
Journal of Computers Vol. 28, No. 2, 2017, pp. 145-164

doi:10.3966/199115592017042804011

145

A Cross-Jobs-Cross-Phases Map-Reduce Scheduling

Algorithm in Heterogeneous Cloud

Lei Chen1, Jing Zhang1, Li-Jun Cai2, Zi-Yun Deng1, and Tao Meng2

1
 College of Electrical and Information Engineering, Hunan University,

Changsha 410082, China

2
 College of Information Science and Engineering, Hunan University,

Changsha 410082, China

{chenleixyz123, hetingqin, ljcai, dengziyun, mengtao}@hnu.edu.cn

Received 30 December 2015; Revised 03 June 2016; Accepted 03 July 2016

Abstract. To fast process the large-scale data, map-reduce cloud is viewed as a very reasonable

and effective platform. According to the new scheduling challenges in map-reduce cloud, a

cross-jobs-cross-phases (CJCP) map-reduce scheduling algorithm is proposed in this paper.

CJCP mainly consists of four optimal schemes, and respectively deals with four resource waste

scenes of the job scheduling process. In the first scene, based on the job training method, an op-

timal scheme is designed to shield the interference of heterogeneous resources on job scheduling.

In the second scene, we give two definition and develop another optimal scheme to dynamically

adjust task number of multiple virtual machines on the same physical host. Through task ad-

justment, the high-capacity virtual machines deal more tasks than low-capacity ones. In addition,

we build the overlapping execution model to overlap map, shuffle and reduce phases. In the

third scene, considering the difference of map tasks and push tasks on resource usage needs, an

overlapping scheme is formed to optimal the execution of push and map phase. In the last scene,

a cross-jobs optimal scheme is proposed, which overlap execution of current job and next job.

To avoid the bandwidth confliction between two jobs, a monitor method is used for reasonably

resources allocation. Extensive experiments show that our algorithm consumes less job execu-

tion time and performs better than other three algorithms.

Keywords: cloud computing, heterogeneous scheduling, map-reduce, overlapping distribution

1 Introduction

Big data era is coming and accompany with some important data characteristics: rapidly increasing, di-

versity and large-scale. It brings new opportunities and challenges for all walks of life. How to efficiently

process and mine the big data is becoming the focus both in industry and academic research. map-reduce

[1] is a large-scale distributed data programming model, which was proposed by Google in 2004, it is one

of the most popular framework to big data. Currently, many companies and research institutes have set

up their own map-reduce clusters, which require a lot of hardware resources (servers and storage) and

professional maintenance staff. Otherwise, due to resource independence and decentralization position of

the clusters, causing great waste of underlying physical resources. Therefore, to build map-reduce cloud

has become a powerful tool for large-scale data processing.

Based on the cloud computing model, map-reduce cloud platform provide a shared cloud services to

users for large-scale data processing in “pay on-demand” approach. User can use map-reduce service at

anywhere and anytime by submitting online jobs. In map-reduce cloud, the underlying physical resources

consist of one or more geographically dispersed heterogeneous data center, the physical hosts configure

with different types of CPU, MEM, storages.

The total map-reduce scheduling process includes four phase: data transfer (push phase), map phase,

shuffle and reduce phase, as shown in Fig. 1. Before the jobs were submit, user should specify four pa-

A Cross-Jobs-Cross-Phases Map-Reduce Scheduling Algorithm in Heterogeneous Cloud

146

rameters, including input data, map function, reduce function the reduce task size. Push is the first phase,

after the job is submit, and responsible for dividing input data into a fixed-size data blocks (trunk), de-

fault size is 64M. Map is the second phase, according to the map function, it computes the data blocks

and generates intermediate key/value results. The association between push task and map task is 1:1, that

is to say, one map task handle one data block. Shuffle is the third phase, after the map tasks have been

completed, the intermediate key/value results are sorted and sent to corresponding reduce nodes. Other-

wise, on one reduce node, it merge multiple map tasks results according to the keys, and duplicate redun-

dancy data. Reduce is the last phase, it processes the map results and generates final results. The associa-

tion between map task and reduce task is n: 1, one reduce task handle multiple map task results.

Fig. 1. Scheduling process of map-reduce job

Comparing to the traditional map-reduce scheduling, the process of map-reduce cloud appears new

characteristics:

‧ Massive jobs and users. For the traditional map-reduce cluster, just a few users would submit jobs,

there are no need to concern the preemption or insufficient resources on scheduling. However, in

map-reduce cloud, because of massive users may random submit multiple jobs at any time, a job

may suffer the long time wait or even jobs execution failure from resources insufficient. Therefore,

in map-reduce cloud, the scheduling process is more complex.

‧ Heterogeneous resource nature. In the traditional map-reduce cluster, the resources are usually ho-

mogeneous. All compute nodes configure same type of CPU, MEM, DISK, and so on. However, in

map-reduce cloud, the clusters usually consists of multiple different types underlying hardware re-

sources. Each type hardware resources have different CPU, MEM, and DISK. Therefore, the map-

reduce scheduling on cloud is more difficult. In addition, map-reduce cloud usually hire multiple

different geographical data center.

‧ Virtualization. In traditional map-reduce scheduling, each physical server is a compute node. How-

ever, in the map-reduce cloud, virtualization technology has been developed to enhance the utiliza-

tion of underlying hardware resource. One server will virtual into multiple virtual machines and

each virtual machine will be used as a single compute node. The scheduling and management of vir-

tual machines is also a new challenge.

Currently, a lot of research papers about map-reduce scheduling have been published. Based on the re-

search direction, most works can be classified into three aspects, single phase optimization, cross-phases

optimization, and parameters adjustment optimization. (1) On single phase optimization aspect, based on

the memory perfecting, a high performance scheduling algorithm is proposed for improving the data lo-

cality [2]. Focusing on the map phase, a queuing scheduling algorithm is designed to allocate the task

based on maximum weight [3]. With an eye to shuffle phase, based on the bandwidth constraints and data

locality, two dynamic shuffle scheduling algorithms are developed to reduce the communication over-

head in [5-6]. Concerning on the reduce phase, through minimize online makespan time, an optimal

scheduling algorithm is designed [7]. Similar, based on the prediction strategy, Tang, Jiang, Zhou, Li and

Li put forward an overlapping optimal algorithm to reduce the start execution time [8]. In a cloud envi-

Journal of Computers Vol. 28, No. 2, 2017

147

ronment, Zhao, Wei, Zhang and He proposed a two-phase weighted task scheduling algorithm [14]. (2)

On cross-phases optimization aspect, an overlay mode is proposed for push and map phases [9]. Using

RDMA technology in the high performance environment, an optimal algorithm by overlapping map and

shuffle phases is designed [10]. Otherwise, for cloud scheduling, a cross map and reduce scheduling al-

gorithm is proposed [12]. Based on the combination of overlapping in push and map, shuffle and reduce,

Heintz, Chandra and Weissman proposed a tow optimal scheme [11]. (3) On parameters adjustment op-

timization aspect, from job parameter and application view, block device reconfiguration algorithm and

MRONLINE algorithm are developed to optimal map-reduce job execution [15-17]. Otherwise, in the

cloud environment, Palanisamy, Singh and Liu designed a new map-reduce cloud service model, Cura, it

dynamically configures the best hadoop cluster according to the user-submitted needs, so as to reduce the

job execution time [13]. In the above algorithms, multiple jobs scheduling optimization is less considered.

