
Journal of Computers Vol. 28, No. 2, 2017, pp. 87-103

doi:10.3966/199115592017042802007

87

FPGA Implementation of a Real-Time Pedestrian Detection

Processor Aided by E-HOG IP

Ai-Ying Guo1,2, Mei-Hua Xu1, Feng Ran3, and Ang Li1

1
 School of Mechatronics Engineering and Automation, Shanghai University,

Shanghai, China

{gayshh, mhxu, shulivia}@shu.edu.cn

2
 Department of Electrical and Mechanical Engineering, Shan Xi Light Industry and Technical College,

Taiyuan, China

3
 Microelectronics Research and Development Center, Shanghai University,

Shanghai, China

ranfeng@shu.edu.cn

Received 21 December 2015; Revised 21 March 2016; Accepted 11 April 2016

Abstract. This paper describes a real-time pedestrian detection processor of Field Programmable

Gate Arrays (FPGA) using a novel structure aided by E-HOG IP. This structure proposes a three

stages detection to reduce the amount of calculation and improve the processing speed. Com-

pared to the traditional methods, in the first stage, the Sobel-step can select windows of interest

before feature extraction and classification. In the second stage, the uniform-LBP (Local Binary

Pattern), which is implemented cell by cell, has approximately half-dimension of HOG and si-

multaneous SVM (Support Vector Machine) to decrease total computation. In the third stage,

improved HOG (Histogram of Oriented Gradient), called E-HOG (Efficient-HOG), is suitable to

be realized in hardware. E-HOG and SVM are adopted to improve the detection rate. To evalu-

ate the performance, the proposed structure is implemented into an FPGA while the E-HOG is

manufactured as one common IP. The results indicate that this processor can detect pedestrians

with 48 fps for VGA resolution under 25Mhz in low FPGA series and satisfy the demand of

real-time.

Keywords: E-HOG (Efficient-Histogram of Oriented Gradient), Field Programmable Gate Ar-

rays (FPGA), pedestrian detection, Sobel-Step, uniform-Local Binary Pattern (LBP)

1 Introduction

Pedestrian detection is one of the fundamental problems in object detection that has been widely applied

in autonomous robotic navigation and automotive safety. Due to many challenges, such as variable shape

and body, illumination, occlusions, and different views, the practical application of pedestrian detection

is unlikely to be completely solved.

In the past ten years, many available approaches and structures for pedestrian detection have been pro-

posed. The present detection methods can be roughly divided into two types: monocular-based and bin-

ocular-based. Based on the platform, pedestrian detection can be divided into: software-based and hard-

ware-based.

This paper discusses only the monocular detection system. Viola, Jones and Snow first applied Haar

wavelets, selected by Ada-Boost, to describe the pedestrian feature [1]. Then, Dalal and Triggs proposed

the Histogram of Oriented Gradient (HOG) with a Linear Support Vector Machine (SVM) to detect pe-

destrians [2]. HOG based on the gradient is the most widely used feature to vividly describe contour lines.

HOG performs far better than other approaches and forms the guiding type. Dollar, Wojek, Schiele and

Perona computed Haar-like features from the LUV color channel, grayscale channel and gradient magni-

FPGA Implementation of a Real-Time Pedestrian Detection Processor Aided by E-HOG IP

88

tude channel and proposed the integral image for fast computation [3]. Wojek and Schiele collected the

shapelet features, HOG features and Haar-like features to combine Multi-Ftr and achieve good perform-

ance [4]. Felzenszwalb, Girshick and McAllester introduced the mixture of multiscale Deformable Part

Models (DPM) along with HOG, even obtaining good results in the PASCAL object detection challenges

[5]. In recent years, Convolutional Neural Networks (CNN) with their different layers detect objects

more effectively than the other handcraft-based approaches [6-9].The above approaches achieve the

state-of-the-art datasets in, for instance, the INRIA dataset and the Caltech dataset [10-12].

The drawback is that these approaches are effective but have heavy computational cost; therefore, they

are unsuitable for processors with limited hardware resources, such as FPGA. In order to transfer pedes-

trian detection to an embedded device, some researchers proposed object detection using FPGA or

FPGA-GPU for real-time application. Mizuno et al. designed an FPGA implementation of a HOG-based

processor to fast detect objects; however, this system detected pedestrians based on a CPU with FPGA

and cannot be transferred to one processor [13].

Most conventional pedestrian detection systems adopt a sliding window-based structure for scanning

the whole frames. Computations and memory bandwidth are required for above 20 VGA (640x480 pixel)

fps, adopting efficient and simple calculation or reusing intermediate data to satisfy the required compu-

tations and memory bandwidth. Conversely, data reuse requires an increase of hardware overload. Con-

sequently, a design over architecture, algorithm and hardware overload is necessary.

In order to achieve real-time pedestrian detection on one embedded device, such as FPGA, for VGA

video, this paper proposes a novel algorithm to speed up the detection without sacrificing the detection

rate. This paper makes the contributions as following:

‧ A three-stage pedestrian detection system is proposed to reduce required computations and improve

processing speed.

