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Abstract. To fast process the large-scale data, map-reduce cloud is viewed as a very reasonable 

and effective platform. According to the new scheduling challenges in map-reduce cloud, a 

cross-jobs-cross-phases (CJCP) map-reduce scheduling algorithm is proposed in this paper. 

CJCP mainly consists of four optimal schemes, and respectively deals with four resource waste 

scenes of the job scheduling process. In the first scene, based on the job training method, an op-

timal scheme is designed to shield the interference of heterogeneous resources on job scheduling. 

In the second scene, we give two definition and develop another optimal scheme to dynamically 

adjust task number of multiple virtual machines on the same physical host. Through task ad-

justment, the high-capacity virtual machines deal more tasks than low-capacity ones. In addition, 

we build the overlapping execution model to overlap map, shuffle and reduce phases. In the 

third scene, considering the difference of map tasks and push tasks on resource usage needs, an 

overlapping scheme is formed to optimal the execution of push and map phase. In the last scene, 

a cross-jobs optimal scheme is proposed, which overlap execution of current job and next job. 

To avoid the bandwidth confliction between two jobs, a monitor method is used for reasonably 

resources allocation. Extensive experiments show that our algorithm consumes less job execu-

tion time and performs better than other three algorithms. 

Keywords: cloud computing, heterogeneous scheduling, map-reduce, overlapping distribution 

1 Introduction 

Big data era is coming and accompany with some important data characteristics: rapidly increasing, di-

versity and large-scale. It brings new opportunities and challenges for all walks of life. How to efficiently 

process and mine the big data is becoming the focus both in industry and academic research. map-reduce 

[1] is a large-scale distributed data programming model, which was proposed by Google in 2004, it is one 

of the most popular framework to big data. Currently, many companies and research institutes have set 

up their own map-reduce clusters, which require a lot of hardware resources (servers and storage) and 

professional maintenance staff. Otherwise, due to resource independence and decentralization position of 

the clusters, causing great waste of underlying physical resources. Therefore, to build map-reduce cloud 

has become a powerful tool for large-scale data processing. 

Based on the cloud computing model, map-reduce cloud platform provide a shared cloud services to 

users for large-scale data processing in “pay on-demand” approach. User can use map-reduce service at 

anywhere and anytime by submitting online jobs. In map-reduce cloud, the underlying physical resources 

consist of one or more geographically dispersed heterogeneous data center, the physical hosts configure 

with different types of CPU, MEM, storages.  

The total map-reduce scheduling process includes four phase: data transfer (push phase), map phase, 

shuffle and reduce phase, as shown in Fig. 1. Before the jobs were submit, user should specify four pa-
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rameters, including input data, map function, reduce function the reduce task size. Push is the first phase, 

after the job is submit, and responsible for dividing input data into a fixed-size data blocks (trunk), de-

fault size is 64M. Map is the second phase, according to the map function, it computes the data blocks 

and generates intermediate key/value results. The association between push task and map task is 1:1, that 

is to say, one map task handle one data block. Shuffle is the third phase, after the map tasks have been 

completed, the intermediate key/value results are sorted and sent to corresponding reduce nodes. Other-

wise, on one reduce node, it merge multiple map tasks results according to the keys, and duplicate redun-

dancy data. Reduce is the last phase, it processes the map results and generates final results. The associa-

tion between map task and reduce task is n: 1, one reduce task handle multiple map task results. 

 

Fig. 1. Scheduling process of map-reduce job 

Comparing to the traditional map-reduce scheduling, the process of map-reduce cloud appears new 

characteristics: 

‧ Massive jobs and users. For the traditional map-reduce cluster, just a few users would submit jobs, 

there are no need to concern the preemption or insufficient resources on scheduling. However, in 

map-reduce cloud, because of massive users may random submit multiple jobs at any time, a job 

may suffer the long time wait or even jobs execution failure from resources insufficient. Therefore, 

in map-reduce cloud, the scheduling process is more complex. 

‧ Heterogeneous resource nature. In the traditional map-reduce cluster, the resources are usually ho-

mogeneous. All compute nodes configure same type of CPU, MEM, DISK, and so on. However, in 

map-reduce cloud, the clusters usually consists of multiple different types underlying hardware re-

sources. Each type hardware resources have different CPU, MEM, and DISK. Therefore, the map-

reduce scheduling on cloud is more difficult. In addition, map-reduce cloud usually hire multiple 

different geographical data center. 

‧ Virtualization. In traditional map-reduce scheduling, each physical server is a compute node. How-

ever, in the map-reduce cloud, virtualization technology has been developed to enhance the utiliza-

tion of underlying hardware resource. One server will virtual into multiple virtual machines and 

each virtual machine will be used as a single compute node. The scheduling and management of vir-

tual machines is also a new challenge.  

Currently, a lot of research papers about map-reduce scheduling have been published. Based on the re-

search direction, most works can be classified into three aspects, single phase optimization, cross-phases 

optimization, and parameters adjustment optimization. (1) On single phase optimization aspect, based on 

the memory perfecting, a high performance scheduling algorithm is proposed for improving the data lo-

cality [2]. Focusing on the map phase, a queuing scheduling algorithm is designed to allocate the task 

based on maximum weight [3]. With an eye to shuffle phase, based on the bandwidth constraints and data 

locality, two dynamic shuffle scheduling algorithms are developed to reduce the communication over-

head in [5-6]. Concerning on the reduce phase, through minimize online makespan time, an optimal 

scheduling algorithm is designed [7]. Similar, based on the prediction strategy, Tang, Jiang, Zhou, Li and 

Li  put forward an overlapping optimal algorithm to reduce the start execution time [8]. In a cloud envi-
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ronment, Zhao, Wei, Zhang and He proposed a two-phase weighted task scheduling algorithm [14]. (2) 

On cross-phases optimization aspect, an overlay mode is proposed for push and map phases [9]. Using 

RDMA technology in the high performance environment, an optimal algorithm by overlapping map and 

shuffle phases is designed [10]. Otherwise, for cloud scheduling, a cross map and reduce scheduling al-

gorithm is proposed [12]. Based on the combination of overlapping in push and map, shuffle and reduce, 

Heintz, Chandra and Weissman proposed a tow optimal scheme [11]. (3) On parameters adjustment op-

timization aspect, from job parameter and application view, block device reconfiguration algorithm and 

MRONLINE algorithm are developed to optimal map-reduce job execution [15-17]. Otherwise, in the 

cloud environment, Palanisamy, Singh and Liu designed a new map-reduce cloud service model, Cura, it 

dynamically configures the best hadoop cluster according to the user-submitted needs, so as to reduce the 

job execution time [13]. In the above algorithms, multiple jobs scheduling optimization is less considered. 