Otherwise, in cloud environment, heterogeneous resources are rarely researched. So to simultaneously

optimal cross phases, cross jobs and heterogeneous resources in cloud is a huge challenge.

The motivation of this paper is to find the scheduling features of multiple phases, multiple jobs and

heterogeneous resources so as to develop some optimal schemes to speed up the job execution process,

reduce the total running time. According to the new challenges of map-reduce scheduling in cloud, four

resource waste scenes are existed among multiple phases (push, map, shuffle, and reduce), multiple jobs

and heterogeneous resources, so, respectively four optimal schemes are formed to solve the four resource

waste problem. Combining with the four schemes, a cross-jobs-cross-phases map-reduce scheduling al-

gorithm is proposed, which is simply called as CJCP. CJCP takes three overlapping method in three op-

timal scheme, which saves job execution time and consumption cost. In addition, we develop job training

method to shield the heterogeneous feature of underlying physical hosts. The detailed description of

CJCP algorithm is showed in section 3.

Other section are organized as follows: The map-reduce scheduling process is formulated and analyzed

in section 2. Section 3 presents our algorithm in detail. Section 4 contains an experimental evaluation.

We finally conclude the paper in section 5.

2 Problem Definition and Analysis

The main objective of this study is to minimize the execution cost and time of the map-reduce job in

cloud environment. In this section, the map-reduce task scheduling process is firstly formulated under

heterogeneous cloud environment. Then, the four resource waste scenes existing in the scheduling proc-

essing will be analyzed in detail.

2.1 Problem Definition

The scheduling process of map-reduce jobs in heterogeneous cloud simplify as: users usually online

submit multiple map-reduce jobs to the cloud. Each job
j

job contains three type of tasks, including an

input data queue
j

data

jobQ , a map task queue
j

map

jobQ , a reduce task queue
j

reduce

jobQ . The input data queue contains

j

data

jobC same size of data trunk, the default size is 64M. The input data queue will be stored at public stor-

age server after uploading by users, when the tasks processing begin, the data would be transmitted to

data nodes. The map queue
j

map

jobQ contains
j

map

jobC map tasks. A map task
map

task processes one single data

trunk
data

task , so, the number of map queue
j

map

jobC is same as
j

data

jobC . The reduce queue
j

reduce

jobQ includes

j

reduce

jobC reduce tasks. One reduce task deals with the results of multiple map tasks.

Once a job has been submitted to the cloud, the task scheduler starts to allocate the three type tasks to

underlying compute resources (virtual machine: VM). The underlying physical resources are heterogene-

ous in the cloud, it consists of different type physical hosts and VMs. In the cloud, virtual machine is a

basic unit for task computing, so, the computing resources mentioned in the following are referred to

virtual machines. More specifically, each virtual machine configures with four different resources (CPU,

MEM, DISK and BW). For each type of VM, the rental cost rent

Cost of unit time and the communication

cost com

Cost of unit data are different. In addition, one virtual machine may continuously executes multi-

A Cross-Jobs-Cross-Phases Map-Reduce Scheduling Algorithm in Heterogeneous Cloud

148

ple map or reduce tasks in one task scheduling.

To better formulate the job execution time and costs, we suppose one job
j

job map to
j

vm

jobC virtual

machines, each virtual machine
i

vm deals with
,i j

data

vm jobC input data trunks (push task),
,i j

map

vm jobC map tasks,

,i j

reduce

vm jobC reduce tasks and migrating map results from the other virtual machines. In map-reduce process,

one push task transmits one data trunk from the public storage to
i

vm and the time-consuming is
,i j

data

vm jobt ;

one map task process a data block of
j

job on virtual machine
i

vm and the time-consuming is
,i j

map

vm jobt ;one

reduce task handles results of
j

pair

jobC map tasks, for one map task, the time-consuming is
,i j

reduce

vm jobt . Further-

more, the consuming time on migrating all map results from the other virtual machines is
,i j

transfer

vm jobt

In summary, the total task execution time
,i jvm jobt of

j
job on a virtual machine

i
vm is formulated as:

, , , , ,

, , ,

 + +

i j i j i j i j i j

i j i j i j

data data map map

vm job vm job vm job vm job vm job

transfer reduce reduce

vm job vm job vm job

t C t C t

t C t

= ∗ + ∗

∗

∑ ∑

∑
 (1)

In Equation (1), task execution time on one virtual machine consists of four parts, including push data

transmission time, map task execution time, map result shuffle time and reduce task running time.

Based on this, the eventually execution time of a map-reduce job is as follows:

 { },

max 0
j i j j

vm

job vm job jobt t i C= ≤ ≤ (2)

In Equation (2), the eventually execution time of a job is the maximum running time of all virtual ma-

chines which is mapped to multiple tasks of
j

job .

Similarly, the running cost of
j

job on virtual machine
i

vm is as follows:

, , ,

 +

i j i j i i j i i

i i

rent data data com

vm job vm job vm vm job vm vm

data com

vm vm

cost t cost C task cost

transfer cost

= ∗ + ∗ ∗

∗

 (3)

In the above formulation, the execution costs consist of three parts, including virtual machine rent costs,

push data transmission costs, shuffle data migration costs. In addition, i indicates the single data trunk

size of
j

job and i indicates the total migrating data size of map results from other virtual machines.

So, the total execution cost of
j

job can be defined as follows:

,

1

vm
job j

j i j

C

job vm job

i

cost cost

=

= ∑ (4)

Therefore, the objective function of map-reduce task scheduling model on heterogeneous cloud as fol-

lows:

, , ,

1 1 1

.

,

j j

vm vm vm
job job jobj j j

i j j i j j i j j

job job

C C C

data data map map reduce reduce

vm job job vm job job vm job job

i i i

min t and cost

st

C C C C C C

= = =

 = = , =∑ ∑ ∑

 (5)

2.2 Problem Analysis

In the above description of map-reduce scheduling process under heterogeneous cloud, four resource

waste scenes are existing, including map-shuffle-reduce waste scene, push-map waste scene, heterogene-

ous resource waste scene and cross jobs waste scene.

Journal of Computers Vol. 28, No. 2, 2017

149

Scene 1 (heterogeneous resource waste). In the traditional map-reduce scheduling, the resources are

homogeneous, all node configure with the same bandwidth, CPU and MEM, the execution time of same

type of task could be regard as same, and usually take evenly allocation strategy. However, in heteroge-

neous cloud environment, the computing nodes configure with different types of CPU and MEM, the

time for dealing with same types of tasks are different. The evenly allocation strategy will inevitably lead

to virtual machines resources waste, this scene is called “heterogeneous resource waste,” as shown in Fig.

2.

Fig. 2. Scene of heterogeneous resource waste

In Fig. 2, two types of virtual machine process job1 using evenly distributed strategy, each virtual ma-

chine transfers three blocks and calculates three map tasks. At t0, two virtual machines simultaneously

execute push phase, at t2, execute map phase, at t4, execute shuffle phase. However, the capabilities of

two virtual machines are different, so vmtype2 completes push phase at t1, at t3, completes map phase.

Thus, vmtype2 bandwidth resource is idle from t1 to t2. CPU and MEM resources are idle from t3 to t4.