‧ Sobel-step is proposed to detect windows of interest based on Sobel operator by detecting edges be-

fore feature extraction.

‧ Uniform-LBP (Local Binary Pattern) with SVM (Support Vector Machine) replaces the HOG+SVM

to distinguish the pedestrian from non-pedestrian.

‧ An efficient HOG algorithm, called E-HOG (Efficient-HOG), was designed to improve the detec-

tion rate.

‧ To evaluate the algorithm, a pedestrian detection processor with E-HOG IP is designed for testing.

The results indicate that this processor can detect pedestrians 48 fps for VGA resolution under 25 Mhz.

This detection speed can satisfy the demand of real-time.

The remainder of this paper is organized as follows: relative theories are explained in section 2, the

hardware system and E-HOG IP, which is based on Global Foundry logic, is addressed in section 3, the

performance of E-HOG IP and detection processor are evaluated in section 4, and finally, the study’s

conclusions are presented in section 5.

2 Relative Algorithm

The success of Dalal’s algorithm is owed to its discriminative features, but the drawback is redundant

features and lengthy processing time. The sliding window always makes decisions after all pixels are

calculated with given approaches. This paper first uses the proposed Sobel-step to select the windows of

interest ahead of schedule. In order to decrease calculation, the uniform-LBP is used to replace the HOG.

But the uniform-LBP and SBM based on uniform-LBP shows un-satisfy detection rate. Finally, the E-

HOG is proposed to distinguish and improve the detection rate.

2.1 Extracting Windows of Interest Based on Sobel-step

Sobel operator is the effective descriptor for edge detection [14]. Based on the Sobel operator, Sobel-step

is proposed to extract windows of interest before feature extraction, which can remove a 20%~30% area

of the whole image. The following section will explain the algorithm of Sobel-step. Firstly, Sobel image

is acquired by convoluted factors with gray image. The convolution factor is shown in the function (1)

and (2).

Journal of Computers Vol. 28, No. 2, 2017

89

1 2 1

0 0 0

1 2 1

X
C

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥− − −⎣ ⎦

 (1)

1 0 1

2 0 2

1 0 1

Y
C

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

 (2)

Let us suppose that (,)f x y stands for the gray value at the coordinate (,)x y . With the
X

C and
Y

C ,

the gradients in direction X and Y can be calculated by function (3) and (4):

(,) { (1, 1) 2 (1,) (1, 1)}

{ (1, 1) 2 (1,) (1, 1)}

x
G x y f x y f x y f x y

f x y f x y f x y

= + − + + + + + −

− − + − + − +

 (3)

(,) { (1, 1) 2 (, 1) (1, 1)}

{ (1, 1) 2 (, 1) (1, 1)}

y
G x y f x y f x y f x y

f x y f x y f x y

= − + + + + + + −

− − + − + + −

 (4)

According to function (3) and (4), the edge detection image can be generated by function (5):

2 2(,) (,) (,)
x y

D x y G x y G x y= + (5)

In order to decrease the computation, the function (5) can be replaced with the approximate similarity:

 (,) (,) (,)
x y

D x y G x y G x y= + (6)

With the given threshold, the Sobel image can be repressed by:

1, (,)
(,)

0, (,)<

D x y Th
S x y

D x y Th

≥⎧
= ⎨
⎩

 (7)

Fig. 1 shows the image, gray image, edge detection image and Sobel image.

Fig. 1. (a) Image Fig. 1. (b) Gray image

Fig. 1. (c) Edge detection image Fig. 1. (d) Sobel image

Analyzing the Fig. 1, the Sobel image can describe the edge with given threshold; however, it is not

suited to human vision. So the Sobel image isn’t directly used to detect the pedestrian. Considering the

difference of contour edge between body and background, Sobel-step based on the Sobel image is pro-

posed to extract the edge contour and remove non-interesting windows.

The Sobel-step operator is constructed with three steps:

FPGA Implementation of a Real-Time Pedestrian Detection Processor Aided by E-HOG IP

90

Step 1. Dividing the whole image into 8x8 pixels, calling each one cell. The corresponding cells have no

overlap.

Step 2. Calculating the value in one cell. Let (,)St i j stand for Sobel integral value over the i th− in

vertical and j th− in horizon cell. Thus, the (,)St i j can be calculated by function (8):

(,)

(,) (,)
x y

St i j S x y= ∑ (8)

Step3. Setting the sliding step for the detection window through different thresholds. Additionally,
1

V

and
2

V stand for the different threshold’s integral value. When
1

(,)St i j V> and
2

(,)St i j V< , it means

that this region in the cell has edge contours and may contain a pedestrian. The top left pixel is the start

pixel of one detection window.

The Sobel-step operator can be adopted as the first stage in pedestrian detection. If the integral value

satisfies the different threshold values, the step of sliding window in second stage is 8. Otherwise, the

step of detection window will be (,)originalS x y plus 8 as function (9) shows:

1 2
8, (,)

(,) ,(,) {8}
(, 8,original

original

V St i j V
S x y m n

S x m y n else

< <⎧⎪
= ∈⎨

− − +⎪⎩ ）
 (9)

Through the different values of (,)originalS x y , the windows of interest will be given ahead of schedule.