Otherwise, in cloud environment, heterogeneous resources are rarely researched. So to simultaneously 

optimal cross phases, cross jobs and heterogeneous resources in cloud is a huge challenge. 

The motivation of this paper is to find the scheduling features of multiple phases, multiple jobs and 

heterogeneous resources so as to develop some optimal schemes to speed up the job execution process, 

reduce the total running time. According to the new challenges of map-reduce scheduling in cloud, four 

resource waste scenes are existed among multiple phases (push, map, shuffle, and reduce), multiple jobs 

and heterogeneous resources, so, respectively four optimal schemes are formed to solve the four resource 

waste problem. Combining with the four schemes, a cross-jobs-cross-phases map-reduce scheduling al-

gorithm is proposed, which is simply called as CJCP. CJCP takes three overlapping method in three op-

timal scheme, which saves job execution time and consumption cost. In addition, we develop job training 

method to shield the heterogeneous feature of underlying physical hosts. The detailed description of 

CJCP algorithm is showed in section 3. 

Other section are organized as follows: The map-reduce scheduling process is formulated and analyzed 

in section 2. Section 3 presents our algorithm in detail. Section 4 contains an experimental evaluation. 

We finally conclude the paper in section 5. 

2 Problem Definition and Analysis 

The main objective of this study is to minimize the execution cost and time of the map-reduce job in 

cloud environment. In this section, the map-reduce task scheduling process is firstly formulated under 

heterogeneous cloud environment. Then, the four resource waste scenes existing in the scheduling proc-

essing will be analyzed in detail. 

2.1 Problem Definition  

The scheduling process of map-reduce jobs in heterogeneous cloud simplify as: users usually online 

submit multiple map-reduce jobs to the cloud. Each job
j

job  contains three type of tasks, including an 

input data queue
j

data

jobQ , a map task queue
j

map

jobQ , a reduce task queue
j

reduce

jobQ . The input data queue contains 

j

data

jobC  same size of data trunk, the default size is 64M. The input data queue will be stored at public stor-

age server after uploading by users, when the tasks processing begin, the data would be transmitted to 

data nodes. The map queue 
j

map

jobQ  contains 
j

map

jobC  map tasks. A map task
map

task  processes one single data 

trunk
data

task , so, the number of map queue
j

map

jobC  is same as 
j

data

jobC . The reduce queue 
j

reduce

jobQ  includes 

j

reduce

jobC  reduce tasks. One reduce task deals with the results of multiple map tasks. 

Once a job has been submitted to the cloud, the task scheduler starts to allocate the three type tasks to 

underlying compute resources (virtual machine: VM). The underlying physical resources are heterogene-

ous in the cloud, it consists of different type physical hosts and VMs. In the cloud, virtual machine is a 

basic unit for task computing, so, the computing resources mentioned in the following are referred to 

virtual machines. More specifically, each virtual machine configures with four different resources (CPU, 

MEM, DISK and BW). For each type of VM, the rental cost rent

Cost of unit time and the communication 

cost com

Cost of unit data are different. In addition, one virtual machine may continuously executes multi-
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ple map or reduce tasks in one task scheduling. 

To better formulate the job execution time and costs, we suppose one job
j

job  map to 
j

vm

jobC  virtual 

machines, each virtual machine
i

vm  deals with 
,i j

data

vm jobC  input data trunks (push task), 
,i j

map

vm jobC  map tasks, 

,i j

reduce

vm jobC  reduce tasks and migrating map results from the other virtual machines. In map-reduce process, 

one push task transmits one data trunk from the public storage to 
i

vm  and the time-consuming is 
,i j

data

vm jobt ; 

one map task process a data block of 
j

job on virtual machine
i

vm  and the time-consuming is 
,i j

map

vm jobt ;one 

reduce task handles results of 
j

pair

jobC map tasks, for one map task, the time-consuming is
,i j

reduce

vm jobt . Further-

more, the consuming time on migrating all map results from the other virtual machines is 
,i j

transfer

vm jobt  

In summary, the total task execution time 
,i jvm jobt  of 

j
job  on a virtual machine 

i
vm is formulated as: 

 

, , , , ,

, , ,

                      + + 

i j i j i j i j i j

i j i j i j

data data map map

vm job vm job vm job vm job vm job

transfer reduce reduce

vm job vm job vm job

t C t C t

t C t

= ∗ + ∗

∗

∑ ∑

∑
 (1) 

In Equation (1), task execution time on one virtual machine consists of four parts, including push data 

transmission time, map task execution time, map result shuffle time and reduce task running time. 

Based on this, the eventually execution time of a map-reduce job is as follows: 

 { },

max 0
j i j j

vm

job vm job jobt t i C= ≤ ≤  (2) 

In Equation (2), the eventually execution time of a job is the maximum running time of all virtual ma-

chines which is mapped to multiple tasks of 
j

job . 

Similarly, the running cost of 
j

job  on virtual machine 
i

vm is as follows: 

 

, , ,

                   +

i j i j i i j i i

i i

rent data data com

vm job vm job vm vm job vm vm

data com

vm vm

cost t cost C task cost

transfer cost

= ∗ + ∗ ∗

∗

 (3) 

In the above formulation, the execution costs consist of three parts, including virtual machine rent costs, 

push data transmission costs, shuffle data migration costs. In addition,   i indicates the single data trunk 

size of
j

job  and   i  indicates the total migrating data size of map results from other virtual machines. 

So, the total execution cost of 
j

job  can be defined as follows: 

 

,

1

vm
job j

j i j

C

job vm job

i

cost cost

=

= ∑  (4) 

Therefore, the objective function of map-reduce task scheduling model on heterogeneous cloud as fol-

lows: 

 

, , ,

1 1 1

.

,

j j

vm vm vm
job job jobj j j

i j j i j j i j j

job job

C C C

data data map map reduce reduce

vm job job vm job job vm job job

i i i

min  t   and cost

st

C C C C C C

= = =

  

      =       =    ,    =∑ ∑ ∑

 (5) 

2.2 Problem Analysis 

In the above description of map-reduce scheduling process under heterogeneous cloud, four resource 

waste scenes are existing, including map-shuffle-reduce waste scene, push-map waste scene, heterogene-

ous resource waste scene and cross jobs waste scene. 
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Scene 1 (heterogeneous resource waste). In the traditional map-reduce scheduling, the resources are 

homogeneous, all node configure with the same bandwidth, CPU and MEM, the execution time of same 

type of task could be regard as same, and usually take evenly allocation strategy. However, in heteroge-

neous cloud environment, the computing nodes configure with different types of CPU and MEM, the 

time for dealing with same types of tasks are different. The evenly allocation strategy will inevitably lead 

to virtual machines resources waste, this scene is called “heterogeneous resource waste,” as shown in Fig. 