Scene 2(map-shuffle-reduce waste). In general, map tasks and reduce task may not always on the same

compute node and the results of multiple map tasks are processed by one reduce task, reduce task needs

to wait until shuffle phase finishes, shuffle phase also needs to wait until map tasks implement on differ-

ent virtual machines, this serial execution model causes resource waste. Such that reduce tasks on virtual

machine has to wait when map tasks on other virtual machines are still running. This scene is map-

shuffle-reduce waste. Let us take an example (see Fig. 3). In the figure, three map tasks of job1 execute

on vm1, complete at t1 time point. From t1 and t2, sort the results of three map on vm1 and migrates data

to vm2. At t3 reduce task begins and completes at t4. In the whole process, reduce task on vm2 must wait

for the running of map tasks on vm1. So, from t0 to t1, bandwidth (BW) resources on vm2 are idle. Simi-

larly, from t0 to t2, CPU and MEM resources are also idle on vm2.

Fig. 3. Scene of map-shuffle-reduce waste

Scene 3 (push-map waste). Under the traditional scheduling process, push phase and map phase belongs

A Cross-Jobs-Cross-Phases Map-Reduce Scheduling Algorithm in Heterogeneous Cloud

150

to sequentially connection. That is, map tasks must wait until push phase finishes, thus causing push-

map waste problem, as shown in Fig. 4. In the figure, job1 occupied vm1 to execute push and map tasks.

From t1 to t2 execute push phase. From t2 to t3 execute map phase. However, because of the sequentially

execution, from t1 to t2, CPU and MEM resources has been in idle status and causing waste.

Fig. 4. Scene of push-map waste

Scene 4 (cross jobs waste). In general, one virtual machine is allocated for one job in one scheduling

process. In two scheduling, one virtual machine carried out multiple tasks of two different jobs and the

running process of two different jobs is a flow model. This flow model causes the resource waste of vir-

tual machine in two different jobs, we calls this situation as cross jobs waste (see Fig. 5). As shown in

the figure, virtual machines vm2 and vm1 process job1, job2, job3 and job4 using FIFO strategy. It can be

seen from Fig. 5 (a), from t0 to t2, job1 occupy vm1 in first scheduling. From t2 to t3, job2 occupy vm1

in second scheduling. At t1, push phase of job1 completes, map tasks begin. At t2, map task of job1

completes, push phase of job2 begins. So, from t1 to t2, BW resources of vm1 are idle. Similarly, from

Fig. 5 (b), job3 and job4 occupied vm2 resource from t4 to t7. At t5, reduce task job3 begins. At t6, job3

completes, job4 start to transfer data and begin push phase. From t5 to t6, BW resources on vm2 are idle.

Fig. 5. Scene of cross jobs waste

In the Fig. 5, when two jobs execute on the same virtual machine in different scheduling process, no

matter the last task is map (Fig 5. (a)) or reduce (Fig 5. (b)), it will inevitably lead to bandwidth resources

waste. The main reason is that the different type resource are used by two different jobs in different

scheduling process. Therefore, if the two jobs on same virtual machine do not occupy the same resources

in different scheduling process, then the two jobs can be overlapped.

3 Algorithm design

In this section, a cross-jobs-cross-phases map-reduce scheduling algorithm CJCP is proposed in hetero-

geneous cloud environment. Four optimal schemes are developed for four waste scenes in section 3.1.

The CJCP algorithm is presented in section 3.2.

3.1 Optimal Schemes for Four Problems

Heterogeneous resource optimization for scene 1. In the scene 1, due to the heterogeneous feature of

Journal of Computers Vol. 28, No. 2, 2017

151

underlying computing nodes, same type task (push, map and reduce) of one job on different virtual ma-

chines perform different running time, high ability node consume less times and low ability node needs

more times, If take evenly task distributed strategy, evenly distribute same size map tasks to different

type of virtual machines, which will cause resource idle of high ability node and increases the total job

execution time..

To decrease the influence of heterogeneous feature, an optimal scheme is to reduce the job execution

time. In this scheme, the high ability nodes undertake more tasks, and low ability nodes undertake less

tasks, thus that heterogeneous computing node could achieve a similar task execution time on same job.

That is to say, the optimal scheme must be able to measure the capability of all virtual machines in the

heterogeneous cloud. Otherwise, the capability of one virtual machine is different on dealing with differ-

ent type jobs or tasks.

To measure the capability of one virtual machine for different jobs or tasks, firstly is to build a base-

line for different jobs. A training approach is used to construct the baseline for different jobs on different

virtual machines. The base idea of training approach is to save the historical average execution time of

three type of tasks (push, map and reduce) on different virtual machines, the historical average execution

time is treated as a baseline. Then test the three type tasks execution time on fixed test virtual machine,

the execution time of current virtual machine can be calculate according to the proportional relation be-

tween current virtual machine and fixed test virtual machine. The proportional relation means the time

ratio between task execution time of current job and historical average running time on one job which is

equal to the time ratio between test execution time of fixed test virtual machine and his historical average

execution time on same job. The definition of proportional relation is as follows:

()
, ,

,

,

_

, ,

_ _

_

_

i j test j

i test

test j

i j i

test

type type

vm job vm job

type type

vm vm

type

vm jobtype type

vm job vmtype

vm

time train time
type push map reduce

avg time avg time

time
time avg time type pu

avg time

 = ∈

∴ = ∗ ∈

∵

(), ,sh map reduce

 (6)

In the above equation, time is the execution time of one type task of
j

job on
i

vm . _train time is the

test running time of same type task of
j

job on fixed test virtual machine.
test

vm . _avg time is the histori-

cal average execution time on virtual machine. Otherwise, time is objective variable and three others are

constant.

In summary, the process of optimal scheme consists of three steps. Firstly, a training library is built to

save the historical average execution time of different type task on different type virtual machines. When

each job completes, the update method begins to improve the historical average value. Secondly, a fixed

type virtual machine is selected as a test node. Once user submits job to cloud, three single tasks of three

types (push, map and reduce) are trained on test node and the test execution time of job stored into train-

ing library. Thirdly, according to job information and current virtual machine type, the execution time of

three type of tasks can be calculated through Equation (6) respectively. The pseudo code of optimal

scheme is descripted in algorithm 1.

In algorithm 1, the heterogeneous nodes capacity is determined by the execution time of different

types of tasks for each type node. The smaller the time is, indicating that the tasks process ability is

stronger. Conversely, weaker. In order to be fairer to measure ability of different types of computing

nodes, a large number of test jobs should be execute to avoid the impact of network or node error.

Algorithm 1: Heterogeneous resources optimization on virtual machine level

Input: job information
j

job and virtual machine type
i

vm
type .

Output: (i) the estimate execution time
,i j

map

vm jobtime of single map task slice on
i

vm
type ,

(ii) the estimate data transmission time
,i j

push

vm jobtime of single push task slice on
i

vm
type ,

(iii) the estimate execution time
,i j

reduce

vm jobtime of single reduce task slice on
i

vm
type .

Procedure heterogeneous_resources_optimization (
j

job ,
i

vm
type)

A Cross-Jobs-Cross-Phases Map-Reduce Scheduling Algorithm in Heterogeneous Cloud

152

1: get fixed training virtual machine type
test

vm
type .

2: read the train push time
,

_

test j

push

vm jobtrain time , train map execution time
,

_

test j

map

vm jobtrain time , train reduce

execution time
,

_

test j

reduce

vm jobtrain time of single task slice from the train library by
test

vm
type and

j
job .

3: read the average data transmit time _

test

push

vmavg time , average map execution time _

test

map

vm
avg time , average

reduce execution time _

test

reduce

vm
avg time from train library which is the historical average job execute re-

sults for
test

vm
type .