2.2 Features Extraction Based on E-HOG

Dalas and Triggers propose HOG features to describe pedestrian features, while the Linear SVM is used

to classify pedestrian zone or non-pedestrian zone through stacked 3780 dimension features [2]. However,

the main drawback of HOG is highly dimensional features and heavy computational cost. So, uniform-

LBP replaces HOG to extract features [15] [16]. To improve the detection rate of uniform-LBP, E-HOG

is proposed as the new features extraction and is located after uniform-LBP+SVM. Three main contribu-

tions of E-HOG, which is an improved approach based on HOG, are: (1) Effective and non-effective

zones are divided in one detection window according to the shape hierarchy; (2) Computation of E-HOG

divides each cell in a block into 4 sub-cells, classifies them into 2 types, and treats them differently.

Through sub-cells, unimportant interpolation will be removed; (3) Implement different interpolations by

Look-Up-Table (LUT).

The size of cell, block and window in E-HOG are still fixed 8x8 pixel, 16×16 pixel and 64×128 pixel,

while the corresponding blocks have a half size overlap, as the Fig. 2 (a) demonstrated.

Fig. 2. (a) Cell, block and window Fig. 2. (b) Pedestrian in detection window

In Dollar’s paper, he groups pedestrians into three scales by using different resolution and finds that

the distribution of height shows uniform distribution in the real word system detecting pedestrians. We

find it interesting that the full body cannot occupy the whole 64x128 pixels because of shape hierarchy as

Fig. 2 (b) showed. Considering that the pedestrian is located in the whole image, the pixels of the detec-

tion window are grouped into two types: the effective area and the non-effective area. The corner size is

one cell. If the pixel is located on the four corner blocks of the detection window, these zones are non-

Journal of Computers Vol. 28, No. 2, 2017

91

effective zones. These pixels will not make contributions to the feature. Non-effective zones are dis-

carded when calculating features. If the pixel is not located in the corner block, these effective zones will

be included in calculating E-HOG.

The E-HOG algorithm is outlined as follows:

Input: the size of the sliding detection window and sliding step 8d = .

The first step of E-HOG and HOG extraction is to compute the magnitude and orientation (or angle) of

gradient. Let us suppose that (,)f x y∇ and (,)x yθ stand for the magnitude and orientation.

The second step of E-HOG and HOG extraction is to derive the orientation histogram from the magni-

tudes and orientations. Each of them has a different process. When we derive the orientation histogram in

HOG features, the orientation histogram of each cell has 9 bins. Trilinear interpolation of HOG, which

can reduce the aliasing effect, distributes the magnitude to four cells of a block as Fig. 3 showed.

10 30 50 70 90 110 130 150 170

1 1
(,)x y

1 2
(,)x y

2 1
(,)x y

2 2
(,)x y

dx

dy

dθ

1
θ

2
θ(,)x yθ

(,)x y

Fig. 3. Trilinear interpolation of HOG

In Fig. 3, the 4 cells of a block are identified by their centers with ((,), , 1,2)
i j
x y i j = . Every histogram

of four cells in 4 cells is represented by (, ,)
i j

h x y θ , where θ satisfy function (10):

{{0 : / 9},{ /9 : 2 /9},{2 /9 :3 /9},{3 /9 : 4 /9},

{4 /9 :5 /9},{5 /9 : 6 /9},{6 /9 : 7 /9},{7 /9 :8 /9}}

θ π π π π π π π

π π π π π π π π

∈ × × × × ×

× × × × × × × ×

 (10)

Then, trilinear interpolation is given by function (11):

1 1 1

1 1 1 1 1 1

(,)
(, ,) (, ,) (,) (1)(1)(1)

x y

x x y y x y
h x y h x y f x y

d d d
θ

θ θ
θ θ

− − −
← + ∇ − − − (11)

1 1 1

1 1 2 1 1 2

(,)
(, ,) (, ,) (,) (1)(1)()

x y

x x y y x y
h x y h x y f x y

d d d
θ

θ θ
θ θ

− − −
← + ∇ − − (12)

 where
2 1 2 1 2 1

, ,
x y

d x x d y y d
θ

θ θ= − = − = − .

Equations (11) and (12) are used to calculate trilinear interpolation in every block. The computation of

HOG features in each detection window is time-consuming. This is the bottleneck for a real-time pedes-

trian detection system; therefore, E-HOG based on sub-cell and LUT is applied in trilinear interpolation

to decrease the computation complexity. To avoid unimportant interpolation, every cell is divided into

four sub-cells (4x4 pixels) according to location. These four sub-cells are classified into 2 types: inner

sub-cells and corner sub-cells as Fig. 4 showed.