2. 

 

Fig. 2. Scene of heterogeneous resource waste  

In Fig. 2, two types of virtual machine process job1 using evenly distributed strategy, each virtual ma-

chine transfers three blocks and calculates three map tasks. At t0, two virtual machines simultaneously 

execute push phase, at t2, execute map phase, at t4, execute shuffle phase. However, the capabilities of 

two virtual machines are different, so vmtype2 completes push phase at t1, at t3, completes map phase. 

Thus, vmtype2 bandwidth resource is idle from t1 to t2. CPU and MEM resources are idle from t3 to t4. 

Scene 2(map-shuffle-reduce waste). In general, map tasks and reduce task may not always on the same 

compute node and the results of multiple map tasks are processed by one reduce task, reduce task needs 

to wait until shuffle phase finishes, shuffle phase also needs to wait until map tasks implement on differ-

ent virtual machines, this serial execution model causes resource waste. Such that reduce tasks on virtual 

machine has to wait when map tasks on other virtual machines are still running. This scene is map-

shuffle-reduce waste. Let us take an example (see Fig. 3). In the figure, three map tasks of job1 execute 

on vm1, complete at t1 time point. From t1 and t2, sort the results of three map on vm1 and migrates data 

to vm2. At t3 reduce task begins and completes at t4. In the whole process, reduce task on vm2 must wait 

for the running of map tasks on vm1. So, from t0 to t1, bandwidth (BW) resources on vm2 are idle. Simi-

larly, from t0 to t2, CPU and MEM resources are also idle on vm2. 

 

Fig. 3. Scene of map-shuffle-reduce waste  

Scene 3 (push-map waste). Under the traditional scheduling process, push phase and map phase belongs 
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to sequentially connection. That is, map tasks must wait until push phase finishes, thus causing push-

map waste problem, as shown in Fig. 4. In the figure, job1 occupied vm1 to execute push and map tasks. 

From t1 to t2 execute push phase. From t2 to t3 execute map phase. However, because of the sequentially 

execution, from t1 to t2, CPU and MEM resources has been in idle status and causing waste.  

 

Fig. 4. Scene of push-map waste 

Scene 4 (cross jobs waste). In general, one virtual machine is allocated for one job in one scheduling 

process. In two scheduling, one virtual machine carried out multiple tasks of two different jobs and the 

running process of two different jobs is a flow model. This flow model causes the resource waste of vir-

tual machine in two different jobs, we calls this situation as cross jobs waste (see Fig. 5). As shown in 

the figure, virtual machines vm2 and vm1 process job1, job2, job3 and job4 using FIFO strategy. It can be 

seen from Fig. 5 (a), from t0 to t2, job1 occupy vm1 in first scheduling. From t2 to t3, job2 occupy vm1 

in second scheduling. At t1, push phase of job1 completes, map tasks begin. At t2, map task of job1 

completes, push phase of job2 begins. So, from t1 to t2, BW resources of vm1 are idle. Similarly, from 

Fig. 5 (b), job3 and job4 occupied vm2 resource from t4 to t7. At t5, reduce task job3 begins. At t6, job3 

completes, job4 start to transfer data and begin push phase. From t5 to t6, BW resources on vm2 are idle. 

 

Fig. 5. Scene of cross jobs waste  

In the Fig. 5, when two jobs execute on the same virtual machine in different scheduling process, no 

matter the last task is map (Fig 5. (a)) or reduce (Fig 5. (b)), it will inevitably lead to bandwidth resources 

waste. The main reason is that the different type resource are used by two different jobs in different 

scheduling process. Therefore, if the two jobs on same virtual machine do not occupy the same resources 

in different scheduling process, then the two jobs can be overlapped. 

3 Algorithm design 

In this section, a cross-jobs-cross-phases map-reduce scheduling algorithm CJCP is proposed in hetero-

geneous cloud environment. Four optimal schemes are developed for four waste scenes in section 3.1. 

The CJCP algorithm is presented in section 3.2. 

3.1 Optimal Schemes for Four Problems 

Heterogeneous resource optimization for scene 1. In the scene 1, due to the heterogeneous feature of 
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underlying computing nodes, same type task (push, map and reduce) of one job on different virtual ma-

chines perform different running time, high ability node consume less times and low ability node needs 

more times, If take evenly task distributed strategy, evenly distribute same size map tasks to different 

type of virtual machines, which will cause resource idle of high ability node and increases the total job 

execution time.. 

To decrease the influence of heterogeneous feature, an optimal scheme is to reduce the job execution 

time. In this scheme, the high ability nodes undertake more tasks, and low ability nodes undertake less 

tasks, thus that heterogeneous computing node could achieve a similar task execution time on same job. 

That is to say, the optimal scheme must be able to measure the capability of all virtual machines in the 

heterogeneous cloud. Otherwise, the capability of one virtual machine is different on dealing with differ-

ent type jobs or tasks. 

To measure the capability of one virtual machine for different jobs or tasks, firstly is to build a base-

line for different jobs. A training approach is used to construct the baseline for different jobs on different 

virtual machines. The base idea of training approach is to save the historical average execution time of 

three type of tasks (push, map and reduce) on different virtual machines, the historical average execution 

time is treated as a baseline. Then test the three type tasks execution time on fixed test virtual machine, 

the execution time of current virtual machine can be calculate according to the proportional relation be-

tween current virtual machine and fixed test virtual machine. The proportional relation means the time 

ratio between task execution time of current job and historical average running time on one job which is 

equal to the time ratio between test execution time of fixed test virtual machine and his historical average 

execution time on same job. The definition of proportional relation is as follows: 

 

( )
, ,

,

,

_

, ,

_ _

_

_

i j test j

i test

test j

i j i

test

type type

vm job vm job

type type

vm vm

type

vm jobtype type

vm job vmtype

vm

time train time
type push map reduce

avg time avg time

time
time avg time type pu

avg time

       =       ∈

∴        = ∗      ∈

∵

( ), ,sh map reduce

 (6) 

In the above equation, time is the execution time of one type task of 
j

job on
i

vm . _train time is the 

test running time of same type task of 
j

job  on fixed test virtual machine. 
test

vm . _avg time is the histori-

cal average execution time on virtual machine. Otherwise, time is objective variable and three others are 

constant. 

In summary, the process of optimal scheme consists of three steps. Firstly, a training library is built to 

save the historical average execution time of different type task on different type virtual machines. When 

each job completes, the update method begins to improve the historical average value. Secondly, a fixed 

type virtual machine is selected as a test node. Once user submits job to cloud, three single tasks of three 

types (push, map and reduce) are trained on test node and the test execution time of job stored into train-

ing library. Thirdly, according to job information and current virtual machine type, the execution time of 

three type of tasks can be calculated through Equation (6) respectively. The pseudo code of optimal 

scheme is descripted in algorithm 1. 