4: read the average data transmit time _

i

push

vmavg time , average map execution time _

i

map

vm
avg time , average

reduce execution time _

i

reduce

vm
avg time from the train library for

i
vm

type .

 //calculate three task slice estimate execute time

5: if (
,

_

test j

push

vm jobtrain time !=null ∩
,

_

test j

map

vm jobtrain time !=null ∩
,

_

reduce

k jtrain time !=null)

6: calculate the estimate execution time
,i j

push

vm jobtime according to the Equation (6).

7: calculate the estimate data transmission time
,i j

push

vm jobtime according to the Equation (6).

8: calculate the estimate execution time
,i j

reduce

vm jobtime according to the Equation (6).

9: end if

10: return
,i j

push

vm jobtime ,
,i j

push

vm jobtime ,
,i j

reduce

vm jobtime .

Map-shuffle-reduce optimization for scene 2. In scene 2, underlying physical resources are idle be-

cause of three phase tasks (map, shuffle and reduce) serial execution and three phase tasks wait for each

other. In order to decrease the resource waste and speed up the job execution time, the key is to reduce

the wait time. To reduce the wait time, shielding the sequential execuion way is a feasible method. In this

paper, an overlapping optimal scheme is proposed for the map-shuffle-reduce waste scene. The goal of

this scheme includes two aspects, one is to overlap three phases of one job on multiple virtual machines

and another one is to dynamically adjust tasks size of multiple virtual machines on same physical host (as

algorithm 1), such to achieve the unevenly tasks allocation and assure the similar execution time on all

virtual machines.

To better descript the overlapping scheme, we introduce two new definition firstly.

Definition 1: task pairwise. In the scheduling process, one map task deals with one data trunk (one push

task) and one reduce task deals with results of multiple map tasks. The ratio between reduce task and

map tasks is the task pairwise. The task pairwise implies the work strength of current job. The higher the

ratio is, the stronger the strength is. In general, the pairwise is the basic standard for evenly task alloca-

tion strategy and also is the initial task allocation strategy of optimal scheme in this paper.

In general, the ratio is real, it’s not always integer. This situation causes some difficulties for initial

evenly task allocation, because the task number for each virtual machine must be integer. So, a remainder

append method is developed to assign initial tasks for all virtual machines. The main idea of remainder

append method is to add the task pairwise remainder of one virtual machine to next task pairwise for

another virtual machine, thus to ensure that all task pairwise are integer. For example, when the original

ratio of map and reduce is 3.25. The methods will add the remainder of first three task pairwise to the

fourth task pairwise, so the first three task pairwise is “<1, 3>”, the fourth is “<1, 4>”.

Definition 2: task slice. Due to relationship between map task number and reduce task number is n to 1

and the reduce task number is only 1, so it is inconvenient to adjust the task number of multiple virtual

machine of same physical host. To better normalize the different type task number, task slice is defined

to assure the relationship of three type task is one to one. Through transformation, each virtual machine

holder multiple map task slices and same size reduce task slices, which provides a great convenience for

task number adjustment of multiple virtual machines in same physical host.

Based on the task pairwise and task slice, the optimal scheme needs to dynamically adjust the task

number between two virtual machine on same physical host. The goal of task adjustment is re-distributed

task number according to virtual machine capability. To better introduce the adjustment process, we sup-

pose virtual machine vm1 and vm2 are allocated to execute the job. Through initial task allocation and

Journal of Computers Vol. 28, No. 2, 2017

153

task slice transmission, vm1 processes M1 push task, map task slice and reduce task slice, vm2 processes

M2 push task, map task slice and reduce task slice. Based on algorithm 1, the single data transmission

time (push task) on vm1 is t1, map execution time is t2 and reduce running time is t3. Also, the single

data transmission time (push task) on vm2 is t4, map execution time is t5 and reduce running time is t6.

According to the overlapping scheme, x map slices are moved from vm2 to vm1and y reduce task slices

are moved from vm1 to vm2. This task adjusting process is must meet the following constraints:

()() () ()
()() () ()

() ()() ()
()() ()() ()

1 1 2 1 3 1 1 2 3 2 4 5 6

2 4 5 2 6 1 1 2 3 2 4 5 6

1 2 2 4 5 2 6

1 1 2 2 4 5 2 6

max (), ()

max (), ()

1

1

M x t t M y t M t t t M t t t

M x t t M y t M t t t M t t t

x t t M x t t M t

M x t t M x t t M y t

⎧ + + + − ≤ ∗ + + + +
⎪

− + + + ≤ + + + +⎪
⎨

+ ≤ − + + −⎪
⎪ + + ≤ − + + + −⎩

 (7)

In Equation (7), the first inequality means, after adjustment, task execution time of vm1 cannot exceed

the original maximum execution time of two nodes. The second inequality also indicates task execution

time of vm2 cannot exceed the original maximum execution time of two nodes. Third inequality implies

all map slice should complete before the last reduce slice, which corresponds to the last map when move

x map on vm2. The last inequality indicates all map slices should complete before the last reduce slice.

To decrease the computational size, descending sort the factors according to the execution time, the Equ-

ation (7) can be converted into:

The goal of optimal shame is to minimize execution time of multiple virtual machine, which is to bal-

ance task compute time as much as possible. So, an adjustment objective function can be set to:

()

()() () ()() ()

() () () ()

1 2

1 1 2 1 3 2 4 5 2 6

1 1 2 3 1 2 4 5 3 6 2 4 5 6

 =

 =

vm vm
f z t t

M x t t M y t M x t t M y t

M t t t x t t t t y t t M t t t

= −

+ + + − − − + − +

+ + + + + + − + − + +

 (8)

Set () 0f z = , then:

() () () ()

() ()

1 1 2 3 1 2 4 5 3 6 2 4 5 6

1 1 2 3 2 4 5 61 2 4 5

3 6 3 6

M t t t x t t t t y t t M t t t

M t t t M t t tt t t t
y x

t t t t

 + + + + + + = + + + +

+ + − + ++ + +

∴ = +

+ +

∵

 (9)

The number of task slice adjustment could be calculated according to formula (7) and (9), as shown in

Fig. 6. The map and reduce task slice adjustment value is the integer x, y value on red line.

Fig. 6. Task adjustment function and range distribution

In summary, the process of overlapping optimal scheme for scene 2 consists of four steps. Firstly, the

task pairwise is calculated according to the jobs information. For example, one user submits 6.4GB input

data, 180 reduce tasks. Assuming the default data trunk size is 64M, so the number of push task and map

task is both 1000, 1 reduce task need to deal with 5.6 map tasks, the task pairwise is “<1, 5.6>”. Secondly,

initial distributed process is begin to allocate tasks for all the virtual machines using the remainder ap-

pend method according to task pairwise. After initial distributed process, task slice transformation is start

A Cross-Jobs-Cross-Phases Map-Reduce Scheduling Algorithm in Heterogeneous Cloud

154

to assure the number of three task number is same. Thirdly, according the algorithm 1, the estimate task

execution time of each virtual machine for current job has been calculated. Finally, using the physical

host as unite, based on the estimated task execution time of three type task and task slice number, ad-

justment process is executed according to the Equation (8) and Equation (10) for all virtual machines of

current host, such that minimizing the job execution time. The pseudo code of overlapping optimal

scheme for scene 2 is described in algorithm 2.

Algorithm 2: Cross-phase optimization among map, shuffle and reduce in physical machine level

Input: virtual machine list vlist of one physical machine and job information
j

job .

Output: the task queue wait
Q of each virtual machine in vlist .