Let
1
h stand for the HOG features of cell

1
C .

4

1 1 21 32 41

1

() () () ()
i

i

h H C hist C hist C hist C

=

= + + +∑ (13)

FPGA Implementation of a Real-Time Pedestrian Detection Processor Aided by E-HOG IP

92

1
C

2
C

3
C 4

C

11
C

12
C

13
C

14
C

21
C

22
C

23
C

24
C

31
C

32
C

33
C

34
C

41
C

42
C

43
C

44
C

11
C

12
C

13
C

14
C

21
C

22
C

23
C

24
C

31
C

32
C

33
C

34
C

41
C

42
C

43
C

44
C

Fig. 4. Sub-cells in E-HOG

Next, the question is how to compute the result of Equations (11) and (12). Equations (11) and (12)

can be changed to Equation (14):

1 1 1

1

1

1

(,)
(,) (1)(1)(1) (,)

1

1

(,)

A B

x y

A

B

x x y y x y
f x y f x y P P P

d d d

x x
P

dx

y y
P

dy

x y
P

d

θ

θ

θ

θ

θ θ

θ θ

− − −⎧
∇ − − − = ∇⎪

⎪
⎪ −

= −⎪
⎪
⎨

−⎪ = −
⎪
⎪

−⎪ =
⎪⎩

 (14)

When dealing with
A
P and

B
P , these two parameters can be calculated off-line and stored into LUT.

When dealing with P
θ

, every bin is averaged to 4 sub-bins for hardware implementation. Magnitudes,

which are given the parameters of {[3/4, 1/4], [1, 0], [1, 0], [3/4, 1/4]} as the factors, are mapped into the

corresponding bins. Simple shift and addition can address this calculation to avoid using multipliers.

In the last step, the L2-Uniform is used in E-HOG to normalize all features.

2.3 Three Stages in Pedestrian Detection System

The bottleneck for real-time pedestrian detection is a large amount of data. Local Binary Pattern (LBP)

always is adopted to deal with the pedestrian occlusion [15]. In this system, LBP features are used to

replace the HOG features and uniform-LBP, which is one kind of LBP and can generates only 59 dimen-

sions at most in one 16x16 pixel, is selected to generate the 1888 dimensions in one detection window

[16]. If the uniform-LBP is used to determine the “pedestrian” zones, this operator can decrease the

amount of calculation because of the less dimension features. But the error rate of uniform-LBP+SVM is

worse than the E-HOG+SVM. So, E-HOG+SVM are located behind the uniform-LBP+SVM to approve

the detection rate.

Based on the discussion above, this real-time pedestrian detection system is a combination of three

stages: Sobel-step in the first stage; uniform-LBP+SVM in the second stage; and E-HOG+SVN in the

third stage, as Fig. 5 showed. This detection system is outlined as follows:

Input: The input image is approximately 640 480× pixel.

Output: The location of different sizes, which are annotation to pedestrians.

Step 1. The scaled input image at a fixed scale.

Step 2. Input image is inserted into the first stage. Sobel-step calculates the sliding step (,)originalS x y of

the detection window in the second stage.

Step 3. From top to bottom and left to right, scan the whole image with 64 128× based on (,)originalS x y .

Extract the 1888 uniform-LBP features from the sub-image covered by the detection (scanning) window

and then apply the learned SVM classifier to the LBP feature vector to give the result (,)
LBP

Sc x y , where

(,) { 1, 1}
LBP

Sc x y ∈ − + . The uniform-LBP features are generated cell by cell and the SVM is stimulated to

provide the result, whether is the “pedestrian” zone or “non-pedestrian” zone.

Step 4. From top to bottom and left to right, scan the whole image with 64 128× based on

(,) { 1, 1}
LBP

Sc x y ∈ − + . Extract the 3204 E-HOG features from the sub-image covered by the detection

Journal of Computers Vol. 28, No. 2, 2017

93

(scanning) window and then apply the learned SVM classifier of the high-dimension E-HOG feature

vector to classify the sub-image as pedestrian or non-pedestrian.

Step 5. Non-Maximum Suppression (NMS) is applied to fuse the sub-detection windows into one detec-

tion window as one annotated pedestrian-zone.

3 Real-Time Pedestrian Detection Architecture on Board

Fig. 5 shows a flow diagram of pedestrian detection using the E-HOG algorithm. When transplanting this

system to FPGA, especially for low series of FPGA, the total of resources is the key restriction. HOG is

the basic algorithm for extracting features, so, the first and second stage will be implemented on Cyclone

III and E-HOG is designed as hardware IP. This system can be used as the real-time pedestrian detection

system on-board. Compared to the others system, this system is on-boarded system can real-time detect

human.

Fig. 5. Structure of pedestrian detection

3.1 Three Stages in Pedestrian Detection System

E-HOG is the key module for the pedestrian detection system. The performance of E-HOG in detection

and speed is the primary determinant of performance of the detection system. Fig. 6 shows a flow dia-

gram of detection using the E-HOG algorithm.