In algorithm 1, the heterogeneous nodes capacity is determined by the execution time of different 

types of tasks for each type node. The smaller the time is, indicating that the tasks process ability is 

stronger. Conversely, weaker. In order to be fairer to measure ability of different types of computing 

nodes, a large number of test jobs should be execute to avoid the impact of network or node error. 

 

Algorithm 1: Heterogeneous resources optimization on virtual machine level 

Input: job information
j

job and virtual machine type
i

vm
type . 

Output: (i) the estimate execution time
,i j

map

vm jobtime  of single map task slice on
i

vm
type , 

(ii) the estimate data transmission time
,i j

push

vm jobtime  of single push task slice on
i

vm
type ,  

(iii) the estimate execution time
,i j

reduce

vm jobtime of single reduce task slice on
i

vm
type . 

Procedure heterogeneous_resources_optimization (
j

job ,
i

vm
type ) 
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1: get fixed training virtual machine type
test

vm
type .  

2: read the train push time
,

_

test j

push

vm jobtrain time , train map execution time
,

_

test j

map

vm jobtrain time , train reduce 

execution time
,

_

test j

reduce

vm jobtrain time of single task slice from the train library by 
test

vm
type  and 

j
job . 

3: read the average data transmit time _

test

push

vmavg time , average map execution time _

test

map

vm
avg time , average 

reduce execution time _

test

reduce

vm
avg time from train library which is the historical average job execute re-

sults for 
test

vm
type . 

4: read the average data transmit time _

i

push

vmavg time , average map execution time _

i

map

vm
avg time , average 

reduce execution time _

i

reduce

vm
avg time from the train library for

i
vm

type . 

  //calculate three task slice estimate execute time  

5: if (
,

_

test j

push

vm jobtrain time !=null ∩
,

_

test j

map

vm jobtrain time !=null ∩
,

_

reduce

k jtrain time !=null) 

6:   calculate the estimate execution time 
,i j

push

vm jobtime  according to the Equation (6). 

7:   calculate the estimate data transmission time 
,i j

push

vm jobtime  according to the Equation (6). 

8:  calculate the estimate execution time 
,i j

reduce

vm jobtime  according to the Equation (6). 

9: end if 

10: return
,i j

push

vm jobtime ,
,i j

push

vm jobtime ,
,i j

reduce

vm jobtime . 

 

Map-shuffle-reduce optimization for scene 2. In scene 2, underlying physical resources are idle be-

cause of three phase tasks (map, shuffle and reduce) serial execution and three phase tasks wait for each 

other. In order to decrease the resource waste and speed up the job execution time, the key is to reduce 

the wait time. To reduce the wait time, shielding the sequential execuion way is a feasible method. In this 

paper, an overlapping optimal scheme is proposed for the map-shuffle-reduce waste scene. The goal of 

this scheme includes two aspects, one is to overlap three phases of one job on multiple virtual machines 

and another one is to dynamically adjust tasks size of multiple virtual machines on same physical host (as 

algorithm 1), such to achieve the unevenly tasks allocation and assure the similar execution time on all 

virtual machines. 

To better descript the overlapping scheme, we introduce two new definition firstly. 

Definition 1: task pairwise. In the scheduling process, one map task deals with one data trunk (one push 

task) and one reduce task deals with results of multiple map tasks. The ratio between reduce task and 

map tasks is the task pairwise. The task pairwise implies the work strength of current job. The higher the 

ratio is, the stronger the strength is. In general, the pairwise is the basic standard for evenly task alloca-

tion strategy and also is the initial task allocation strategy of optimal scheme in this paper.  

In general, the ratio is real, it’s not always integer. This situation causes some difficulties for initial 

evenly task allocation, because the task number for each virtual machine must be integer. So, a remainder 

append method is developed to assign initial tasks for all virtual machines. The main idea of remainder 

append method is to add the task pairwise remainder of one virtual machine to next task pairwise for 

another virtual machine, thus to ensure that all task pairwise are integer. For example, when the original 

ratio of map and reduce is 3.25. The methods will add the remainder of first three task pairwise to the 

fourth task pairwise, so the first three task pairwise is “<1, 3>”, the fourth is “<1, 4>”. 

Definition 2: task slice. Due to relationship between map task number and reduce task number is n to 1 

and the reduce task number is only 1, so it is inconvenient to adjust the task number of multiple virtual 

machine of same physical host. To better normalize the different type task number, task slice is defined 

to assure the relationship of three type task is one to one. Through transformation, each virtual machine 

holder multiple map task slices and same size reduce task slices, which provides a great convenience for 

task number adjustment of multiple virtual machines in same physical host. 

Based on the task pairwise and task slice, the optimal scheme needs to dynamically adjust the task 

number between two virtual machine on same physical host. The goal of task adjustment is re-distributed 

task number according to virtual machine capability. To better introduce the adjustment process, we sup-

pose virtual machine vm1 and vm2 are allocated to execute the job. Through initial task allocation and 
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task slice transmission, vm1 processes M1 push task, map task slice and reduce task slice, vm2 processes 

M2 push task, map task slice and reduce task slice. Based on algorithm 1, the single data transmission 

time (push task) on vm1 is t1, map execution time is t2 and reduce running time is t3. Also, the single 

data transmission time (push task) on vm2 is t4, map execution time is t5 and reduce running time is t6. 

According to the overlapping scheme, x map slices are moved from vm2 to vm1and y reduce task slices 

are moved from vm1 to vm2. This task adjusting process is must meet the following constraints: 

 

( )( ) ( ) ( )
( )( ) ( ) ( )

( ) ( )( ) ( )
( )( ) ( )( ) ( )

1 1 2 1 3 1 1 2 3 2 4 5 6

2 4 5 2 6 1 1 2 3 2 4 5 6

1 2 2 4 5 2 6

1 1 2 2 4 5 2 6

max ( ), ( )

max ( ), ( )

1

1

M x t t M y t M t t t M t t t

M x t t M y t M t t t M t t t

x t t M x t t M t

M x t t M x t t M y t

⎧ + + + − ≤ ∗ + + + +
⎪

− + + + ≤ + + + +⎪
⎨

+ ≤ − + + −⎪
⎪ + + ≤ − + + + −⎩

 (7) 

In Equation (7), the first inequality means, after adjustment, task execution time of vm1 cannot exceed 

the original maximum execution time of two nodes. The second inequality also indicates task execution 

time of vm2 cannot exceed the original maximum execution time of two nodes. Third inequality implies 

all map slice should complete before the last reduce slice, which corresponds to the last map when move 

x map on vm2. The last inequality indicates all map slices should complete before the last reduce slice. 