Procedure cross_phases_map_shuffle_reduce_optimization (vlist ,
j

job)

1: calculate the initial task pairwise ,1
m

C of
j

job .

//initial task allocation

2: for each
i

vm vlist∈

3: allocate
m

C push,
m

C map, 1 reduce task into wait

i
Q to assure that the task number is an integer

 using remainder append approach and transform the task to task slices.

4: use Algorithm 1 heterogeneous_resources_optimization (
j

job ,
i

vm
type) to calculate estimate execu-

tion time of push, map and reduce task slice.

5: end for

//task adjustment among virtual machines on same physical machine

6: initial virtual machine adjustment queue adjustvlist =∅ .

7: for each
i

vm vlist∈

8: if (. 1adjustvlist length >)

9: for each k adjustvm vlist∈

10: compute task adjustment number ,x y on
i

vm and
j

vm according to formulation (7) and (9).

11: if (! 0 ! 0x y= =∪)

12: update the map and reduce task slice of wait

i
Q and wait

j
Q .

13: end if

14: end for

15: end if

16: add
i

vm into adjustvlist .

17: end for

18: return the task queue wait
Q of each virtual machine in vlist .

Push-map optimization for scene 3. In scene 3, the main reason of push-map waste is that map tasks

must wait until push phase completes. An optimal scheme for this scene is feasible developed to overlap

push task and map task. Due to the different resource need of two type tasks, push task use network to

transmit data trunk to virtual machines, while map tasks execute data on CPU or MEM, so the overlap-

ping model between push and map task is reasonable. Through overlapping model, while the push task

transmits the data trunk, the map task could still compute and analyze data. However, as the data from

push task is the prerequisites of map task, portion overlapping is more realistic than fully overlapping.

Therefore, overlapping degree is the key element of optimal scheme.

To better describe the method of how to get the overlapping degree, we suppose, some push tasks and

map tasks are mapped to virtual machine vm1. At t0 virtual machine vm1 begin to execute tasks. In the

push phase, vm1 needs to transfer M data blocks, execute N map tasks in map phase. M and N may differ

because of the influence of algorithm 4(cross-jobs optimal scheme). Based on the algorithm 1, the trans-

mission time of each data block is t1, the execution time of each map is t2. Let us set x as the overlapping

time for map task, in order to avoid waiting for the data transfer of push phase when map task begins, the

overlapping x must meet the following constrains:

Journal of Computers Vol. 28, No. 2, 2017

155

()

0 1 2 0 1 2

0 1 1 2 0 1 1

0

1 2 1 2

1

 | , | ,

 | , |

1 |

t t t N M x t t t N M

t t t t N M x t t t t

x t
M t N t t t

t

⎧
⎪

≤ > = ≤ >⎪
⎪

+ ≤ = ⇒ = + ≤⎨
⎪
⎛ ⎞⎛ ⎞−⎪ − ∗ ≤ − ∗ >⎜ ⎟⎜ ⎟⎜ ⎟⎪

⎝ ⎠⎝ ⎠⎩

()
2

1 0 2 1 2

,

1 |

N M

x Mt t N t t t

⎧
⎪

=⎨
⎪ ≥ + − − ∗ >⎩

 (10)

In Equation (10), three constrains are correspond to three situations:

‧ When t1 is less than or equal t2 and N is greater than M, this situation indicates, before task begins,

some data trunks are already transferred to virtual machine according to algorithm 4. Furthermore,

the data transmission speed is faster than the computing speed of one map task. That is to say, when

one map task does not complete yet, another input data has already been transferred, so the map task

can start at t0.

‧ When t1 is less than or equal t2 and N is equal M, this situation implies that, before task begin, no

data has been transferred. In addition, due to the data transmission speed is faster than map comput-

ing speed, so the overlapping time x of map task is the time of first data block transfer has been

completed.

‧ When t1 is greater than t2, this situation indicates that the data transfer speed is slower than the map

computing speed, one map is completed while another push data is not completed. In this case, the

remaining data blocks transmission must complete before the last map task slice execute. Further-

more, ()0 1
x t t− is must an integer because the overlapping time x of map task is the transfer com-

peting time of some data blocks.

In summary, the process of optimal scheme for scene 3 is relatively easy. Firstly, according to the al-

gorithm 1, the single push data transmission time and single map task execution time are calculated based

on the type of current virtual machine. Secondly, the push data number and map task number are counted

in task queue of current virtual machine. Thirdly, the overlapping time is calculated according to Equa-

tion (10). The Pseudo code of this optimal scheme is described in algorithm 3.

Algorithm 3: Cross-phases optimization between push and map

Input: (i) task queue hold

task
Q , (ii) current virtual machine type vm

i
type , (iii) the job start time start

task
t of first

task.

Output: the start execution time of map phase
map
t .

Procedure cross_phases_push_map_optimization (hold

task
Q ,

i
vm

type , start

task
t)

1: calculate transmit data block numberM of push task in hold

task
Q .

2: if (! 0M =)

3: calculate map task number N in hold

task
Q .

4: get the job type and job information
j

job by hold

task
Q .

5: compute data transmission time, map running time of single data trunk according to

 the Algorithm 1 heterogeneous_resources_optimization (
j

job ,
i

vm
type);

6: calculate the first map task start execution time
map
t using the Equation (11).

7: else

8: get current time
now
t as first map task start execution time

now map
t t→ .

9: end if

10: return
map
t .

Cross-jobs optimization for scene 4. In scene 4, the main reason of resource waste is the flow-style

scheduling model, that is to say, on the same virtual machine, the next round scheduling will be executed

until the current tasks scheduling has been completed. However, one virtual machine consists of multiple

type resources, the bandwidth resource is not fully used in current tasks because the next round push task

A Cross-Jobs-Cross-Phases Map-Reduce Scheduling Algorithm in Heterogeneous Cloud

156

does not start. The bandwidth resource is in idle status at most time. One feasible optimal method is to

start push data of the next job before the completion of previous job.

To overlap two different jobs, how to determine the overlapping time is the first key for the optimal

scheme of scene 4. In this paper, we define an overlapping coefficient λ to measure the overlapping

degree of two jobs. The overlapping coefficient is a percentage of the start scheduling time of next job

and the total execution time of current job in the same virtual machine. That is to say, when the overlap-

ping coefficient λ is set, virtual machine sends the idle command to scheduler for allocating next job

tasks. Through changing the overlapping coefficient λ , the overlapping degree will be corresponding

changed.

Otherwise, based on the overlapping coefficient, current job will be able to use the bandwidth resource

at any time. So, the overlapping model of two different job could not affect the current job execution.

That is, the two jobs will not use the bandwidth resource at same time, the next job task start only when

the bandwidth is idle for current job. For assuring the no-conflict model of two different jobs, a monitor

method is proposed in the optimal scheme for scene 4. The main idea is to monitor the bandwidth re-

source status before next job executes push task slice. When a new push task of next job starts, monitor

the status of bandwidth resources. If the bandwidth is occupied, wait a fixed time, then listen again. If

bandwidth is not occupied, begin data block transmission. When the data block transfer is completed,

also sleep the fixed time, and listen again to judge whether to transmit the next push task. The monitor

method guarantees the normal execution of previous job and avoids the long wait situation.

