
Journal of Computers Vol. 28, No. 3, 2017, pp. 60-78

doi:10.3966/199115592017062803006

60

Dynamic Relocation Cache for Instruction Delivery

in Low Power Processor

Meng-Rao Tang1, and Hong-Yin Luo2*

1 Department of Electronic Information Engineering, Xiamen Institute of technology,

Xiamen, Fujian 361024, People’s Republic of China

MRtang@xit.edu.cn

2 Fujian Newland Computer Co., Ltd,

Fuzhou, Fujian 350015, People’s Republic of China

luohy@newlandcomputer.com

Received 10 May 2016; Revised 12 August 2016; Accepted 12 December 2016

Abstract. A set-associative cache wastes power because the parallel access to multi-bank

memory consumes a lot of power. In this paper, we present a cache architecture (Dynamic

Relocation (DR) Cache) that serves as a low-power instruction source instead of the set-

associative cache. Not restricted to the static layout imposed by compiler, DR cache is capable

of storing instructions in an execution sequence by using a hardware-only method without

software or compiler. The trace-based storing scheme, which is capable of storing instructions in

an execution sequence, makes sure that DR cache could provide a high hit rate with a small

single-bank data memory. We evaluate DR cache in runtime performance and power, and then

compare it with the following caches: direct-mapped, 2-way set-associative and 4-way set-

associative cache. The comparison is accomplished by running ten embedded programs on a

RTL (Register Transfer Level) hardware model based on the LEON3 processor. The evaluation

shows that, on average, the 4-kB DR cache provides the same performance in hit rate and an

83% reduction in power consumption compared to the 4-kB 4-way set-associative cache. The 4-

kB DR cache also surpasses other caches in what we define as follows: (1) the power with

comparable area, and (2) the smallest power.

Keywords: address-mapping, cache, dynamic relocation, low power, processor

1 Introduction

In embedded processors, reducing the power of a memory subsystem has attracted great interest recently

[1]. The first-level memory, which is faster and more energy efficient than other level memories in

memory hierarchy, has the following two entirely different schemes, namely, the hardware-based cache

and the software-based scratchpad memory (SPM). Being transparent to software programs, cache can

boost its performance by simply increasing the memory capacity at the cost of extra on-chip area and

energy consumption. On the other hand, the SPM controlled by software can improve its performance by

using an advanced compiler.

The conception of cache was proposed early in the 1960’s [2]. Since then, cache has been extensively

used in almost all computers from the first announced mainframe computer IBM 360/85 [3] to the up-to-

date embedded processor ARM Cortex-A9 [4]. The well-known set-associative cache [5],

comprehensively investigated in the 1980’s, has been widely adopted because of its excellent runtime

performance. However, because of the parallel access to multibank memory, the set-associative cache

wastes power. In order to improve the energy efficiency of cache, some novel caches, such as filter cache

[6-7], reused cache [8-9] and trace cache [10], have been proposed. The basic idea of these caches is

* Corresponding Author

Journal of Computers Vol. 28, No. 3, 2017

61

identical, using a small level-zero cache memory to store the most frequently accessed data.

Unfortunately, these power-saving techniques occupy extra on-chip areas and induce extra delays when a

miss happens.

The energy-efficient SPM was proposed for low power purpose in this decade [11-12], and could be

used without a source code [1]. However, in order to optimize the memory access pattern of SPM

globally, all codes must be input into a special compiler simultaneously. Therefore, it is difficult for SPM

to deal with some complicated circumstances, such as the operating systems with scalable application

environment. Because of this limitation, SPM is useful for a simple embedded system, but cannot replace

cache in all circumstances.

The idea of the dynamic relocation scheme is recently proposed [13]. This paper presents the detail

architecture of the DR cache and the comprehensive evaluation. The DR cache is an instruction source

for replacing traditional set-associative cache in all circumstances. The DR cache, composed of a data

memory and an address-mapping module, is a good candidate for the low power cache. It uses one

single-bank data memory to store instructions without tag memory, which is similar to SPM. Furthermore,

the instructions with compiler-assigned address is reassigned into a physical location of data memory

according to its execution sequence, reducing the collision-induced miss [14] and providing high hit rate.

For evaluating power consumption and runtime performance as accurately as possible, we use a RTL

(Register Transfer Level) hardware model based on the LEON3 processor [15] to measure various

performance metrics. The runtime performance (IPC and cache hit rate) is measured by running ten

embedded applications under the Mentor Modelsim simulation environment. A set of performance

monitors embedded in the processor record the data for obtaining the runtime performance. Furthermore,

the power consumption is estimated by a Synopsys Design Compiler [16] with the switch activity

information that is obtained during the simulation process.

The DR cache is compared with the direct-mapped cache, the 2-way set-associative cache, and the 4-

way set-associative cache that is defined as the reference case. On the average, the 4-kB DR cache

provides the same performance in hit rate and shows an 83% reduction in power consumption compared

to the 4-kB 4-way set-associative cache. The 4-kB DR cache also surpasses other caches in what we

define as follows: (1) the power with comparable area, and (2) the smallest power.

The rest of this paper is organized as follows: Section 2. This section lists the related work. Section 3.

This section describes the architecture of the DR cache, the dynamic relocation scheme and the address-

mapping module. Section 4. This section analyzes the power consumption of caches. Section 5. This

section describes the evaluation methodology. Section 6. This section describes the evaluation results and

presents the discussion. Section 7. This section concludes this paper.

2 Related Work

2.1 Scratchpad Memory

Scratchpad memory (SPM) is a single data memory without any hardware control logic. The instruction

and data are allocated into SPM through two schemes: the static and the dynamic. In the static allocation

scheme, Avissar et al. [11] used knapsack formulation and ILP solver to find out the frequently used data

object and program routings, and then stored them into SPM permanently. In dynamic allocation scheme,

Steinke et al. [17] used a function call to copy a set of instructions and data into SPM dynamically. The

candidates that will get into SPM are selected by analyzing the source code and solving an ILP problem.