To decrease the computational size, descending sort the factors according to the execution time, the Equ-

ation (7) can be converted into: 

The goal of optimal shame is to minimize execution time of multiple virtual machine, which is to bal-

ance task compute time as much as possible. So, an adjustment objective function can be set to: 
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The number of task slice adjustment could be calculated according to formula (7) and (9), as shown in 

Fig. 6. The map and reduce task slice adjustment value is the integer x, y value on red line. 

 

Fig. 6. Task adjustment function and range distribution 

In summary, the process of overlapping optimal scheme for scene 2 consists of four steps. Firstly, the 

task pairwise is calculated according to the jobs information. For example, one user submits 6.4GB input 

data, 180 reduce tasks. Assuming the default data trunk size is 64M, so the number of push task and map 

task is both 1000, 1 reduce task need to deal with 5.6 map tasks, the task pairwise is “<1, 5.6>”. Secondly, 

initial distributed process is begin to allocate tasks for all the virtual machines using the remainder ap-

pend method according to task pairwise. After initial distributed process, task slice transformation is start 
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to assure the number of three task number is same. Thirdly, according the algorithm 1, the estimate task 

execution time of each virtual machine for current job has been calculated. Finally, using the physical 

host as unite, based on the estimated task execution time of three type task and task slice number, ad-

justment process is executed according to the Equation (8) and Equation (10) for all virtual machines of 

current host, such that minimizing the job execution time. The pseudo code of overlapping optimal 

scheme for scene 2 is described in algorithm 2. 

 

Algorithm 2: Cross-phase optimization among map, shuffle and reduce in physical machine level 

Input: virtual machine list vlist of one physical machine and job information
j

job . 

Output: the task queue wait
Q of each virtual machine in vlist . 

Procedure cross_phases_map_shuffle_reduce_optimization ( vlist ,
j

job ) 

1: calculate the initial task pairwise ,1
m

C  of 
j

job . 

//initial task allocation  

2: for each
i

vm vlist∈  

3:  allocate 
m

C push, 
m

C map, 1 reduce task into wait

i
Q  to assure that the task number is an integer 

 using remainder append approach and transform the task to task slices. 

4: use Algorithm 1 heterogeneous_resources_optimization (
j

job ,
i

vm
type ) to calculate estimate execu-

tion time of push, map and reduce task slice.  

5: end for 

//task adjustment among virtual machines on same physical machine 

6: initial virtual machine adjustment queue adjustvlist =∅ . 

7: for each
i

vm vlist∈  

8:   if ( . 1adjustvlist length > ) 

9:    for each k adjustvm vlist∈  

10:       compute task adjustment number ,x y  on
i

vm and
j

vm according to formulation (7) and (9). 

11:       if ( ! 0 ! 0x y= =∪ )  

12:          update the map and reduce task slice of wait

i
Q and wait

j
Q . 

13:       end if 

14:    end for 

15:   end if 

16:   add
i

vm into adjustvlist . 

17: end for 

18: return the task queue wait
Q of each virtual machine in vlist . 

 

Push-map optimization for scene 3. In scene 3, the main reason of push-map waste is that map tasks 

must wait until push phase completes. An optimal scheme for this scene is feasible developed to overlap 

push task and map task. Due to the different resource need of two type tasks, push task use network to 

transmit data trunk to virtual machines, while map tasks execute data on CPU or MEM, so the overlap-

ping model between push and map task is reasonable. Through overlapping model, while the push task 

transmits the data trunk, the map task could still compute and analyze data. However, as the data from 

push task is the prerequisites of map task, portion overlapping is more realistic than fully overlapping. 

Therefore, overlapping degree is the key element of optimal scheme. 

To better describe the method of how to get the overlapping degree, we suppose, some push tasks and 

map tasks are mapped to virtual machine vm1. At t0 virtual machine vm1 begin to execute tasks. In the 

push phase, vm1 needs to transfer M data blocks, execute N map tasks in map phase. M and N may differ 

because of the influence of algorithm 4(cross-jobs optimal scheme). Based on the algorithm 1, the trans-

mission time of each data block is t1, the execution time of each map is t2. Let us set x as the overlapping 

time for map task, in order to avoid waiting for the data transfer of push phase when map task begins, the 

overlapping x must meet the following constrains: 
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In Equation (10), three constrains are correspond to three situations:  

‧ When t1 is less than or equal t2 and N is greater than M, this situation indicates, before task begins, 

some data trunks are already transferred to virtual machine according to algorithm 4. Furthermore, 

the data transmission speed is faster than the computing speed of one map task. That is to say, when 

one map task does not complete yet, another input data has already been transferred, so the map task 

can start at t0. 

‧ When t1 is less than or equal t2 and N is equal M, this situation implies that, before task begin, no 

data has been transferred. In addition, due to the data transmission speed is faster than map comput-

ing speed, so the overlapping time x of map task is the time of first data block transfer has been 

completed. 

‧ When t1 is greater than t2, this situation indicates that the data transfer speed is slower than the map 

computing speed, one map is completed while another push data is not completed. In this case, the 

remaining data blocks transmission must complete before the last map task slice execute. Further-

more, ( )0 1
x t t−  is must an integer because the overlapping time x of map task is the transfer com-

peting time of some data blocks. 

In summary, the process of optimal scheme for scene 3 is relatively easy. Firstly, according to the al-

gorithm 1, the single push data transmission time and single map task execution time are calculated based 

on the type of current virtual machine. Secondly, the push data number and map task number are counted 

in task queue of current virtual machine. Thirdly, the overlapping time is calculated according to Equa-

tion (10). The Pseudo code of this optimal scheme is described in algorithm 3. 

 

Algorithm 3: Cross-phases optimization between push and map 

Input: (i) task queue hold

task
Q , (ii) current virtual machine type vm

i
type , (iii) the job start time start

task
t  of first 

task. 

Output: the start execution time of map phase
map
t . 

Procedure cross_phases_push_map_optimization ( hold

task
Q ,

i
vm

type , start

task
t ) 

1: calculate transmit data block numberM of push task in hold

task
Q . 

2: if ( ! 0M = ) 

3:   calculate map task number N in hold

task
Q . 

4:   get the job type and job information
j

job by hold

task
Q .  

5:   compute data transmission time, map running time of single data trunk according to 

     the Algorithm 1 heterogeneous_resources_optimization (
j

job ,
i

vm
type );  

6:   calculate the first map task start execution time
map
t using the Equation (11). 

7: else 

8:   get current time
now
t as first map task start execution time 

now map
t t→ . 

9: end if 

10: return
map
t . 