In summary, the optimal scheme of scene 4 consist of three steps. Firstly, according to the task queue,

get the single task execution time of different type through the algorithm 1, and calculate the total execu-

tion time of all tasks of current job. Secondly, based on the overlapping coefficient and the total execu-

tion time, calculate the overlapping time. When achieve the overlapping time, an idle command is sent to

the scheduler. When scheduler has received all the virtual machine idle commands, then schedules new

tasks to virtual machines according to algorithm 2. Thirdly, the monitor method has been used to overlap

execution the tasks of two different jobs. The pseudo code of this optimal scheme is described in algo-

rithm 4.

Algorithm 4: Cross-jobs optimization

Input: (i) holding task queue hold

task
Q , (ii) waiting task queue wait

task
Q ,

(iii) overlapping coefficientλ , (iv) transmission sleep time sleept .

Output: the first task of next job start time start

task
t .

Procedure cross_jobs_optimization (hold

task
Q , wait

task
Q ,λ , sleept)

1: calculate the task total execute time
hold

task
Q

excutet according to Algorithm 1.

2: compute the overlapping time by
hold

task
Q

overlap excutet t λ= ∗ .

4: while (current time now overlapt t<)

5: sleep;

6: end while

7: send idle command and fill new tasks into waiting task queue of next job.

// cross-jobs task optimization

8: while (task in hold

task
Q hasn’t been completed)

9: while (bandwidth resource is idle)

10: if (the push task of wait

task
Q is not null)

11: transmit one data trunk of wait

task
Q from the public storage into HDFS of the current virtual ma-

chine.

12: update wait task queue wait

task
Q and remove the push task.

13: sleep sleept seconds after the transmission process of one data trunk has been completed.

14: end if

15: end while

Journal of Computers Vol. 28, No. 2, 2017

157

16: sleep sleept seconds to next listening of bandwidth.

17: end while

18: retrieve the current time
now
t .

19: return
now
t .

3.2 CJCP Algorithm Description

According to the four resource waste scene of map-reduce job scheduling process in heterogeneous cloud,

a cross-jobs-cross-phases (CJCP) map-reduce algorithm is developed to improve the utilization of under-

lying physical resources. For each resource waste scene, a corresponding optimal scheme is designed for

minimizing the job execution time and costs, as shown in subsection 3.1. The CJCP algorithm is combi-

nation of four optimal scheme for four waste scene.

The process of CJCP algorithm consists of four steps. Firstly, when user submits a job to cloud, the in-

put data are stored to the public storage and wait for the scheduler command. Then one data trunk, map

task and reduce task are submitted to test virtual machine for training task execution, so as to get the sin-

gle task test time of three type of task according to algorithm 1. Secondly, according to the algorithm 2,

using physical host as unite, initial evenly distribute tasks for all virtual machines and dynamically adjust

task number of any two virtual machines. Thirdly, algorithm 3 is used to parallel overlapping execute

data transformation and map task for all virtual machines. After the map task begins, overlap the shuffle

phase and reduce phase. Finally, when reach the overlapping time, the algorithm 4 begins to improve the

utilization of bandwidth among two jobs execution process. The pseudo code of CJCP is described in

algorithm 5.

Algorithm 5: cross-jobs-cross-phases task scheduling

Input: job list jlist .

Output: the execute result of job.

Procedure cross_jobs_corss_phases (jlist)

//task training

1: for each
j

job jlist∈ .

2: upload the file data to public storage.

3: execute the training test for
j

job on fixed test virtual machine using the Algorithm 1.

4: end for

 //task optimization

5: for each
i

job jlist∈

6: while (physical machine is idle)

7: find virtual machine list vlist of physical machine.

 // unevenly task allocation

8: use Algorithm 2 (vlist ,
j

job) to adjust the task number among any two virtual machines.

 //overlap push and map phases

9: parallel,
i

vm vlist∀ ∈ , execute Algorithm 3 to overlap the running process of push and map task.

 //overlap tow jobs

10: parallel,
i

vm vlist∀ ∈ , monitor the bandwidth status and use Algorithm 4 to overlap tow jobs.

11: end while

12: end for

13: return the job results.

4 Experiments

In this section, we evaluate our proposed algorithm CJCP. Through the comparison with JOOP, SARS,

CPOA algorithms, we run extensive test jobs and analyzed the performance of CJCP algorithm from

three factors of multiple phases of single job, multiple jobs and systematic parameter.

A Cross-Jobs-Cross-Phases Map-Reduce Scheduling Algorithm in Heterogeneous Cloud

158

4.1 Experimental Environment

To more truly simulate map-reduce cloud environment, four different type 17 physical hosts from Na-

tional Supercomputing Changsha China Center, are selected to build a heterogeneous hadoop cluster. The

17 physical nodes include 5 Dell OptiPlex3010 hosts, 4 Sugon A440-G hosts, 4 HP DL320E Gen8 hosts,

and 4 HP ProLiant DL160 hosts. Otherwise, the 17 physical hosts are connected by 1000M high-speed

switch, in which are 16 compute nodes and 1 job submission node. The total cluster configures with Ub-

untu12.04, hadoop1.20, and JDK 1.645. Table 1 shows the details of the physical hosts, including the

host type, amount, CPU and MEM capacity, operating system and etc.

Table 1. Physical machine parameter

type number cores
MEM

(g)

Disk

(g)
system role

G1:Dell OptiPlex3010 1 4 CPUs,Core3.3GHz 4 500 Ubuntu12.04 Name node

G1:Dell OptiPlex3010 4 4 CPUs,Core3.3GHz 4 500 Ubuntu12.04 Data node

G2:Sugon A440-G 4 8 CPUs,Xeon2.6GHz 8 500 Ubuntu12.04 Data node

G3:HP DL320E Gen8 4 16 CPUs,Xeon2.6GH 16 500 Ubuntu12.04 Data node

G4:HP ProLiant DL160 4 24CPUs,Xeon2.7GHz 24 500 Ubuntu12.04 Data node

To better simulate the jobs scheduling process, we extended the hadoop source code and customized

five classes (JobDataTransmission, TaskSynchronizer, JobTrainer and CloudConfig), and modified Job-

Tracker, TaskTracker and LaunchTaskAction three class on hadoop1.20, so as to achieve cross-jobs and

cross-phases scheduling optimization. Where, JobDataTransmission refers to transfer data between the

public storage and HDFS file system. TaskSynchronizer collects status of each compute node to provide

decision support for the optimization of the next round scheduling. JobTrainer refers to test job and sav-

ing job history data. CloudConfig manages cloud scheduling information. A job trigger was added to

monitor job status on JobTracker.

The process of experiments is that when new jobs have been submitted, the input data will be firstly

stored into public storage. When the underlying physical resource idles, the input data are transited from

public store to data node (HDFS), and the map and reduce task are mapped to virtual machine for execu-

tion, the final results will be written back to public storage. To more realistic, 9 different types of jobs are

executed. Otherwise, in the 120 test jobs, the task number of map ranges from 160 to 800 and the size of

input data varies from 10G to 50G.

4.2 Comparison Algorithm Description

To clearly present the performance of CJCP and show the optimization results on map, push, shuffle and

reduce phases, several algorithms (JOOP, SARS, CPOA) are selected to compare with CJCP, and the

details are described in Table 2. JOOP algorithm overlap map and shuffle phase for optimization, SARS

algorithm optimal shuffle and reduce phases, CPOA concern on both overlapping of push-map and map-

shuffle. JOOP establish a new scheduling model to overlap tasks queue for shuffle and map overlapping.

SARS predict task execution time to overlap reduce task. CPOA takes feedback policy, the implementa-

tion of the results impact push transfer, the reduce execution results impact map process.