Egger et al. [18] proposed a dynamic allocation technique that just requires object code and binary code.

Furthermore, the code and data that will be allocated into SPM is selected by an ILP solver. Then, an

exception mechanism is used to copy there codes into the SPM.

The SPM is power-efficient since it has only one single-bank memory without any other hardware

control logics. The hit rate is guaranteed by the compiler. This scheme moves the on-chip power

consumption to the host compiling system. The DR cache with one single-bank data memory is also

power-efficient. However, the high hit rate in the DR cache is guaranteed by the trace-based storing

scheme that is a pure hardware scheme.

Dynamic Relocation Cache for Instruction Delivery in Low Power Processor

62

2.2 Filter Cache

Kin et al. [19] proposed the filter cache and indicated its low-power advantage in 1997. Essentially, the

filter cache is a small level-zero cache that consumes less power than the level-one cache. The power

consumption can be reduced by increasing the hit rate of this level-zero cache. In order to increase the hit

rate, Bellas et al. [20] stored the loop code into the filter cache with the support of compiler. Janapsatya

et al. [7] used an efficient replacement policy to keep the frequently accessed instruction in the filter

cache. Furthermore, because this extra cache architecture induces the extra delay when a miss happens, a

prediction scheme [21] was proposed to mitigate this performance degradation.

In the DR cache and filter cache, the key idea of power reduction is almost same: Using a small

memory as the instruction source. However, the scheme is entirely different. The DR cache uses dynamic

address-mapping scheme, while the filter cache still uses the static address-mapping scheme. In addition,

the DR cache provides the low-power feature without inducing extra clock cycle when a miss happens.

2.3 Reuse Cache

The reuse cache was proposed for storing recycling instructions. It can be used in instruction or trace

granularity. In the instruction granularity, Sodani et al. [22] proposed a scheme to reuse repeated

computation results, and investigated the possibility of instruction reuse. In the trace granularity, Charles

et al. [23] proposed a trace-reused scheme for improving the ILP (instruction level parallel) of

superscalar processor. In embedded processor, Tsai et al. [1] proposed a trace reuse cache to be an

alternative source for instruction delivery. The retired instructions from the pipeline back-end of

processor will be reused for the prediction purpose.

The DR cache also stores the trace of the instructions. However, it has different logic location

compared with the reuse cache. Normally, the reuse cache works as an assistant structure. The set-

associative cache is still available for the most instruction delivery. However, the DR cache is proposed

to instead of the set-associative cache, being the primary instruction source. Furthermore, the trace

address in DR cache is calculated by an address-mapping module, but not the lookup table that has been

used in [1].

2.4 Trace Cache

In superscalar processors, the fetch bandwidth is a bottleneck for the high runtime performance, so

Rotenberg et al. [9] proposed a trace cache to break this bottleneck. The trace cache works as an assistant

structure to provide the continuous basic blocks. The key idea of the trace cache is rearranging the

instructions in execution sequence instead of the static layout provided by compiler. For reducing power

consumption, Hu et al. [24] proposed a prediction scheme to predict the fetch direction.

The key idea of trace cache that rearranges the instructions in execution sequence inspired this work.

Although the DR cache and the trace cache have almost same trace-based scheme, they are different in

the basic usage. The DR cache is proposed for the low power processor, but the trace cache was proposed

for superscalar processor to increase the fetch bandwidth. Furthermore, the DR cache can replace the set-

associative cache as a primary instruction source, but the trace cache is used as an assistant structure to

provide the instruction in some special condition.

3 Dynamic Relocation Cache

A dynamic relocation cache is proposed as a low-power instruction source for replacing the set-

associative cache in any circumstances. The DR cache contains the following three modules: (1) the

controller, (2) the data memory, and (3) the address-mapping module. There are two addresses for

instructions -- the compiler address assigned by the compiler and the trace address assigned by an

address-mapping module according to the instruction execution sequence. To provide a high hit rate, the

trace of instructions is stored in the data memory. On the other hand, to capture the trace, instructions

with the compiler address are reassigned a trace address by an address-mapping module. This trace

address is further used in the logic operations of the address-mapping module. In this section, we

Journal of Computers Vol. 28, No. 3, 2017

63

describe the architecture of the DR cache, the dynamic relocation scheme, and the address-mapping

module.

3.1 Architecture

The DR cache, which is proposed as the first-level memory for instruction delivery, has the same

behavior and interface as a traditional set-associative cache. The block diagram of the DR cache is

illustrated in Fig. 1. The DR cache consists of three parts: the controller, the data memory, and the

address-mapping module. The controller coordinates the operations of all modules in the DR cache, and

communicates with the main memory and the instruction pipeline. The data memory, which is used to

store instructions, is identical to the one in the set-associative cache. The address-mapping module,

which is used to store the tag address within the compiler addresses of instructions, has a similar function

with the tag memory of the set-associative cache.

Fig. 1. Architecture of dynamic relocation cache for instruction delivery

After forwarding a compiler address to the DR cache, the instruction pipeline receives an instruction

from the DR cache (or the main memory) depending on the hit signal that is provided by the address-

mapping module. On the other hand, the main memory receives a compiler address from the DR cache

only when a cache miss occurs. Then the main memory provides the corresponding instruction to the DR

cache and the instruction pipeline separately. Furthermore, the address-mapping module maps the

compiler address to the trace address, and provides a hit signal.