Fig. 6. E-HOG IP

E-HOG is modified based on the HOG using the following approaches:

FPGA Implementation of a Real-Time Pedestrian Detection Processor Aided by E-HOG IP

94

Cell-based calculation. E-HOG features are extracted using cell-based calculation. This means that one

cell at a time is calculated during E-HOG processing. Sharing and reuse of a cell have great impact on

calculation and memory.

Pipeline CORDIC for orientation and magnitude. To achieve simplicity of hardware realization when

rotating, the key ideas used in Coordinate Rotation Digital Computer (CORDIC) arithmetic are:

(a) Decompose the rotations into a sequence of elementary rotations through predefined angles that

can be implemented with minimum hardware cost.

(b) Avoid scaling that might involve square-root or division operations.

The number of iterations and accuracy are directly related but are in inverse proportion to the process-

ing speed. In this IP, the number of iteration is 12 to make sure of the accuracy of results, while 11 stages

pipelines are inserted into the CORDIC algorithm to promote processing speed.

LUT and Sub-cell in trilinear interpolation. Calculation of tri-linear interpolation can consume more

than 70% of the total feature extraction time. In order to reduce processing time, the tri-linear interpola-

tion is modified using LUT and sub-cell as shown in Fig. 7.

Cell Line

CELL1

CELL3

CELL2

CELL4

…

…

…

…

Sub-cell

LUT

Histogram

For CELL

CELL1 CELL2

CELL4CELL3

Magnitude Parameters

MULTI

ADD

B
L
O
C
K
1

MULTI

ADD

B
L
O
C
K
2

MULTI

ADD

B
L
O
C
K
3

MULTI

ADD

B
L
O
C
K
4

Normalization SRAM for intermediate cell

BLOCK 2

BLOCK 1

Fig. 7. Structure of E-HOG

Normalization based on binary. The normalization of E-HOG is performed by dividing a fixed histo-

gram by L2 Norm. This operation requires square root calculation and division. To avoid these calcula-

tions, the binary normalization is used as:

1, (,)
(,)

0, (,)

hist i j d
Nh i j

hist i j d

>⎧
= ⎨

<⎩
 (15)

While
4 8

1 0

(,)
i j

d hist i j
= =

=∑∑ . d stands for the integral values of all histogram in one block and (,)Nh i j

for the histogram after normalization.

3.2 Architecture for pedestrian detection processor

Fig. 8 exhibits the whole pedestrian detection processor with E-HOG IP.

Journal of Computers Vol. 28, No. 2, 2017

95

Camera

CCD_CAPTURE

I2C_config

CCD_TO_RGB FIFO SDRAM Control

SDRAM ImageDVI_OUT

SCREEN

SDRAM Gray SDRAM Image

SRAM_Control

Gray Image

SRAM

Control

Scale
Sobel

Operator

Sobel

Step

Sliding step

LBP

Coding

Uniform

LBP

DSP

BLOCK

E-HOG

IP

DSP

BLOCK
NMS

Detect

Results

8 bit

8 bit

8 bit8 bit

SROM\

LBP/ E-HOG

8 bit 6 bit

32bit

8 bit

32bit

Annotation with

Detection Results

C
la
s
s
ific

a
tio

n

8 bit

8 bit

Fig. 8. Architecture of pedestrian detection processor

The proposed architecture contains the main controlling and memory modules: a Control, SDRAM

Control, Camera Control (I2C_config module, CCD_CAPTURE module, CCD_TO_ R GB module, one

DVI interface, one FIFO, ONE SRAM and some SRAM for intermedia data, SROM for SVM coefficient

of Uniform-LBP and E-HOG. The detection system also contains data processing modules: Scale Module,

First Stage (Sobel Operator and Sobel Step Module), Second Stage (LBP coding, Uniform-LBP and DSP

BLOCK for classifying Uniform-LBP features), Third Stage (E-HOG, DSP_BLOCK, DSP BLOCK for

classifying E-HOG features), NMS (Non-Maximum Suppression) and Detection window.

Two SDRAMs are used to store the image from the camera using ping-pong strategy. The left

SDRAM is used to store the Gray image. The internal modules process input frames and then output

annotated frames with detection results.

The I2C_config, CCD_CAPTURE and CCD_TO_RGB modules receive the frames, which are cap-

tured by camera. The DVI_OUT module rejects the frames which are annotated by the detection system

into SCREEN, as Fig. 8 shows. Fig. 9 presents pipeline flow based on the three stages.

It vividly shows the relationship between three stages, windows and the frames. Pipeline processing is

conducted as follows:

(1) Frames are inputted into the two SDRAMS by the sdram_control module using ping-pong strategy.

(2) GRB frames are stored in the third SDRAM.

(3) The Sobel-step is generated by the first stage with data from SDRAM, and stores the internal im-

age to the SRAMs.

(4) Based on results of the first stage, the step of the uniform-LBP and SVM detection window is de-

termined. In order to decrease calculation, the uniform-LBP is operated cell by cell. As Fig. 9 shows, the

LBP is first calculated through every 16x16 pixel, cell by cell. Then, according to the results of sliding

steps, different cells and corresponding factors are classified.