Table 2. The illustration of comparison algorithms

Short Name Illustration

JOOP Joint Optimization of Overlapping Phases in MapReduce [9]

SARS A Self-Adaptive Scheduling Algorithm for Reduce Start Time [8]

CPOA Cross-Phase Optimization in MapReduce [11]

CJCP A Cross-job-Cross-phase map-reduce Scheduling Algorithm in Heterogeneous Cloud

4.3 Experimental Results

In this subsection, we verify the performance of CJCP algorithms from three factors on a single job, mul-

tiple jobs and system parameter.

Journal of Computers Vol. 28, No. 2, 2017

159

Comparison of single job optimization. Fig. 7 and Fig. 8 show the different performance of four algo-

rithms on two types of job (map size is 320 and 640 respectively). In the two figure, the relatively similar

results are appeared and four algorithms perform different with each other on push, map, shuffle and

reduce phases which are represented by four color range of blue, gray, green and orange. On 320 map

tasks, JOOP algorithm consumes nearly 140 seconds, overlapping optimizes the map and shuffle two

phases, we can see from gray and green area in Fig. 7. (a). SARS algorithm takes more than 120 seconds,

the overlapping area is the shuffle and reduce phase, as the green and orange area in Fig. 7. (b). CPOA

algorithm spends nearly 120 seconds, it overlaps push, map and shuffle three phases, as blue, gray and

green area in Fig. 7. (c). CJCP algorithm costs nearly 110 seconds, optimizes the four phases, as Fig. 7

(d). Similarly, when the size of map tasks becomes 640, JOOP algorithm takes more than 220 seconds,

SARS spends 210 seconds, CPOA needs 200 seconds, and CJCP takes 180 seconds. As can be seen from

the two figures, CJCP algorithm has better overlapping performance than other three algorithms, and

spends less time.

(a) JOOP (b) SARS (c) CPOA (d) CJCP

Fig. 7. Execution results of 320 Map tasks

(a) JOOP (b) SARS (c) CPOA (d) CJCP

Fig. 8. Execution results of 640 Map tasks

Table 3. Execution time of 320 map tasks

Algorithms Push(s) Map(s) Shuffle(s) Reduce(s) Job Execution Time(s) Improvement

JOOP 21 81 76 18 140 16.44%

SARS 22 73 29 19 129 11.34%

CPOA 21 83 85 15 118 8.25%

CPCJ 20 80 68 64 109 /

On two types of jobs, Table 4 and Table 5 shows the execution time of four algorithms. On each phase

of push, map, shuffle, and reduce, four algorithms show different process time. In which, map and shuffle

phase occupy a large portion time. JOOP algorithm is most time-consuming on map and shuffle phase

(more than 150s). SARS algorithm takes less than JOOP. CPOA algorithm consumes up to 149 seconds,

which is more than JOOP and SARS, but its shuffle phase is the minimum time-consuming. CJCP algo-

rithm takes more time than JOOP and SARS on the map phases, but is minimized in the shuffle phase.

On total time, CJCP algorithm is minimum, followed by the CPOA, SARS, and the finally one is JOOP.

The last column of two tables shows time improvement of CJCP algorithm comparing to other algo-

rithms. Through repeated experiments, we see that CJCP algorithm enhances the execution efficiency

from 8% to 16%.

A Cross-Jobs-Cross-Phases Map-Reduce Scheduling Algorithm in Heterogeneous Cloud

160

Table 4. Execution time of 640 map tasks

Algorithms Push(s) Map(s) Shuffle(s) Reduce(s) Job Execution Time(s) Improvement

JOOP 38 146 149 26 227 15.52%

SARS 37 135 42 33 220 12.41%

CPOA 36 149 132 27 198 9.17%

CPCJ 38 147 129 77 170 /

Comparison of Cross jobs optimization. (1) Overlapping Coefficient λ : In this subsection, the influ-

ence of overlapping coefficient on job performance of our algorithm is validated. Different overlapping

coefficient will seriously affect the execution results of two same jobs. In this paper, two same type of

jobs (640 map tasks) are executed under different overlapping coefficient.

Fig. 9 shows the performance changing under two different overlapping coefficient by using CJCP al-

gorithm. In the figure, the overlapping degree of two jobs changed with the value of overlapping coeffi-

cient. As we can see, when the value of overlapping coefficient is 0.2, means the current job will overlap

with next job and delay to complete because the bandwidth is occupy by the both two jobs. Map huger

task size is, the delay time will be longer. Specifically when map tasks number is 640, the completion

time of the first job delayed from 172s to 200s. When overlapping coefficient is 1.0, two jobs are flow-

style executed, there is no overlapping for each job. The specific runtime under different overlapping

coefficient values are shown in Tables 5.

() 0.2a λ = () 1.0b λ =

Fig. 9. Execution results with different overlapping coefficient

Table 5. Execution time with different overlapping coefficient

Value
Job1 Execution

Time(s)

Job2 Execution

Time(s)

Total Execution

Time(s)

Job1 Delay Time

Percent (no monitor)

Job1 Delay Time

Percent (monitor)

0.1 210 187 316 22.09% 7.23%

0.2 200 182 318 16.27% 6.72%

0.3 196 179 320 13.95% 5.54%

0.4 193 185 322 12.21% 4.36%

0.5 186 176 326 8.13% 3.78%

0.6 188 174 336 9.30% 2.92%

0.7 183 177 344 6.39% 2.21%

0.8 179 172 350 4.06% 1.97%

0.9 177 180 359 2.90% 0.63%

1.0 172 173 366 0.00% 0.00%

As can be seen from Table 5, when the overlapping coefficient value is smaller, the delay time for the

current job will be longer. From the table, we know that the monitor method of algorithm 4 helps to im-

prove the job performance. By monitoring the bandwidth status of virtual machine, it reduced the band-

width resource confliction of two jobs. Otherwise, by repeatedly running test instances, it is easy to find

that, when the overlapping coefficient value is 0.6, the current job completion delay time is low, the total

completion time is optimal, and the delay time ratio is 2.92%.

Journal of Computers Vol. 28, No. 2, 2017

161

(2) Job execution time: Taking the overlapping coefficient value 0.6, we execute two type of jobs (the

number of map task is 320 and 640), Fig. 10 shows the total execution results of four algorithms. Table 6

shows the total execution time of four algorithms. As can be seen from the figure and table, comparing to

the JOOP algorithm, CJCP algorithm saves job execution time by 16.43%. Comparing to SARS algo-

rithm, CJCP algorithm saves job execution time by 14.10%. Comparing to CPOA algorithm, CJCP algo-

rithm saves job completion time about 11.03%.

(a) JOOP (b) SARS (c) CPOA (d) CJCP

Fig. 10. Execution results of two different jobs

Table 6. Execution time of two different jobs

Algorithm Jobs Total Execution Time(s) Improvement in total

JOOP 352 16.43%

SARS 346 14.10%

CPOA 320 11.03%

CPCJ 258 /

Systematic comparison. (1) Average job execution time: The average job execution time consists of

data migration time, map and reduce running time. We run test jobs 20 times and changing map task

number from 160 to 800, the comparison details of average job execution time are shown in Fig. 11.

From Fig. 11, we can see that CJCP algorithm has better performance comparing to other three algo-

rithms because the trend line of CJCP is most close to the bottom line. Along with the increasing of map

tasks, CJCP algorithm presents better performance.