3.2 Dynamic Relocation Scheme

The Dynamic relocation in the DR cache is an address-mapping scheme. The address-mapping scheme

defines how the instructions are stored in the data memory. The instructions have the following two

addresses: compiler address and trace address. In the set-associative cache, the physical location of

instructions in data memory is specified directly by the low n-bit of this compiler address. Since the

compiler address of instructions is assigned by the compiler and is unchangeable, the address-mapping

scheme of the set-associative cache is static. One instruction has only a few specific locations to be stored,

one in main memory and the ‘n’ others in the data memory of n-way set-associative cache.

This static address-mapping scheme has the advantage of easy implementation, but it also can cause

the collision-induced miss [14] that is illustrated in Fig. 2. As shown in Fig. 2, the instruction “A” with

compiler address 0x0100 and the instruction ‘F’ with compiler address 0x1100 both should be stored in

the physical location of cache data memory with address 0x100 inducing the cache miss if this cache has

Dynamic Relocation Cache for Instruction Delivery in Low Power Processor

64

only one-way data memory. However, in multi-way set-associative architecture (usually implemented by

multi-bank tag and data memory) these collisions can be avoided effectively because the “A” and “F” can

be stored in a different bank of data memory.

0X0100

0X0104

0X0108

0X010B

0X1100

0X1104

0X1108

0X110B

Instruction A

Instruction C

Instruction E

Instruction G

Instruction F

Instruction B

Instruction D

Instruction H

Instruction A

Instruction C

Instruction E Instruction D

Instruction F

Instruction H

Instruction B

Instruction G

Static

mapping

0X100

0X104

0X108

0X10B

Main Memory

Cache

Fig. 2. Static address-mapping scheme in traditional set-associative cache

On the other hand, the DR cache does not use the compiler address to specify the physical location of

instructions in the data memory. Instead, the dynamic relocation scheme is used to assign a new trace

address for the incoming instruction according to the instruction execution sequence. This trace address

is completely different and unrelated to the compiler address, and can be reassigned according to the

instruction execution sequence. Because the trace address of instruction can be dynamically changed and

one instruction can be stored in any location of the data memory of the DR cache, the address-mapping

scheme in the DR cache is dynamic. Fig. 3 shows one example of the dynamic relocation scheme. As

shown in Fig. 3, the instruction “A” with compiler address 0x0100 is stored in the physical location with

trace address 0x308. Then the other instructions are stored in the data memory in the execution sequence.

Furthermore, if necessary, the instruction “A” also can be reassigned to another location in the run time.

With this dynamic relocation scheme, the collisions that happen in a one-way set-associative cache are

avoided effectively.

0X0100

0X0104

0X0108

0X010B

0X1100

0X1104

0X1108

0X110B

Instruction A

Instruction C

Instruction E

Instruction G

Instruction F

Instruction B

Instruction D

Instruction H

Dynamic

mapping

Main memory Dynamic relocation cache

0X308

0X30B

0X310

0X314

0X318

0X31B

0X320

0X324

Instruction A

Instruction B

Instruction C

Instruction D

Instruction E

Instruction F

Instruction G

Instruction H

Fig. 3. Dynamic relocation scheme in DR cache

Journal of Computers Vol. 28, No. 3, 2017

65

3.3 The Address Mapping Module

The address-mapping module has the following four major functions: (1) mapping the compiler address

into the trace address if a corresponding instruction is already stored in the data memory, (2) providing

hit signal, (3) assigning a new trace address for an incoming instruction when a cache miss happens, and

(4) storing the tag address of the compiler address. As shown in Fig. 4, the requested compiler address

launched by the instruction pipeline is divided into two parts: the line address and the tag address. The

line address is the low five bits that directly input into the data memory. The remaining bits are input into

the address-mapping module as the tag address, and then are mapped into a line number. The trace

address is further delivered to the data memory for memory reading in a cache hit or writing in a cache

miss.

Fig. 4. Request scheme of DR cache

To map the compiler address into the trace address, a set of registers called location register are

proposed. The location register is used to store the tag address of instructions. Moreover, the tag address

is stored in a bit grain. Specifically, two n-bit location registers are used to store one bit of the tag address.

When this bit of the tag address is zero, it is stored in the location register 0. On the other hand, when this

bit of the tag address is one, it is stored in the location register 1. These two location registers for bit 0 of

the tag address are illustrated in Fig. 5. Furthermore, every bit of the location register represents a line of

the data memory. Bit zero represents line zero. Bit n represents line n. Therefore, the width of the

location register is decided by the size of the data memory.

Fig. 5. Location registers

With the location registers, the compiler address can be easily mapped into the trace address. To show

Dynamic Relocation Cache for Instruction Delivery in Low Power Processor

66

how the location registers work, a simple example with the 4-bit tag address and a 4-line cache memory

is illustrated in Fig. 6, where LR30 stores the ‘0’ value of bit 3 within the tag address and LR31 stores the

value ‘1’ of bit 3 within the tag address. The instructions with tag addresses “1111”, “0000”, “1010” and

“0101” are stored in line “00”, “01”, “10” and “11” of the data memory. The tag addresses of these

instructions are already stored in the corresponding location registers.

Fig. 6. The location registers example with 4-bit tag address and a 4-line cache memory. The instructions

with tag address “1111”, “0000”, “1010” and “0101” have been stored in line ‘0’, ‘1’, ‘2’ and ‘3’ of the

data memory

To map the tag address into the line number, there are two simple steps to do. First, every bit of the

requested tag address is used to select one of the two location registers separately. Second, all selected

location registers will AND together to get the line number. As shown in Fig. 6, if the requested tag

address is “1100”, the AND operation of LR31, LR21, LR10 and LR00 will result in “0000”, which

means there are no instructions with a “1100” tag address that have been stored in the DR cache. If the

requested tag address is “1010”, the AND operation of LR31, LR20, LR11 and LR00 will result in

“0100”, which means the instruction with the “1010” tag address has been stored in the line “10” of the

DR cache. The line number “10” is further obtained by encoding the “0100”.