FPGA Implementation of a Real-Time Pedestrian Detection Processor Aided by E-HOG IP

96

Fig. 9. Three-stages and cell-based pipeline flow

Compared to the cell in HOG, the cell uniform LBP has the same time, but the corresponding cell has

no overlap. The step of a cell is 16 pixels both vertical and horizontal. One cell generates 59 dimension

features. One detection window will generate 1888 dimensions.

(5) The uniform-LBP with SVM coefficient can classify the “pedestrian” or “non-pedestrian”.

The proposed system has 16 classification cores. One classification core addresses 2 blocks of MAC

operation. One detection can manage 32 blocks efficiently. Sufficient parallelism reduces the required

cycle count.

(6) In order to improve the detect rate, the E-HOG IP with SVM coefficients finally determines

whether “pedestrian zone” or not.

This pedestrian detection system greatly reduces memory bandwidth because it prevents reloading in-

put pixels and accelerates processing speed.

4 Experiments Results

In section 2, Sobel-step (see section 2.1), E-HOG (see section 2.2) and three stages of the system (see

section 2.3) are detailed explained. In section 3, the IP and detection processor are described. So, the

performance of E-HOG and the pedestrian detection system will be evaluated separately. Next, evalua-

tion of IP and system implementation on board is discussed with the frames from the outdoor scene. Note

that HOG plus SVM are the classic structures for pedestrian detection, so the Linear SVM will be used

for LBP and HOG as the classifier.

Before evaluating, the pedestrian detection data set must be chosen. It is well-known that INRIA is the

first and most frequently used set for evaluating the performance of algorithms [10]. INRIA dataset con-

tains training set and testing set to train linear SVM and test the performance. However, the INRIA data

set contain background which sometimes does not agree with the domestic. Other than INRIA data set,

several images are still gathered to match domestic background. In this evaluation, 3,000 images were

used for offline training, while 14,000 images were used as the evaluation data. The size of training and

test images are 64X128 pixels.

The evaluation performance on PC can be divided into two parts: theory evaluation and hardware

evaluation. Section 4.1.1 and 4.1.2 shows the theory evaluation. Section 4.1.3 shows the hardware eval-

uation on PC. Section 4.2 shows the evaluation of E-HOG IP and detection system on board.

Journal of Computers Vol. 28, No. 2, 2017

97

4.1 Function performance

The evaluation performance on PC can be divided into two parts: theory evaluation and hardware evalua-

tion. Section 4.1.1 and 4.1.2 shows the theory evaluation. Section 4.1.3 shows the hardware evaluation.

Evaluation of E-HOG. The performance of E-HOG is evaluated using the Matlab 2013a.The first part is

performance evaluation of this HOG algorithm. CORDIC based Parameters-fusion LUT HOG is im-

proved based on the HOG. Systems for pedestrian detection, HOG+ Linear SVM and this HOG+ Linear

SVM, are compared to each other to distinguish their functions.

The method for quantification is to report miss rates versus false positives per window, calling DET

curves of different algorithms. Lower values are better.

As Fig. 10 shows, the DET curves from HOG+ Linear SVM and Our HOG+ Linear SVM are used to

qualify algorithm performance. As Fig. 10 (a) shows, Our HOG is equivalent to the Dalal’s HOG at -4
10

FPPW. So, the CORDIC based Parameters-fusion LUT HOG can be used to extract an image’s feature

without performance sacrifice.

The next step is to evaluate the performance of this HOG with different numbers of stages in CORDIC.

Fig. 10 (b) shows the impact of different numbers of stages on performance using DET curve.

Fig. 10 (b) shows that if the number of stages in CORDIC is larger than 12, the performance im-

provement is minor. This minor improvement is not worth the sacrifice of size. So, the CORDIC algo-

rithm will perform 12 iterations to complete calculation of magnitude and orientation. The conclusion

from the Fig. 10 is that the E-HOG can be used as the effective feature descriptor.

(a) DET curves of HOG and E-HOG

(b) DET curves with different iteration

Fig. 10. Different DET curves

FPGA Implementation of a Real-Time Pedestrian Detection Processor Aided by E-HOG IP

98

Theory evaluation of the system. The critical evaluation of a pedestrian detection system is FPPI (Miss

Rate vs False Positive Per Image) using Matlab 2013a. There are approximately 16 types of representa-

tive features used to detect pedestrians. The HOG and HOG-LBP in this paper are both state of art fea-

tures for evaluating performance. From Fig. 11, the three-stage structure outperforms the other three al-

gorithms.

Fig. 11. Performance of different methods

Hardware performance evaluation of proposed system.

(1) E-HOG IP

The evaluation of integrated circuits E-HOG IP is chosen by FPGA. Firstly, the E-HOG is realized on the

FPGA-Cyclone III in a Verilog HDL simulation and Altera Quartus II 15. Table 1 lists the hardware

overload using the FPGA with the E-HOG hardware IP. Table 2 lists the result report of traditionally

HOG from the Dollar's paper.