 

Cross-jobs optimization for scene 4. In scene 4, the main reason of resource waste is the flow-style 

scheduling model, that is to say, on the same virtual machine, the next round scheduling will be executed 

until the current tasks scheduling has been completed. However, one virtual machine consists of multiple 

type resources, the bandwidth resource is not fully used in current tasks because the next round push task 
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does not start. The bandwidth resource is in idle status at most time. One feasible optimal method is to 

start push data of the next job before the completion of previous job. 

To overlap two different jobs, how to determine the overlapping time is the first key for the optimal 

scheme of scene 4. In this paper, we define an overlapping coefficient λ  to measure the overlapping 

degree of two jobs. The overlapping coefficient is a percentage of the start scheduling time of next job 

and the total execution time of current job in the same virtual machine. That is to say, when the overlap-

ping coefficient λ is set, virtual machine sends the idle command to scheduler for allocating next job 

tasks. Through changing the overlapping coefficient λ , the overlapping degree will be corresponding 

changed. 

Otherwise, based on the overlapping coefficient, current job will be able to use the bandwidth resource 

at any time. So, the overlapping model of two different job could not affect the current job execution. 

That is, the two jobs will not use the bandwidth resource at same time, the next job task start only when 

the bandwidth is idle for current job. For assuring the no-conflict model of two different jobs, a monitor 

method is proposed in the optimal scheme for scene 4. The main idea is to monitor the bandwidth re-

source status before next job executes push task slice. When a new push task of next job starts, monitor 

the status of bandwidth resources. If the bandwidth is occupied, wait a fixed time, then listen again. If 

bandwidth is not occupied, begin data block transmission. When the data block transfer is completed, 

also sleep the fixed time, and listen again to judge whether to transmit the next push task. The monitor 

method guarantees the normal execution of previous job and avoids the long wait situation. 

In summary, the optimal scheme of scene 4 consist of three steps. Firstly, according to the task queue, 

get the single task execution time of different type through the algorithm 1, and calculate the total execu-

tion time of all tasks of current job. Secondly, based on the overlapping coefficient and the total execu-

tion time, calculate the overlapping time. When achieve the overlapping time, an idle command is sent to 

the scheduler. When scheduler has received all the virtual machine idle commands, then schedules new 

tasks to virtual machines according to algorithm 2. Thirdly, the monitor method has been used to overlap 

execution the tasks of two different jobs. The pseudo code of this optimal scheme is described in algo-

rithm 4. 

 

Algorithm 4: Cross-jobs optimization 

Input: (i) holding task queue hold

task
Q ,     (ii) waiting task queue wait

task
Q ,  

(iii) overlapping coefficientλ , (iv) transmission sleep time sleept . 

Output: the first task of next job start time start

task
t . 

Procedure cross_jobs_optimization ( hold

task
Q , wait

task
Q ,λ , sleept ) 

1:  calculate the task total execute time
hold

task
Q

excutet according to Algorithm 1.  

2:  compute the overlapping time by
hold

task
Q

overlap excutet t λ= ∗ . 

4:  while (current time now overlapt t< ) 

5:      sleep; 

6:  end while 

7:  send idle command and fill new tasks into waiting task queue of next job. 

// cross-jobs task optimization  

8:  while (task in hold

task
Q  hasn’t been completed) 

9:     while (bandwidth resource is idle) 

10:       if (the push task of wait

task
Q  is not null ) 

11:        transmit one data trunk of wait

task
Q from the public storage into HDFS of the current virtual ma-

chine. 

12:        update wait task queue wait

task
Q  and remove the push task.  

13:        sleep sleept seconds after the transmission process of one data trunk has been completed. 

14:       end if 

15:     end while 
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16:     sleep sleept seconds to next listening of bandwidth. 

17:  end while 

18:  retrieve the current time
now
t . 

19:  return
now
t . 

3.2 CJCP Algorithm Description 

According to the four resource waste scene of map-reduce job scheduling process in heterogeneous cloud, 

a cross-jobs-cross-phases (CJCP) map-reduce algorithm is developed to improve the utilization of under-

lying physical resources. For each resource waste scene, a corresponding optimal scheme is designed for 

minimizing the job execution time and costs, as shown in subsection 3.1. The CJCP algorithm is combi-

nation of four optimal scheme for four waste scene. 

The process of CJCP algorithm consists of four steps. Firstly, when user submits a job to cloud, the in-

put data are stored to the public storage and wait for the scheduler command. Then one data trunk, map 

task and reduce task are submitted to test virtual machine for training task execution, so as to get the sin-

gle task test time of three type of task according to algorithm 1. Secondly, according to the algorithm 2, 

using physical host as unite, initial evenly distribute tasks for all virtual machines and dynamically adjust 

task number of any two virtual machines. Thirdly, algorithm 3 is used to parallel overlapping execute 

data transformation and map task for all virtual machines. After the map task begins, overlap the shuffle 

phase and reduce phase. Finally, when reach the overlapping time, the algorithm 4 begins to improve the 

utilization of bandwidth among two jobs execution process. The pseudo code of CJCP is described in 

algorithm 5.  

 

Algorithm 5: cross-jobs-cross-phases task scheduling 

Input: job list jlist . 

Output: the execute result of job. 

Procedure cross_jobs_corss_phases ( jlist ) 

//task training 

1: for each
j

job jlist∈ . 

2:  upload the file data to public storage. 

3:  execute the training test for 
j

job  on fixed test virtual machine using the Algorithm 1. 

4: end for 

    //task optimization 

5: for each 
i

job jlist∈   

6:  while (physical machine is idle) 

7:     find virtual machine list vlist of physical machine. 

        // unevenly task allocation  

8:     use Algorithm 2 ( vlist ,
j

job ) to adjust the task number among any two virtual machines. 

        //overlap push and map phases 

9:    parallel,
i

vm vlist∀ ∈ , execute Algorithm 3 to overlap the running process of push and map task. 

       //overlap tow jobs 

10:    parallel,
i

vm vlist∀ ∈ , monitor the bandwidth status and use Algorithm 4 to overlap tow jobs.  

11:  end while 

12: end for 

13: return the job results. 

4 Experiments 

In this section, we evaluate our proposed algorithm CJCP. Through the comparison with JOOP, SARS, 

CPOA algorithms, we run extensive test jobs and analyzed the performance of CJCP algorithm from 

three factors of multiple phases of single job, multiple jobs and systematic parameter. 
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4.1 Experimental Environment 

To more truly simulate map-reduce cloud environment, four different type 17 physical hosts from Na-

tional Supercomputing Changsha China Center, are selected to build a heterogeneous hadoop cluster. The 

17 physical nodes include 5 Dell OptiPlex3010 hosts, 4 Sugon A440-G hosts, 4 HP DL320E Gen8 hosts, 

and 4 HP ProLiant DL160 hosts. Otherwise, the 17 physical hosts are connected by 1000M high-speed 

switch, in which are 16 compute nodes and 1 job submission node. The total cluster configures with Ub-

untu12.04, hadoop1.20, and JDK 1.645. Table 1 shows the details of the physical hosts, including the 

host type, amount, CPU and MEM capacity, operating system and etc.  