Fig. 11. Average execution time

(2) CPU workload: We run two type of jobs on one virtual machines, the map task number is 320 and

640, CPU resource workload of four algorithms is demonstrates in Fig. 12. As is shown in the figure, at

the beginning (from 0 to 20), the CPU workload fluctuations from 1% to 80%, because when the push

phase runs, the network resources are busy while CPU workload is low. Along with the job execution,

map tasks and other phases begin running, CPU resources are used frequently and gradually stabilize.

Among the four algorithms, CJCP has highest CPU resource workload, because CJCP has greater over-

lapping degree than other three algorithms.

A Cross-Jobs-Cross-Phases Map-Reduce Scheduling Algorithm in Heterogeneous Cloud

162

(a) 320 map tasks (b) 640 map tasks

Fig. 12. CPU workload

(3) Network workload: To correspond the CPU workload, for same two jobs, the map task number is

320 and 640, Network resource workload of four algorithms is demonstrates in Fig. 13. It is easy to find

that two figures show a naturally opposite tendency because the intrinsic features among push, map and

reduce tasks. From the Fig.13 (a), at the beginning (from 0 to 20), the Network workload fluctuations

from 1% to 70%, because the push phase is running, the network resources are busy. From 20 to 60,

Network workload reduce to 2% to10%, because the map task is running, the data transmission number

cut down. From 60 to 80, Network workload increase again due to the task execution of shuffle phase.

From 80 to 100, Network work load reduce again due to the execution of reduce phase. From two figures,

we can see that CJCP algorithm performs more stable on the network workload than other three algo-

rithms.

(a) 320 map tasks (b) 640 map tasks

Fig. 13. Network workload

5 Conclusions

With the urgent social needs on efficient and fast processing large-scale data, map-reduce cloud is be-

coming a powerful and popular platform. In this paper, we analyze and formulate the process of map-

reduce job scheduling and present four resource waste scenes in the heterogeneous cloud. Based on the

four waste scenes, we propose a cross-jobs-cross-phases map-reduce scheduling algorithm in this paper.

Our algorithm consists of four optimal schemes, and respectively to four resource waste scenes. Firstly,

we describe the heterogeneous resource waste scene, and a job training method and corresponding opti-

mal scheme are developed to measure the virtual machine capability and the execution time of three dif-

ferent type tasks. Secondly, we develop another optimal scheme dynamically to adjust task number of

multiple virtual machines on same host for unevenly tasks allocation. The goal of this scheme is to allo-

cate more tasks to high-capability virtual machines, less tasks to low-capability virtual machines. Thirdly,

considering the difference resource need feature of push and map tasks, an overlapping optimal method is

Journal of Computers Vol. 28, No. 2, 2017

163

developed to speed up tasks execution time. Finally, we analyze the relationship between two jobs on the

same virtual machine and designed another scheme to overlap execution two jobs. In the final scheme, to

shield the interference of two jobs, a monitor method is used to solve the network occupancy problem

that two jobs may simultaneously occupy bandwidth resources. The results verify that the CJCP performs

better on cross phases, cross jobs scheduling than the JOOP, SARS, and CPOA algorithms.

Acknowledgement

This work was supported by the National Natural Science Foundation of China (61174140, 61472127,

61272395); China Postdoctoral Science Foundation (2013M540628,2014T70767); Natural Science

Foundation of Hunan Province (14JJ3107); Excellent Youth Scholars Project of Hunan Province

(15B087).

References

[1] J. Dean, S. Ghemawat, MapReduce: simplified data processing on large clusters, Communications of the ACM 51(1)(2008)

107-113.

[2] M. Sun, H. Zhuang, X. Zhou, K.Lu, C. Li, HPSO: prefetching based Scheduling to improve data locality for MapReduce

clusters, in: Sun X. et al. (Eds.), Algorithms and Architectures for Parallel Processing, ICA3PP 2014, Lecture Notes in

Computer Science, vol. 8631, Springer, Cham, 2014, pp. 82-95.

[3] W. Wang, K. Zhu, L. Ying, J. Tan, L. Zhang, A throughput optimal algorithm for map task scheduling in MaprRduce with

data locality, ACM Sigmetrics Performance Evaluation Review 40(4)(2013) 33-42.

[4] J. Li, X. Lin, X. Cui, Y. Ye, Improving the shuffle of hadoop MapReduce, in: Proc. Cloud Computing Technology and

Science (CloudCom), 2013 IEEE 5th International Conference on. IEEE, 2013.

[5] S. Gault, C. Perez, Dynamic scheduling of MapReduce shuffle under bandwidth constraints, in: Proc. Euro-Par 2014: Paral-

lel Processing Workshops, 2014.

[6] W. Yu, Y. Wang, X. Que, C. Xu, Virtual shuffling for efficient data movement in MapReduce, Computers, IEEE Transac-

tions on 64(2)(2015) 556-568.

[7] T. Luo, Y. Zhu, W. Wu, Y. Xu, D.-Z. Du, Online makespan minimization in MapReduce-like systems with complex reduce

tasks, Optimization Letters 11(2)(2017) 271-277.

[8] Z. Tang, L. Jiang, J. Zhou, K. Li, K. Li, A self-adaptive scheduling algorithm for reduce start time, Future Generation Com-

puter Systems 43(2015) 51-60.

[9] M. Lin, L. Zhang, A. Wierman, J. Tan, Joint optimization of overlapping phases in MapReduce, Performance Evaluation

70(10)(2013) 720-735.

[10] M.W. Rahman, X. Lu, N.S. Islam, D.K. Panda, HOMR: a hybrid approach to exploit maximum overlapping in MapReduce

over high performance interconnects, in: Proc. the 28th ACM international conference on Supercomputing, 2014.

[11] B. Heintz, A. Chandra, J. Weissman, Cross-phase optimization in MapReduce, in: X. Li, J. Qiu (Eds.), Cloud Computing

for Data-Intensive Applications, Springer, New York, 2014, pp. 277-302.

[12] D. Dahiphale, R. Karve, A.V. Vasilakos, H. Liu, Z. Yu, A. Chhajer, J. Wang, C. Wang, An advanced mapreduce: cloud

mapreduce, enhancements and applications, Network and Service Management 11(1)(2014) 101-115.

[13] B. Palanisamy, A. Singh, L. Liu, Cost-effective resource provisioning for mapreduce in a cloud, Parallel and Distributed

Systems 26(5)(2015) 1265-1279.

A Cross-Jobs-Cross-Phases Map-Reduce Scheduling Algorithm in Heterogeneous Cloud

164

[14] L.-Y. Zhao, Y.-N. Wei, Y.-F. Zhang, Z.-X. He, Two-circle task scheduling algorithm based on MapReduce in cloud com-

puting, in: Proc. Information Technology and Artificial Intelligence Conference (ITAIC), 2014 IEEE 7th Joint International.

IEEE, 2014.

[15] K. Lee, S. Park, H. Lee, Improving MapReduce performance using block device reconfiguration in virtualized clouds, in:

Proc. 2012 International Conference on Information Science and Technology (IST’12), 2012.

[16] M. Li, L. Zeng, S. Meng, J. Tan, L. Zhang, A.R. Butt, N. Fuller, MRONLINE: MapReduce online performance tuning, in:

Proc. the 23rd International Symposium on High-performance Parallel and Distributed Computing, 2014.

[17] D. Wu, A. Gokhale, A self-tuning system based on application Profiling and Performance Analysis for optimizing Hadoop

MapReduce cluster configuration, in: Proc. High Performance Computing (HiPC), 2013 20th International Conference on.

IEEE, 2013.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