The microarchitecture of the address-mapping module is illustrated in Fig. 7. There are two processes

in the address-mapping module: mapping and updating.

Fig. 7. Microarchitecture of address mapping module

Journal of Computers Vol. 28, No. 3, 2017

67

Mapping. For every request from the instruction pipeline, the mapping process is executed to map the

requested compiler address into the trace address. This mapping process has been described in the

previous paragraphs. The detail hardware architecture is illustrated in Fig. 7. Furthermore, the hit signal

is calculated by the OR operation between every bit of the mapping result. The hit signal is zero when a

cache miss occurs. The hit signal is one when a cache hit occurs. If the hit signal is positive, the

requested instruction will be loaded from the data memory according to the trace address. If the hit signal

is negative, the controller will request the main memory with the compiler address, and activate the

updating process of the address-mapping module.

Updating. The updating process has two functions: (1) assigning a new trace address for the

instruction from main memory and (2) storing the tag address of this instruction. Because the instructions

are stored in an execution sequence, we use a store pointer, which is always added one, to assign a new

trace address for the incoming instruction. Unfortunately, the overflow happens if the data memory is full.

Some old instructions must be replaced. The trace-based storing scheme with overflow situation is

illustrated in Fig. 8. Because the store pointer always points to the next storage location, the oldest

instruction is always stored at the next location of the newest instruction. Therefore, we let the store

pointer to be the replacement pointer. This replacement scheme could be called First-In-First-Replace

(FIFR). The FIFR replacement strategy makes sure the instruction is always stored in execution sequence

even after the data memory is full, maintaining the trace continuity. Therefore, The FIFR replacement

strategy is identical to our trace-based storing scheme. Furthermore, The FIFR replacement strategy is

efficient if the data memory is big enough to store a frequently executed block, such as a “for loop”. This

will be further discussed in section 6.

Fig. 8. Trace-based storing scheme with overflow situation

After a new trace address is assigned for the incoming instruction, the corresponding tag address must

be stored in location registers. As shown in Fig. 7, the replacement pointer, which is updated according to

the FIFR replacement strategy, is decoded to be an enable signal. This enable signal masks most bits of

the location registers except the one specified by the replacement pointer. Then, the tag address is stored

in the location registers by following rule: the LRx1 will be set to “1” and the LRx0 to “0” if the

corresponding bit of tag address is “1”, and the LRx1 will be set to “0” and the LRx0 to “1” if the

corresponding bit of tag address is “0”. Finally, the line number could be the encoded mapping result

with positive hit signal or the replacement/store pointer with negative hit signal.

4 Power Consumption Analysis

In this paper, the direct-mapped cache, 2-way set-associative cache and 4-way set-associative cache are

introduced for the purpose of comparison. The block diagram of the set-associative cache is illustrated in

Fig. 9. With different micro-architecture, the power consumption, runtime performance and area of

Dynamic Relocation Cache for Instruction Delivery in Low Power Processor

68

caches could vary significantly. To guarantee runtime performance, the baseline of cache

microarchitecture in this paper is the one clock loading, which makes sure the instruction pipeline can

acquire one instruction from cache in one clock. With this baseline constraint, the tag and data memory in

set-associative cache must be accessed in one clock, and the mapping process in the address-mapping

module of DR cache must be implemented by pure combinational logic.

Fig. 9. Microarchitecture of set-associative cache

The sequential accessing, tag first and then data, can reduce the power consumption for both the set-

associative cache and the DR cache, eliminating the unnecessary accesses to the data memory. The DR

cache can use this scheme without any penalty because the address-mapping module is already sequential

with the data memory. Unfortunately, this sequential scheme in set-associative cache must pay the

latency penalty, which may be unacceptable in most circumstance because of the above-mentioned

baseline constraint. For fairness, we do not adopt this sequential scheme neither for the DR cache nor for

the set-associative caches. Furthermore, the tag and data memory of multi-way set-associative cache is

implemented as multi-bank memory because of the limitation of the SRAM IP library.

The DR cache is proposed as the power-efficient instruction source. The low-power features of the DR

cache are discussed as follow. As shown in Fig. 1, the DR cache uses one single-bank data memory to

store instructions, and provides high hit rate by the trace-based storing scheme. On the other hand, the n-

way set-associative cache uses n-bank data memory to store instructions. The high hit rate is guaranteed

by the multiple locations where one instruction can store. With high hit rate, the power consumption is

extremely reduced because of the rarely access to the main memory. Furthermore, the DR cache

consumes less power than multi-way set-associative cache because of the single-bank data memory.

The DR cache uses address-mapping module to map the compiler address into the trace address and

store this compiler address. The address-mapping module has two processes, the mapping and updating.

The mapping process, which consists of some simple “selection” and “AND” operations, is executed for

every request. The updating process aiming to update the location registers is executed only when a

cache miss happens. Therefore, to optimize the power of the address-mapping module, we use clock-

gating technique to freeze the clock of location registers when a cache hit happen. Because the cache hit

rate is very high in real applications, the updating process is rarely executed in most circumstances.

Moreover, the mapping process consumes few power because the “AND”, “OR” and “selection”

operations are very simple. Hence, the clock-gating technique significantly reduces the power

consumption of the address-mapping module, which will be confirmed in section 6. On the other hand,

the n-way set-associative cache uses the n-bank tag memory to store the mapping information. The

address-mapping module with clock gating technique should consume less power than the multi-bank tag

memory.

In brief, the DR cache is power-efficient because of the low- power address-mapping module, the high

hit rate, and the single-bank data memory.

In brief, the DR cache is power-efficient because of the low- power address-mapping module, the high

hit rate, and the single-bank data memory.