Table 1. Physical machine parameter 

type number cores 
MEM

(g) 

Disk

(g) 
system role 

G1:Dell OptiPlex3010 1 4 CPUs,Core3.3GHz 4 500 Ubuntu12.04 Name node 

G1:Dell OptiPlex3010 4 4 CPUs,Core3.3GHz 4 500 Ubuntu12.04 Data node 

G2:Sugon A440-G 4 8 CPUs,Xeon2.6GHz 8 500 Ubuntu12.04 Data node 

G3:HP DL320E Gen8 4 16 CPUs,Xeon2.6GH 16 500 Ubuntu12.04 Data node 

G4:HP ProLiant DL160 4 24CPUs,Xeon2.7GHz 24 500 Ubuntu12.04 Data node 

 

To better simulate the jobs scheduling process, we extended the hadoop source code and customized 

five classes (JobDataTransmission, TaskSynchronizer, JobTrainer and CloudConfig), and modified Job-

Tracker, TaskTracker and LaunchTaskAction three class on hadoop1.20, so as to achieve cross-jobs and 

cross-phases scheduling optimization. Where, JobDataTransmission refers to transfer data between the 

public storage and HDFS file system. TaskSynchronizer collects status of each compute node to provide 

decision support for the optimization of the next round scheduling. JobTrainer refers to test job and sav-

ing job history data. CloudConfig manages cloud scheduling information. A job trigger was added to 

monitor job status on JobTracker. 

The process of experiments is that when new jobs have been submitted, the input data will be firstly 

stored into public storage. When the underlying physical resource idles, the input data are transited from 

public store to data node (HDFS), and the map and reduce task are mapped to virtual machine for execu-

tion, the final results will be written back to public storage. To more realistic, 9 different types of jobs are 

executed. Otherwise, in the 120 test jobs, the task number of map ranges from 160 to 800 and the size of 

input data varies from 10G to 50G.  

4.2 Comparison Algorithm Description 

To clearly present the performance of CJCP and show the optimization results on map, push, shuffle and 

reduce phases, several algorithms (JOOP, SARS, CPOA) are selected to compare with CJCP, and the 

details are described in Table 2. JOOP algorithm overlap map and shuffle phase for optimization, SARS 

algorithm optimal shuffle and reduce phases, CPOA concern on both overlapping of push-map and map-

shuffle. JOOP establish a new scheduling model to overlap tasks queue for shuffle and map overlapping. 

SARS predict task execution time to overlap reduce task. CPOA takes feedback policy, the implementa-

tion of the results impact push transfer, the reduce execution results impact map process. 

Table 2. The illustration of comparison algorithms 

Short Name Illustration 

JOOP Joint Optimization of Overlapping Phases in MapReduce [9] 

SARS A Self-Adaptive Scheduling Algorithm for Reduce Start Time [8] 

CPOA Cross-Phase Optimization in MapReduce [11] 

CJCP A Cross-job-Cross-phase map-reduce Scheduling Algorithm in Heterogeneous Cloud 

4.3 Experimental Results 

In this subsection, we verify the performance of CJCP algorithms from three factors on a single job, mul-

tiple jobs and system parameter. 
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Comparison of single job optimization. Fig. 7 and Fig. 8 show the different performance of four algo-

rithms on two types of job (map size is 320 and 640 respectively). In the two figure, the relatively similar 

results are appeared and four algorithms perform different with each other on push, map, shuffle and 

reduce phases which are represented by four color range of blue, gray, green and orange. On 320 map 

tasks, JOOP algorithm consumes nearly 140 seconds, overlapping optimizes the map and shuffle two 

phases, we can see from gray and green area in Fig. 7. (a). SARS algorithm takes more than 120 seconds, 

the overlapping area is the shuffle and reduce phase, as the green and orange area in Fig. 7. (b). CPOA 

algorithm spends nearly 120 seconds, it overlaps push, map and shuffle three phases, as blue, gray and 

green area in Fig. 7. (c). CJCP algorithm costs nearly 110 seconds, optimizes the four phases, as Fig. 7 

(d). Similarly, when the size of map tasks becomes 640, JOOP algorithm takes more than 220 seconds, 

SARS spends 210 seconds, CPOA needs 200 seconds, and CJCP takes 180 seconds. As can be seen from 

the two figures, CJCP algorithm has better overlapping performance than other three algorithms, and 

spends less time. 

   

(a) JOOP (b) SARS (c) CPOA (d) CJCP 

Fig. 7. Execution results of 320 Map tasks 

 

(a) JOOP (b) SARS (c) CPOA (d) CJCP 

Fig. 8. Execution results of 640 Map tasks 

Table 3. Execution time of 320 map tasks 

Algorithms Push(s) Map(s) Shuffle(s) Reduce(s) Job Execution Time(s) Improvement 

JOOP 21 81 76 18 140 16.44% 

SARS 22 73 29 19 129 11.34% 

CPOA 21 83 85 15 118 8.25% 

CPCJ 20 80 68 64 109 / 

 

On two types of jobs, Table 4 and Table 5 shows the execution time of four algorithms. On each phase 

of push, map, shuffle, and reduce, four algorithms show different process time. In which, map and shuffle 

phase occupy a large portion time. JOOP algorithm is most time-consuming on map and shuffle phase 

(more than 150s). SARS algorithm takes less than JOOP. CPOA algorithm consumes up to 149 seconds, 

which is more than JOOP and SARS, but its shuffle phase is the minimum time-consuming. CJCP algo-

rithm takes more time than JOOP and SARS on the map phases, but is minimized in the shuffle phase. 

On total time, CJCP algorithm is minimum, followed by the CPOA, SARS, and the finally one is JOOP. 

The last column of two tables shows time improvement of CJCP algorithm comparing to other algo-

rithms. Through repeated experiments, we see that CJCP algorithm enhances the execution efficiency 

from 8% to 16%. 
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Table 4. Execution time of 640 map tasks 

Algorithms Push(s) Map(s) Shuffle(s) Reduce(s) Job Execution Time(s) Improvement 

JOOP 38 146 149 26 227 15.52% 

SARS 37 135 42 33 220 12.41% 

CPOA 36 149 132 27 198 9.17% 

CPCJ 38 147 129 77 170 / 

 

Comparison of Cross jobs optimization. (1) Overlapping Coefficient λ  : In this subsection, the influ-

ence of overlapping coefficient on job performance of our algorithm is validated. Different overlapping 

coefficient will seriously affect the execution results of two same jobs. In this paper, two same type of 

jobs (640 map tasks) are executed under different overlapping coefficient.  

