engineering 30(5)(2004) 311-327. 

[2] A. Strunk, QoS-aware service composition: a survey, in: Proc. of the 8th European Conference on Web Services(ECOWS), 

2010. 

[3] B. AL-Shargabi, A. Sabri, A.E.L. Sheikh, Web service composition survey: state of the art review, Recent Patents on Com-

puter Science 3(2)(2010) 91-107. 

[4] G. Canfora, M. Di Penta, R. Esposito, M.L. Villani, An approach for QoS-aware service composition based on genetic algo-

rithms, in: Proc. of the 2005 Conference on Genetic and Evolutionary Computation, 2005. 

[5] D. Schuller, A. Polyvyanyy, L. Garćıa-Bãnuelos, S. Schulte, Optimization of complex QoS-aware service compositions, in: 

Proc. of the 9th International Conference on Service Oriented Computing, 2011.  

[6] Y. Shi, X. Chen, A survey on QoS-aware web service composition, in: Proc. of International Conference on Multimedia 

Information Networking and Security, 2011. 

[7] M. Christel, K.C. Kang, Issues in Requirements Elicitation, Technical Report CMU/SEI-92-TR-012, CMU / SEI, 1992. 

[8] J. Cardoso, Quality of service and semantic composition of workflows, [dissertation] University of Georgia, 2002. 

[9] E. AL-Masri, Q.H. Mahmoud, QoS-based discovery and ranking of web services, in: Proc. of the 16th International Confer-

ence on Computer Communications and Networks, 2007. 

[10] H.R. Varian, Intermediate Microeconomics: a modern approach, 7th ed., Truth & Wisdom Press, Shanghai, 2009. 

[11] T.L. Saaty, A scaling method for priorities in hierarchical structures, Journal of Mathematical Psychology 15(3)(1977) 34-

281. 

[12] G. Wang, L. Zhang, K. Nie, Multi-strategic approach of fast composition of web services, in: Proc. of 14th Asia-Pacific 

Web Conference, 2012. 

[13] G. Wang, L. Zhang, J. Jiang, W. Jiang, QoS-based service composition under various QoS requirements, in Proc. of 20th 

Asia-Pacific Software Engineering Conference, 2013. 

[14] L. O’Brien, L. Bass, P. Merson, Quality attributes and service-oriented architectures, CMU/SEI, 2005. 

[15] K. Kritikos, B. Pernici, P. Plebani, M. Carro, A survey on service quality description, Computing Surveys 46(1)(2013) 1-58. 

[16] QoS for Web Services: Requirements and Possible Approaches. <http://www.w3c.or.kr/kr-office/TR/2003/ws-qos/>. 

[17] S.H. Zhao, G.-X. Wu, S.-F. Zhang, Q. Fang, K. Yu, Review on SOA of quality of service research, Computer Science 



QBand: Indicating the Implementation Distribution of QoS-Based Web Service Composition Solutions 

166 

36(4)(2009) 16-21. 

[18] E. AL-Masri, Q.H. Mahmoud, WSCE: A crawler engine for large scale discovery of web services, in: Proc. of International 

Conference on Web Services, 2007. 

[19] A.F. Huang, C.W. Lan, S.J. Yang, An optimal QoS-based web service selection scheme, Information Sciences 

179(19)(2009) 3309-3322. 

[20] J. Li, Y. Zhao, H. Sun, Z. Zheng, D. Ma, DH4SS: a distributed heuristic for QoS-based service selection, Int. J. Web and 

Grid Services 7(4)(2011) 388-409. 

[21] G. Canfora, M. Di Penta, A lightweight approach for QoS aware service composition, in Proc. of International Conference 

on Service Oriented Computing, 2004. 

[22] Z. Jiang, J. Han, Z. Wang, An optimization model for dynamic QoS-aware web services selection and composition, Chi-

nese Journal of Computers 32(5)(2009) 1014-1025. 

[23] A. Klein, F. Ishikawa, S. Honiden, Effcient heuristic approach with improved time complexity for QoS-aware service 

composition, in: Proc. of International Conference on Web Services, 2011. 

[24] X. Fan, C. Jiang, X. Fang, Z. Ding, Dynamic web service selection based on discrete particle swarm optimization, Journal 

of Computer Research and Development 47(1)(2010) 147-156. 

[25] H.-L. Cai, L. Lu, F. Kun, W. Li, Web services recommendation based on bpso, Journal of Shenzhen University Science and 

Engineering 27(1)(2010) 49-55. 

[26] Z. Liang, H. Zou, F. Yang, R. Lin, A hybrid approach for the multi-constraint web service selection problem in web service 

composition, Journal of Information & Computational Science 9(3)(2012) 3771-3781. 

[27] Z. Li, F.C. Yang, S. Su, Fuzzy multi-attribute decision making-based algorithm for semantic web service composition, 

Journal of Software 20(3)(2009) 583-596. 

[28] P. Xiong, Y. Fan, QoS-aware web service selection by a synthetic weight, in: Proc. of International Conference on Fuzzy 

Systems and Knowledge Discovery, 2007. 

[29] I. Sora, D. Todinca, Dealing with fuzzy QoS properties in service composition, in: Proceeding of 10th IEEE International 

Symposium on Applied Computational Intelligence and Informatics, 2015. 

[30] D. Mobedpour, C. Ding, User-centered design of a QoS-based web service selection system, Service Oriented Computing 

and Applications7(2)(2013) 117-12. 

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Japan Color 2001 Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJDFFile false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks true
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks false
      /BleedOffset [
        8.503940
        8.503940
        8.503940
        8.503940
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 400
        /LineArtTextResolution 1200
        /PresetName <FEFF005B9AD889E367905EA6005D>
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 0
      /MarksWeight 0.283460
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /JapaneseWithCircle
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [1200 1200]
  /PageSize [612.000 792.000]
>> setpagedevice