Journal of Computers Vol. 28, No. 3, 2017

69

5 Evaluation Methodology

We built an RTL (register transfer level) hardware model based on the LEON3 processor to evaluate the

DR cache. This hardware model including DR cache or set-associative cache was simulated by using

Mentor Modelsim. In the simulation process, some hardware monitors embedded in the cache and

instruction pipeline are used to collect the performance data. Finally, Synopsys Design Compiler was

used to estimate the power consumption of the caches through its power estimation engine [16]. In this

section, we describe the evaluation flow, the benchmark applications and the performance metrics.

5.1 Evaluation Flow

We used a standard ASIC design flow to evaluate the power consumption and runtime performance,

which is illustrated in Fig. 10. Firstly, Mentor Modelsim was used to simulate our hardware model

through running ten embedded applications. Then the runtime performance including IPC (instruction per

clock) and cache hit rate is acquired through the hardware monitors. Since the switch activity of all input

ports of the hardware model is necessary for power estimation [16], we dumped the VCD (Value Change

Dump) information during the simulation period and used the vcd2saif utility in Synopsys Design

Compiler to generate the desired switch activity information.

Modelsim

Design

Compiler
VCD

• IPC

• Cache Hit Rate

• Power

consumption

• Area

Fig. 10. Evaluation flow for runtime and power performance

We used a commercial 180 nm general technology library under worst-case conditions. To estimate

the power consumption of every module, the auto ungroup function of the synthesis EDA tool was shut

down. With the switch activity that reflects the switch rate of every signal, Synopsys Design Compiler

estimates the internal and dynamic power of caches. Finally, the area of caches was further estimated by

this EDA tool.

5.2 Benchmark Programs

Because the simulation based on real hardware model is very slow, we used ten appropriate embedded

programs to evaluate the IPC, hit rate, area and power consumption under reasonable time constraint.

These programs are listed in Table 1, where the Dhrystone, Whestone and Stanford are standard

benchmark program, and the rests are all come from the MiBench program [25]. Furthermore, all

evaluation results are averaged across all these benchmark programs.

Table 1. Selected embedded Programs

Programs Code size (KB) Category

Dhrystone 58 Standard

Whestone 175 Standard

Stanford 163 Standard

Basicmath 86.9 Automotive

Bitcount 89.3 Automotive

Qsort 110 Automotive

FFT 147 Telecomm

Sha 238 Security

Stringsearch 70.9 Office

Dijkstra_direct 67.1 Network

Dynamic Relocation Cache for Instruction Delivery in Low Power Processor

70

5.3 Performance Metric

A set of hardware monitors, which record the clock number, instruction number and cache miss number,

was used to measure IPC and hit rate. These performance metrics is further calculated by Equations (1)

and (2).

 instruction number
IPC

clock number
= (1)

cache hit number
cache hit rate

instruction number
= (2)

The instruction number, clock number and cache miss number were measured by three 64-bit counters

that were activated by different conditions. The clock counter, which records the elapsed clock cycles,

was activated by system clock at all time. The instruction counter was activated by system clock only

when the pipeline moved forward normally. For convenience and accuracy, the cache miss counter was

used, and was activated by system clock only when the main memory feedback a notification. Then we

use the instruction number minus the cache miss number to get the cache hit number.

The power consumption of caches was estimated by Synopsys Design Compiler. In addition, the

power consumption of the main memory was estimated by Eq. (3), where the “IPC x 108” represents the

executed instructions in one second (the frequency is 100 MHZ). We assume the main memory was

dedicated to instructions, and thus was activated only when a cache miss happens. We assume the main

memory is the 64 MB Samsung K4X51163PC SDRAM [26]. The refresh power is ignored for

simplification. The read energy
read

E is 11.747 nJ according to the [26]. Finally, the total power

consumption of the memory subsystem is estimated by Eq. (4), where the
cache
P is estimated by the power

estimation engine of Synopsys Design Compiler.

8
10

main read
P E IPC cache miss rate= × × × (3)

total cache main
P P P= + (4)

6 Evaluation Result and Discussion

We compare the DR cache with the direct-mapped cache, 2-way set-associative cache and 4-way set-

associative cache in runtime performance and power consumption including the power with same cache

size, the smallest power, and the power with comparable area. Finally, the reason of the power saving is

discussed.

6.1 IPC and Hit Rate

The runtime performance is evaluated in two aspects: the average hit rate and IPC. The hit rate reflects

the performance of a cache system. On the other hand, the IPC, which could be influenced by many

factors including cache architecture, load/store blocking, and exception, reflects the performance of a

processor. The computational method of these performance metrics is described in Equations (1) and (2).

Because the clock and instruction numbers of different programs have large variations, their arithmetic

mean is not proper. Instead, we use Equations (5) and (6) to calculate the average IPC and cache hit rate

of the ten programs. The 2-way and 4-way set-associative cache use LRU replacement strategy. The

average hit rate and IPC is illustrated in Fig. 11 and Fig. 12.

10

1

10

1

()

()

i

i

average

i

i

instruction number

IPC

clock number

=

=

=

∑

∑
 (5)

Journal of Computers Vol. 28, No. 3, 2017

71

10

1

. 10

1

(.)