From the Table 1 and Table 2, the E-HOG can decrease 23.4% hardware cost than the traditionally

HOG. The memory size just has the one third memory size of traditionally HOG.

Table 1. FPGA synthesis result report

Slice logic Used Utilization (%)

Number of slice registers 3551 22

Total Combination function 6313 41

Total Memory bits 5120 1

Table 2. Traditionally HOG FPGA report

Slice logic Used Utilization (%)

Number of slice registers 4657 29

Total Combination function 8156 53

Total Memory bits 16384 3

(2) Evaluation of processor

A Verilog HDL simulation and Altera Quartus II 15.0 is also used to estimate the number of cycle counts.

The results of estimation are presented in Fig. 12. In Fig. 12, HOG+SVM stands for the traditional

method; Approved stands for the three stages without cell-based and pipeline; Optimization stands for the

three stages and FPGA implementation. The cycle count is standard with 6
10 .

From the Fig. 12, the features extraction with simultaneous SVM classification enables the reuse of in-

termediate results and reduces the processing time. The overall process requires about 6
0.52 10× cycles

Journal of Computers Vol. 28, No. 2, 2017

99

per frame. Based on these, this proposed system implementation in FPGA can process VGA resolution

video at 48 fps using 25 Mhz.

Fig. 12. Cycle count of different methods

Table 3 shows the performance of difference pedestrian detection on board. As Table 3 shows, our sys-

tem can process 48 fps (VGA) based on 25Mhz. This implementation shows the better performance than

[13, 17-18] with minimum operating frequency. Compared to [19], our FPGA processor aided by E-HOG

still performs well with less memory usage and hardware overload.

Table 3. Results of FPGA implementation

 [17] [18] [13] [19] Ours

LUT/LEs 28,495 34,403 34,838 16392 14895

Registers 5,980 23,247 22,612 10900 9800

DSP Block 2 68 N/A 1 40
FPGA

Memory/Mbits 1.08 0.34 2.094 0.7 0.28

Frames rates 38 20 72 50 48

Resolutions 320X240 640X480 800X600 1280X1024 640X480

Frequency(Mhz) 167 70 40 60 25

Serials Virtex-5 Cyclone III Cyclone IV Cyclone III Cyclone III

Company Xilink Altera Altera Altera Altera

4.2 FPGA Implementation Aided by E-HOG IP

E-HOG IP. Except the evaluation using FPGA, another method is adopted to evaluate the performance

through ASIC. Fig. 13 shows the E-HOG IP.

Fig. 13. E-HOG IP

This IP is developed with ceramic leaded chip carrier (CLCC44), type chip of 1cm×1cm, based on the

180nm, 1-poly/4-metal CMOS logic process. This ASIC IP is labeled SHU-IRAC18. SHU-IRAC18 con-

tains one test chain using the technology of design for test (DFT).About the test memory size, simple

coding is wrote to test whether SRAM is right or not.

Fig. 14 shows the results waveform of E-HOG IP using Signal Tap II.

FPGA Implementation of a Real-Time Pedestrian Detection Processor Aided by E-HOG IP

100

Fig. 14. Signal Tap II waveform

Pedestrian detection processor. To evaluate the effectiveness of this system, the proposed architecture

is implemented on our self-developed board as the Fig. 15 and Fig. 16 show.

Fig. 15. FPGA board with E-HOG IP

Journal of Computers Vol. 28, No. 2, 2017

101

Fig. 16. Architecture verification by FPGA and E-HOG IP

When designing the hardware system, the circuit board is divided into two boards: Cyclone Ⅲ core

and backboard. Through two independent boards, the backboard and core board can be extended to other

functions. If this platform were to be promoted, just one of them may need to be amended. The core

board contains one FPGA, two SDRAM and some other devices. The core device is Cyclone Ⅲ-

EP3C55F48417.The backboard main devices are MT9 M111, one SRAM, power and interfaces for de-

bugging and downloading program. E-HOG is embedded into the system on the backboard. The connec-

tion between backboard and core board is SODIMM200.

Fig. 17 shows that the detection processor is working when the green LED is burned. Fig. 18 shows

the partial results of the pedestrian detection processor.

Resources utilization and comparison on FPGA are presented in Table 3. This proposed implementa-

tion on FPGA can detect pedestrians with 25 Mhz at 48 fps and shows the best performance with mini-

mum usage and minimum operating.

Fig. 17. Working processor

(a) (b)

Fig. 18. Partial results of the pedestrian detection processor

FPGA Implementation of a Real-Time Pedestrian Detection Processor Aided by E-HOG IP

102

The testing video contains about 988 persons. The results of pedestrian detection processor are that:

the number of right detection is 861; the number of miss detection is 93; the number of error detection is

13. The detection rate contains error rate and miss rate.

Analysis from Table 4, the conclusion is that the miss rate is about the 9.41% and the error rate is about

1.3%. The statistical data shows that the performance of this pedestrian detection shows the better than

HOG+SVM (miss rate: 28%; error rate: 1.5%). So, this processor can detect the pedestrians with the 9.41

miss rate and performs better than other algorithms.