Fig. 9 shows the performance changing under two different overlapping coefficient by using CJCP al-

gorithm. In the figure, the overlapping degree of two jobs changed with the value of overlapping coeffi-

cient. As we can see, when the value of overlapping coefficient is 0.2, means the current job will overlap 

with next job and delay to complete because the bandwidth is occupy by the both two jobs. Map huger 

task size is, the delay time will be longer. Specifically when map tasks number is 640, the completion 

time of the first job delayed from 172s to 200s. When overlapping coefficient is 1.0, two jobs are flow-

style executed, there is no overlapping for each job. The specific runtime under different overlapping 

coefficient values are shown in Tables 5. 

  

( ) 0.2a λ =  ( ) 1.0b λ =  

Fig. 9. Execution results with different overlapping coefficient 

Table 5. Execution time with different overlapping coefficient 

Value 
Job1 Execution 

Time(s) 

Job2 Execution 

Time(s) 

Total Execution 

Time(s) 

Job1 Delay Time 

Percent (no monitor) 

Job1 Delay Time 

Percent (monitor) 

0.1 210 187 316 22.09% 7.23% 

0.2 200 182 318 16.27% 6.72% 

0.3 196 179 320 13.95% 5.54% 

0.4 193 185 322 12.21% 4.36% 

0.5 186 176 326 8.13% 3.78% 

0.6 188 174 336 9.30% 2.92% 

0.7 183 177 344 6.39% 2.21% 

0.8 179 172 350 4.06% 1.97% 

0.9 177 180 359 2.90% 0.63% 

1.0 172 173 366 0.00% 0.00% 

 

As can be seen from Table 5, when the overlapping coefficient value is smaller, the delay time for the 

current job will be longer. From the table, we know that the monitor method of algorithm 4 helps to im-

prove the job performance. By monitoring the bandwidth status of virtual machine, it reduced the band-

width resource confliction of two jobs. Otherwise, by repeatedly running test instances, it is easy to find 

that, when the overlapping coefficient value is 0.6, the current job completion delay time is low, the total 

completion time is optimal, and the delay time ratio is 2.92%. 
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(2) Job execution time: Taking the overlapping coefficient value 0.6, we execute two type of jobs (the 

number of map task is 320 and 640), Fig. 10 shows the total execution results of four algorithms. Table 6 

shows the total execution time of four algorithms. As can be seen from the figure and table, comparing to 

the JOOP algorithm, CJCP algorithm saves job execution time by 16.43%. Comparing to SARS algo-

rithm, CJCP algorithm saves job execution time by 14.10%. Comparing to CPOA algorithm, CJCP algo-

rithm saves job completion time about 11.03%. 

    

(a) JOOP (b) SARS (c) CPOA (d) CJCP 

Fig. 10. Execution results of two different jobs  

Table 6. Execution time of two different jobs 

Algorithm Jobs Total Execution Time(s) Improvement in total 

JOOP 352 16.43% 

SARS 346 14.10% 

CPOA 320 11.03% 

CPCJ 258 / 

 

Systematic comparison. (1) Average job execution time: The average job execution time consists of 

data migration time, map and reduce running time. We run test jobs 20 times and changing map task 

number from 160 to 800, the comparison details of average job execution time are shown in Fig. 11. 

From Fig. 11, we can see that CJCP algorithm has better performance comparing to other three algo-

rithms because the trend line of CJCP is most close to the bottom line. Along with the increasing of map 

tasks, CJCP algorithm presents better performance. 

 

Fig. 11. Average execution time 

(2) CPU workload: We run two type of jobs on one virtual machines, the map task number is 320 and 

640, CPU resource workload of four algorithms is demonstrates in Fig. 12. As is shown in the figure, at 

the beginning (from 0 to 20), the CPU workload fluctuations from 1% to 80%, because when the push 

phase runs, the network resources are busy while CPU workload is low. Along with the job execution, 

map tasks and other phases begin running, CPU resources are used frequently and gradually stabilize. 

Among the four algorithms, CJCP has highest CPU resource workload, because CJCP has greater over-

lapping degree than other three algorithms. 
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(a) 320 map tasks (b) 640 map tasks 

Fig. 12. CPU workload 

(3) Network workload: To correspond the CPU workload, for same two jobs, the map task number is 

320 and 640, Network resource workload of four algorithms is demonstrates in Fig. 13. It is easy to find 

that two figures show a naturally opposite tendency because the intrinsic features among push, map and 

reduce tasks. From the Fig.13 (a), at the beginning (from 0 to 20), the Network workload fluctuations 

from 1% to 70%, because the push phase is running, the network resources are busy. From 20 to 60, 

Network workload reduce to 2% to10%, because the map task is running, the data transmission number 

cut down. From 60 to 80, Network workload increase again due to the task execution of shuffle phase. 

From 80 to 100, Network work load reduce again due to the execution of reduce phase. From two figures, 

we can see that CJCP algorithm performs more stable on the network workload than other three algo-

rithms. 

  

(a) 320 map tasks (b) 640 map tasks 

Fig. 13. Network workload 

5 Conclusions 

With the urgent social needs on efficient and fast processing large-scale data, map-reduce cloud is be-

coming a powerful and popular platform. In this paper, we analyze and formulate the process of map-

reduce job scheduling and present four resource waste scenes in the heterogeneous cloud. Based on the 

four waste scenes, we propose a cross-jobs-cross-phases map-reduce scheduling algorithm in this paper. 

Our algorithm consists of four optimal schemes, and respectively to four resource waste scenes. Firstly, 

we describe the heterogeneous resource waste scene, and a job training method and corresponding opti-

mal scheme are developed to measure the virtual machine capability and the execution time of three dif-

ferent type tasks. Secondly, we develop another optimal scheme dynamically to adjust task number of 

multiple virtual machines on same host for unevenly tasks allocation. The goal of this scheme is to allo-

cate more tasks to high-capability virtual machines, less tasks to low-capability virtual machines. Thirdly, 

considering the difference resource need feature of push and map tasks, an overlapping optimal method is 
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developed to speed up tasks execution time. Finally, we analyze the relationship between two jobs on the 

same virtual machine and designed another scheme to overlap execution two jobs. In the final scheme, to 

shield the interference of two jobs, a monitor method is used to solve the network occupancy problem 

that two jobs may simultaneously occupy bandwidth resources. The results verify that the CJCP performs 

better on cross phases, cross jobs scheduling than the JOOP, SARS, and CPOA algorithms. 
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