()

(.)

i

i

aver

i

i

icache hit num

cache hit rate

instruction num

=

=

=

∑

∑
 (6)

A
v
e

ra
g

e
 H

it
 R

a
te

D
ir
e
c
t

2
-w

a
y

4
-w

a
y

D
R

D
ir
e
c
t

2
-w

a
y

4
-w

a
y

D
R

D
ir
e
c
t

2
-w

a
y

4
-w

a
y

D
R

D
ir
e
c
t

2
-w

a
y

4
-w

a
y

D
R

D
ir
e
c
t

2
-w

a
y

4
-w

a
y

D
R

Fig. 11. Average cache hit rate

Fig. 12. Average IPC

As shown in Fig. 11, when the cache size is 1-kB, the DR cache has lower cache hit rate than the set-

associative cache and higher cache hit rate than the direct-mapped cache. The reason of this reduction of

hit rate is discussed as follow. In the DR cache, the FIFR replacement strategy replaces the oldest

instruction, which makes the data memory looks like a circular ring. An instruction will be replaced if the

store pointer travels back to it again. This replacement strategy is designed with the consideration of

hardware simplicity and trace continuity. However, if the data memory is too small to hold a frequently

executed block, such as a “for loop”, the oldest instructions that will be replaced could be the one that

will be frequently used in the near future. Hence, a small data memory in the DR cache could cause the

inefficient replacement, which decreases the cache hit rate. However, the multi-way set-associative cache

avoids this inefficient replacement by the LRU replacement strategy.

When the cache size is higher than 2-KB, the DR cache has higher cache hit rate than other caches.

Therefore, in our application environment, we infer that the 1-KB data memory is not enough to store the

frequently executed block, but the 2-KB data memory is. With the increasing of the cache size, the hit

rate finally approaches to some value that indicates the limitation of the cache architecture. The DR cache

Dynamic Relocation Cache for Instruction Delivery in Low Power Processor

72

has almost same hit rate with the 4-way set-associative cache. With the same single-bank data memory,

the DR cache has higher cache hit rate than the direct-mapped cache.

Furthermore, the cache hit rate is sensitive to the application environment. As shown in Fig. 11, the

cache hit rate of the 4-way set-associative cache is comparable to that of the 2-way set-associative cache.

This means that the 2-way set-associative cache is enough to deal with the collisions (illustrated in Fig. 2)

in our application environment.

As shown in Fig. 12, the trends for the average IPC is similar to those for the hit rate. In general,

higher hit rate leads to higher IPC because the cache access that consumes one clock is much faster than

the main memory access that consumes many clocks. However, the DR cache has lower IPC than the 4-

way set-associative cache when the cache size is 2-KB. The reason of this reduction of IPC is discussed

as follows. In the DR cache, the cache line is managed as a unity. All contents of the line are update

together at a time when a miss happens. Hence, some unused instructions, which are located before the

requiring one, are fetched into the cache. This consumes extra clocks. Furthermore, the pre-fetch

technique is also available in the set-associative caches, but only the instructions that are located after the

requiring one are loaded. Superficially, the pre-fetch technique is good for increasing cache hit rate.

However, from the evaluation results, we can infer that fetching the instructions, located before the

requiring instruction, is inefficient in our test environment.

With the increasing of the cache size, the hit rate approaches to one, and the IPC approaches to the

maximum value that is decided by the cache architecture. Therefore, increasing the cache size is a

straightforward method to improve the runtime performance if we do not consider the energy

consumption.

In brief, when the cache size is higher than 2-KB, our DR cache has almost the same runtime

performance as the 4-way set-associative cache.

6.2 Area and Power Consumption

The area with gate-level unit is illustrated in Fig. 13. As shown in Fig. 13, the DR cache occupies less

area than the 4-way set-associative cache when the cache size is 1-kB. However, with the increasing of

the cache size, the area of the DR cache increases much faster than that of other caches. Specifically,

when the cache size is 16-KB, the DR cache occupies 2.6 times area compared to the 4-way set-

associative cache. The reason of this high-speed increasing of area is described as follows. In the address-

mapping module of the DR cache, the location registers, which is used to store the tag address, is

implemented by flip-flops. Furthermore, two registers are used to store one bit of the tag address. On the

other hand, the tag memory in the set-associative cache is normally implemented by SRAM. From the

density point of view, SRAM is better than register. Therefore, the area increasing of the DR cache is

faster than that of the set-associative caches.

Fig. 13. Area with gate-level unit

The normalized power consumption is shown in Fig. 14, where the 4-way set-associative cache is the

Journal of Computers Vol. 28, No. 3, 2017

73

reference case. As shown in Fig. 14, the DR cache has the smallest power in all cache size configurations.

Specifically, when the cache size is 4-KB, the DR cache has 83%, 69% and 64% reduction in power

consumption compared to the 4-way set-associative cache, the 2-way set-associative cache and the direct-

mapped cache.

Fig. 14. Normalized power consumption

The 4-way set-associative cache has larger power than the 2-way set-associative and direct-mapped

cache, although they have same cache size. The reason of this is described as follow. As described in [1],

the energy consumption of SRAM memory has a litter variation when the memory size changes because

of its inherent circuit structure. For example, the access energy of 0.5-KB memory is 0.196 nJ, and the

access energy of 2-KB memory is only 0.203 nJ. If the 4-way set-associative, 2-way set-associative and

direct-mapped caches have same 2-KB cache size, the access to the data memory of the 4-way set-

associative cache consumes maximum power because the data memory is consisted of four 0.5-KB

memories. Similarly, the direct-mapped cache consumes minimum power because its data memory is

consisted of one 2-KB memory.

We show the total power consumption of the direct-mapped cache, the 2-way set-associative cache,

the 4-way set-associative cache, and the DR cache in Fig. 15. The power curves have the parabola-liked

shape. The reason of this is described as follow. Firstly, with the increasing of the cache size, the cache

hit rate increases and finally approached to one. Hence, the reduction in the access power to the off-chip

main memory contributes to the reduction part of the power curve. Secondly, with the increasing of the

cache size, the power consumption of the on-chip cache increases slowly. This contributes to the

increasing part of the power curve. Hence, for a specific application environment, there is a best suitable

cache size for a cache in power consumption.