Table 4. Detection results of pedestrian detection processor

method Total/Person Detection/Person Miss/Person Error/Person

Three-stages 988 895 93 13

5 Conclusion

This paper has discussed a three-stage pedestrian detection on board that can be used as the real-time

pedestrian detection processor. The three-stages contains: Sobel-step is applied as the first stage operator

and to extract windows of interest; Uniform-LBP with SVM in the second stage can describe edge detec-

tion with less features; In the third stage, E-HOG and Linear SVM will distinguish the pedestrian zone

from non-pedestrian. In order to decrease the cycle counts, cell-based is proposed to implement the uni-

form-LBP. When this proposed system is installed on-board with E-HOG IP, experimental results show

that this processor can satisfy real-time pedestrian detection without sacrificing accuracy.

Acknowledgement

This work is supported by the National Natural Science Foundation of China (Grant 61376028) and

Shanxi University Science and Technology Innovation Project (Grant 20140063).

References

 [1] P. Viola, M. J. Jones, D. Snow, Detecting pedestrians using patterns of motion and appearance, in: Proc. 2005 International

Journal of Computer Vision, 2005.

[2] N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, in: Proc. 2005 IEEE Computer Society Confer-

ence on Computer Vision and Pattern Recognition, 2005.

[3] P. Dollar, C. Wojek, B. Schiele, P. Perona, Pedestrian detection: An evaluation of the state of the art, IEEE Transactions on

Pattern Analysis and Machine Intelligence 34(4)(2012) 743-761.

[4] C. Wojek, B. Schiele, A performance evaluation of single and multi-feature people detection, in: Proc. Joint Pattern Recog-

nition Symposium, 2008.

[5] P. F. Felzenszwalb, R. B. Girshick, D. McAllester. Cascade object detection with deformable part models, in: Proc. Com-

puter Vision and Pattern Recognition, 2010.

[6] J. Schlosser, C.K. Chow, Z. Kira, Fusing LIDAR and images for pedestrian detection using convolutional neural networks,

in: Proc. 2016 IEEE International Conference on Robotics and Automation, 2016.

[7] W. Ouyang, X. Wang, X. Zeng, S. Qiu, P. Luo, Y. Tian, H. Li, S. Yang, Z. Wang, C.-c. Loy, X. Tang, Deepid-net: deform-

able deep convolutional neural networks for object detection, in: Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2015.

[8] R. Benenson, M. Omran, J. Hosang, B. Schiele, Ten years of pedestrian detection, what have we learned?, in: Proc. Euro-

pean Conference on Computer Vision, 2014.

Journal of Computers Vol. 28, No. 2, 2017

103

[9] W. Ouyang, X. Wang, Joint deep learning for pedestrian detection, in: Proc. the IEEE International Conference on Computer

Vision, 2013.

[10] Navneet Dalal, INRIA person dataset. <http://pascal.inrialpes.fr/data/human/>.

[11] Computational Vision at CALTECH, Caltech pedestrian detection benchmark. <http://www.vision.caltech.edu/Im-

age_Datasets/CaltechPedestrians/>.

[12] Joseph Chet Redmon, Pascal VOC dataset mirror. <http://pjreddie.com/projects/pasccal-voc-dataset-mirror>.

[13] K. Mizuno, Y. Terachi, K. Takagi, S. Izumi, H. Kawaguchi, M. Yoshimoto, An FPGA implementation of a HOG-based

object detection processor, IPSJ Transactions on System LSI Design Methodology 6(2013) 42-51.

[14] W. Gao, X. Zhang, L. Yang, H. Liu, An improved Sobel edge detection, in: Proc. 3rd IEEE International Conference on-

Computer Science and Information Technology (ICCSIT), 2010.

[15] X. Wang, T.X. Han, S. Yan, An HOG-LBP human detector with partial occlusion handling, in: Proc. 2009 IEEE 12th

International Conference on Computer Vision, 2009.

[16] F. Lu, J. Huang, An improved local binary pattern operator for texture classification, in: Proc. 2016 IEEE International

Conference on Acoustics, Speech and Signal Processing, 2016.

[17] M. Hiromoto, R. Miyamoto. Hardware architecture for high-accuracy real-time pedestrian detection with Co-HOG features,

in: Proc. 2009 IEEE 12th International Conference on Computer Vision Workshops, 2009.

[18] K. Negi, K. Dohi, Y. Shibata, K. Oguri, Deep pipelined one-chip FPGA implementation of a real-time image-based human

detection algorithm, in: Proc. 2011 International Conference on Field-Programmable Technology (FPT), 2011.

[19] Y.Li, K. Gai, M. Qiu, W. Dai, M. Liu, Adaptive human detection approach using FPGA-based parallel architecture in

reconfigurable hardware. <http://onlinelibrary.wiley.com/doi/10.1002/cpe.3923/abstract>, 2016.

FPGA Implementation of a Real-Time Pedestrian Detection Processor Aided by E-HOG IP

104

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