Fig. 15. Total power consumption when the cache size increases from 1 KB to 16 KB

Dynamic Relocation Cache for Instruction Delivery in Low Power Processor

74

As shown in Fig. 15, the power curve of caches has a lowest point. We compare the lowest limits of

power consumption, and thus find out the best cache architecture in power consumption. According to

Fig 15, we choose the 8-KB direct-mapped cache, the 8-KB 2-way set-associative cache, the 8-KB 4-way

set-associative cache, and the 4-KB DR cache for this comparison. The smallest power is shown in Fig.

16, where we divide the power into two parts, the on-chip cache and the off-chip main memory. As

shown in Fig. 16, the DR cache consumes less power than other caches, which implied that the DR cache

is more efficient than other caches in power consumption. Furthermore, when caches reach their lowest

limits of power consumption, the power consumption of the SDRAM memory is very small. Hence, to

optimize the power of the cache system, choosing a proper cache size is very important.

Fig. 16. Comparison of lowest limits of power consumption

Area is normally considered as the secondary design object since it is always sufficient under the

advanced semiconductor technology. However, in some special condition, the area becomes important

and needs to be carefully considered. Hence, we compare the four caches with comparable area.

According to Fig. 13, we choose the 8-KB direct-mapped cache, the 8-KB 2-way set-associative cache,

the 4-KB 4-way set-associative cache, and the 2-KB DR cache for this comparison. The power

consumption with comparable area is shown in Fig. 17. Furthermore, the normalized area of these four

caches is shown in Fig. 18, where we choose the smaller DR cache to guarantee the fairness. Again, our

DR cache consumes less power than other caches. As mentioned before, when the cache size is higher

than 2-KB, the DR cache has almost same runtime performance with the 4-way set-associative cache.

Furthermore, with comparable area, the DR cache has approximate 83% less power consumption

compared to the 4-way set-associative cache.

Fig. 17. Comparison of power consumption of all cashes with comparable areas

Journal of Computers Vol. 28, No. 3, 2017

75

Fig. 18. Normalized area of four specific caches that have comparable area

6.3 The Source of Power Saving

The DR cache with single-bank data memory and address mapping module is power-efficient. With 4-

KB cache size, it provides same performance in hit rate and 83% improvement in power consumption

compared to the 4-way set-associative cache. The source of this power saving is discussed in this section.

The dynamic address mapping is a key technique for the trace-based storing scheme. As mentioned in

Section 4, we use the clock-gating technique to optimize the power of the address-mapping module. To

estimate the effect of the clock gating, an original design without clock gating is implemented. The

power consumption of these two designs is illustrated in Fig. 19. Without the clock gating, the power

consumption of the original address-mapping module becomes very large even when the cache size is

only 2-KB. However, with the clock gating, the power consumption of the address-mapping module is

dramatically reduced. Therefore, the clock gating makes the dynamic address-mapping scheme practical.

We compare the address-mapping module of the DR cache with the tag memory of the set-associative

caches in power consumption. The evaluation results are illustrated in Fig. 20, where they are normalized

by making the 4-way set-associative cache as the reference case. As shown in Fig. 20, the address-

mapping module has a 99% and 96% less power consumption compared to the 4-way set-associative

with 1-KB and 16-KB cache size. Therefore, the total power consumption of the DR cache is mostly

contributed by the single-bank data memory.

Fig. 19. Power consumption of the address-mapping module, comparing the original and low power

design

Dynamic Relocation Cache for Instruction Delivery in Low Power Processor

76

Fig. 20. Normalized power consumption for the tag memory in traditional cache and the

address-mapping module in DR cache. (AMM: Address-mapping Module)

The power consumption of memory subsystem is primarily contributed by the main memory and the

on-chip cache with controller, data memory, and tag memory (address mapping module). The power

breakdown of the memory subsystem with 4-kB cache is illustrated in Fig. 21. It is clear that the power

saving of the DR cache is mostly come from three aspects: (1) the high hit rate, (2) the low-power

address-mapping module, and (2) the single-bank data memory. The power consumption of the SDRAM

memory in the memory subsystem with DR cache is lowest because of its highest cache hit rate. The

address-mapping module consumes much less power than other tag memories because of the efficient

clock-gating technique. Moreover, the single-bank data memory in the DR cache consumes less power

than the multi-bank data memory in the multi-way set-associative cache, because of the circuit structure

of SRAM.

In brief, the DR cache is power-efficient because of the high hit rate, the low-power address-mapping

module and the single-bank data memory. This have been discussed in Section 4, and further verified in

this section.

Fig. 21. Power breakdown

7 Conclusion

In this paper, the dynamic relocation cache is presented for low-power processor to replace the set-

associative instruction cache. The DR cache with the features of low power and high hit rate uses a trace-

based scheme to store the instructions. This trace-based scheme assigns a new trace address to the

incoming instruction according to the execution sequence. For implementing this trace-based storing

Journal of Computers Vol. 28, No. 3, 2017

77

scheme, the address- mapping module is used to store the compiler address and map the compiler address

to the trace address. To deal with the overflow situation of the data memory, the First-In-First-Replace

strategy is used to guarantee that the instruction is always stored in an execution sequence even after the

data memory is full, maintaining the trace continuity. Furthermore, a clock-gating technique is used to

improve the power of the address-mapping module.

We evaluate the proposed DR cache through a RTL hardware model. To insure the accuracy, a

standard ASIC design flow is used to evaluate the power consumption and runtime performance. The

evaluation results show that, the 4-KB DR cache has 83% less power consumption and same hit rate

compared to the 4-KB 4-way set-associative cache. Furthermore, the DR cache also surpasses other

caches in the power with comparable area and the smallest power.

The DR cache with the advantages of high hit rate and low power is very suitable for embedded

processors, because the cache size of embedded processors is normally small. The DR cache also could

be used in desktop processors or multiprocessors, if the area cost is tolerable or a small DR cache can

hold the frequently executed block in their application environment. However, the DR cache, which is

proposed for instruction, may not be suitable for data, because the miss rate of data cache is normally

high. Higher miss rate causes more frequent updating of the location registers in the address-mapping

module. This causes the increasing of power consumption.

The multi-way set-associative cache has been widely adopted because of its good runtime performance.

However, if the power consumption is also considered, the multi-way set-associative cache may not be a

good choice. The DR cache has the features of high hit rate and low power. Hence, it could be a

preferable choice in low-power processors under some area constraints.

Acknowledgements

The authors would also like to thank their laboratory team member’s assistance. This work was supported

by the financial aid of the National Science-technology Support Plan Projects “Development and

application demonstration of temperature monitoring networking platform of third party pharmaceutical

cold chain logistics” under grant No. 2014BAH23F05, and the National Natural Science Foundation of

China under grant No. 61274133.

References

[1] B. Egger, S. Kim, C. Jang, J. Lee, S. L. Min, H. Shin, Scratchpad memory management techniques for code in embedded

systems without an MMU, IEEE Trans. Computers 59(8)(2010) 1047-1062.

[2] L. Bloom, M. Cohen, S. Porter, Considerations in the design of a computer with high logic-to-memory speed ration, in: Proc.

Gigacycle Computing Systems, 1962.

[3] J. S. Liptay, Structural aspects of the system/360 model 85, part II: The Cache, IBM Systems Journal 7(1)(1968) 15-21.

[4] ARM, The ARM Cortex-A9 processors. <http://www.arm.com>, 2009.

[5] A. J. Smith, Cache memories, ACM Computing Surveys 14(3)(1982) 473-530.

[6] J. Kin, M. Gupta, Filtering memory references to increase energy efficiency, IEEE Trans. Computers 49(1)(2000) 1-15.

[7] A. Janapsatya, S. Parameswaran, A. Ignjatovic, HitME: Low power hit memory buffer for embedded systems, in: Proc. 2009

Asia and South Pacific Design Automation Conference, 2009.

[8] C. Yang, A. Orailoglu, Power-efficient instruction delivery through trace reuse, in: Proc. 15th International Conference,

2006.

[9] E. Rotenberg, S. Bennett, J.E. Smith, A trace cache microarchitecture and evaluation, IEEE Trans. Computers 48(2)(1999)

111-120.

[10] Y.-Y. Tsai, C.-H. Chen, Energy-efficient trace reuse cache for embedded processors, IEEE Trans. Very Large Scale

Dynamic Relocation Cache for Instruction Delivery in Low Power Processor

78

Integration (VLSI) Systems 19(9)(2011) 1681-1694.

[11] O. Avissar, R. Barua, An optimal memory allocation scheme for scratchpad-based embedded systems, IEEE Trans.

Embedded Computing Systems 1(1)(2002) 6-26.

[12] B. Egger, J. Lee, H. Shin, Dynamic scratchpad memory management for code in portable systems with an MMU, ACM

Trans. Embedded Computing Systems 7(2)(2008) 1-38.

[13] H.-Y. Luo, S.-J. Wei, D.-H. Guo, The dynamic relocation cache and its energy consumption model for low power processor,

in: Proc. 2011 IEEE International Conference on Anti-Counterfeiting, Security and Identification (ASID), 2011.

[14] A. Agarwal, J. Hennessy, M. Horowitz, An analytical cache model, ACM Trans. Computer Systems 7(2)(1989) 184-215.

[15] Aeroflex Gaisler, GRLIB IP core user’s manual, <http://www. gaisler.com>. 2010.

[16] Synopsys, Design compiler user guide. <http://www.syno- psys.com>, 2008.

[17] S. Steinke, N. Grunwald, L. Wehmeyer, R. Banakar, M. Balakrishnan, P. Marwedel, Reducing energy consumption by

dynamic copying of instructions onto onchip memory, in: Proc. 15th Int’l Symp. System Synthesis (ISSS ’02), 2002.

[18] B. Egger, J. Lee, H. Shin, Dynamic scratchpad memory management for code in portable systems with an MMU, ACM

Trans. Embedded Computing Systems 7(2)(2008) 1-38.

[19] J. Kin, M. Gupta, W.H. Magione-Simth, Filter cache: an energy efficient memory structure, in: Proc. 30th Int. Symp.

Microarch., 1997.

[20] N. Bellas, I. Hajj, C. Polychronopoulos, G. Stamoulis, Energy and performance improvements in microprocessor design

using a loop cache, in: Proc. Int. Conf. Comput. Des., 1999.

[21] W. Tang, R. Gupta, A. Nicolau, Design of a predictive filter cache for energy savings in high performance processor

architectures, in: Proc. Int. Conf. Comput. Des., 2001.

[22] A. Sodani, G.S. Sohi, Dynamic instruction reuse, ACM SIGARCH Computer Architecture News 25(2)(1997) 194-205.

[23] D. Charles, A. R. Hurson, N. Vijaykrishnan, Improving ILP with instruction-reuse cache hierarchy, in: Proc. 5th Int. Conf.

Algorithms Arch. for Parallel Process, 2002.

[24] J.S. Hu, N. Vijaykrishnan, M.J. Irwin, M. Kandemir, Using dynamic branch behavior for power-efficient instruction fetch,

in: Proc. IEEE Comput. Soc. Annu. Symp. VLSI, 2003.

[25] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge, R.B. Brown, MiBench: A free, commercially

representative embedded benchmark suite, in: Proc. IEEE 4th Annual Workshop Workload Characterization, 2001.

[26] Samsung Semiconductor, K4X51163PC Mobile DDR SDRAM. <http://www.samsung.com/products/semiconductor

/MobileSDRAM/>, 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

