
Journal of Computers Vol. 28, No. 3, 2017, pp. 93-107

doi:10.3966/199115592017062803008

93

A Hybrid Genetic Algorithm Based on Variable Grouping

and Uniform Design for Global Optimization

Xuyan Liu, Yuping Wang, and Haiyan Liu

School of Computer Science and Technology, Xidian University

Xi’an, 710071, Shaanxi, China

lucyxu107@163.com, ywang@xidian.edu.cn, hyliu83@126.com

Received 29 May 2016; Revised 05 December 2016; Accepted 05 December 2016

Abstract. In this paper, we propose a hybrid genetic algorithm based on variable grouping and

uniform design for global optimization problems, a function formula based grouping (FBG)

strategy is adopted to classify the separable variables into different groups and put the

interactive variables into the same group. In this way, the problem considered can be changed

into several lower dimension sub-problems. The solution can be more easily obtained by

simultaneously solving these sub-problems. Then, an efficient crossover operator is designed by

using a specific uniform design method. When we have no prior knowledge on global optimal

solution, this crossover operator has more possibility to find high quality solutions. Furthermore,

in order to enhance the diversity and efficient explore the search space, an adapted mutation

operator is design to adaptively adjust the search scope, and a local search scheme is proposed to

speed up the search. By integrating all these schemes, a hybrid genetic algorithm is proposed for

global optimization problems. Finally, the experiments are conducted on widely used

benchmarks and the results indicate the proposed algorithm is efficient and effective.

Keywords: genetic algorithm, hybrid algorithm, uniform design, variable grouping

1 Introduction

Optimization problems in science and engineering are getting more and more attention in past years, and

many real-world problems in different domains can be formulated as the optimization of a continuous

function. The Genetic Algorithm (GA) is very popular in solving optimization problems, and it has been

applied in many domains, such as pattern recognition, neural network, timetabling problem [22, 24, 28]

and so on. GA develops very fast since it was first proposed by J. Holland for global optimization in real-

world applications. The widely used evolutionary algorithms such as Particle Swarm Optimization (PSO)

[10], Bee Colony Algorithm (ABC) [6] and Differential Evolution (DE) [26] can all be seen as variants

of GA.

Like other evolutionary algorithms (EAs), GA is a very simple but competitive search technique for

solving global optimization problems. GA repeats crossover, mutation, and selection operators by

generation to evolve its solution toward the global optimum. With the development of various modern

intelligent algorithms, an increasing tendency in merging GA and other heuristic methods is upward. As

a result, much more attentions have been focused on the design of various hybrid genetic algorithms.

 However, there are two major challenges for GA in solving global optimization problems. One is the

premature convergence and the other is the slow convergence speed. Premature means the algorithm can

be easily trapped in local minima and the slowly convergent speed means that GA needs lots of function

evaluations (FEs) to find the global optimal solution. Many works focus on these two problems have

been done to improve the performance of GA [11, 22, 28, 30, 31], such as combining with other schemas

[12], adding other search method into GA [17], and so on. Despite many success stories, classical GA

often lose their efficacy and advantages when they are applied to large and complex problems such as

those with high dimension and search space, and the reason for this phenomenon is not only there are lots

of local optimal solutions, but also the population might lapse into the local space s. In this paper we

A Hybrid Genetic Algorithm Based on Variable Grouping and Uniform De-sign for Global Optimization

94

focus on the following three points.

Firstly, how to generate a good initial population and design efficient genetic operators? There are a

variety of population initialization techniques such as random population generation by pseudo-random

number generators, the population generated by uniform experimental design such as orthogonal design

[11, 33], and by hybrid and multi-step technique [7] etc. For more information about the variety of

population initialization techniques and the analysis of its effect, please refer to [4, 8-9]. Among these

methods, the uniform design is a powerful tool to generate the initial population, which can make the

EAs more robust and statistically sound, and orthogonal design and Latin square [5, 11-12, 30] are two

famous uniform design methods in EAs. In literature [11], the authors applied the quantization technique

and orthogonal design to enhance the crossover operator and generate the initial population, and they got

good results. Compared to orthogonal design, Latin square is more easily and has the similar property as

orthogonal design. It can help the algorithm to generate points scattering uniformly over a specific

domain. In literature [12], the authors used Latin square to improve the evolutionary algorithm. Wang

and Dang proposed an efficient evolutionary algorithm based on level set and Latin square [30]. Except

for the initial population generation, the uniform design method can also be used to design efficient

mutation and crossover operators. In this paper, we improve the population initialization method by

combining permutation Latin square design and feasible solution division technique. The diversity of the

population will increase by dividing feasible solution and using permutation Latin square design method.

Also, we use the permutation Latin square method to design a crossover operator. Furthermore, an

adaptive mutation operator is designed.

Secondly, how to design an efficient local search mechanism? It has been proven that the local search

method can greatly improve the performance of GA. In literature [29, 37], the authors integrated local

search method into GA to further improve the search performance. Other authors [17, 21, 36] also

combined the specific local search or self-adaptive local search methods into GAs to enhance their

performances. DFP Quasi-Newton method [3] is an efficient local search method to get the local optimal

solution, but it requires that the function is differentiable and has to compute the derivatives of the

function. In this paper, we use a modified Quasi-newton method as the local search method, in which the

derivatives are not required.

Thirdly, to further enhance the performance of the algorithm, the variable decomposition method is

used. When the dimension of the problem increases, the performance of GA will drop dramatically [15].

This is often referred to the curse of dimensionality. Potter and De Jong made the first attempt to solve

this problem by divide and conquer strategy and proposed the cooperative co-evolutionary (CC)

framework [20]. The main idea of CC is to divide the n dimensional variables into m sub-groups, and

thus decompose the original problem into several lower dimensional sub problems. Then these sub-

problems will be evolved separately. This procedure is called grouping or decomposition. However, CC

is very sensitive to grouping strategies. If related (interacted) variables are not grouped together, the

performance of CC deteriorates dramatically [25]. So the key point is how to decompose the problem.

Many grouping strategies have been successively proposed such as those in [2, 14, 16, 18-19, 31-32, 34-

35]. The formula based grouping (FBG) strategy [31-32] does the decomposition by analysing the

formula expression, so it can correctly identify the variable interaction and decompose the problem into

several sub groups. We adopt FBG strategy to decompose the problem before optimization to make the

optimization more effective.

In this paper, we propose a hybrid genetic algorithm based on variable grouping and uniform design.

More specifically, we have the following research objectives:

(1) We use the uniform design method called permutation Latin square to generate the initial

population and design the crossover operator, so that the initial population and the offspring can evenly

distribute in the search space.

(2) To improve the efficiency of the proposed algorithm, we introduce a local search algorithm to the

genetic algorithm.

(3) We design a new selection operator and adaptive mutation operator to enhance the diversity of

population.

(4) A formula based grouping (FBG) strategy is adopted to divide the problem into several lower

dimensional sub-problems to improve the performance of GA.

The remainder of this paper is organized as follows: Section 2 gives a review of variable interaction

problems and describes the adopted variable grouping strategy; The genetic operators and the local

Journal of Computers Vol. 28, No. 3, 2017

95

search scheme are introduced in Section 3; Section 4 gives the framework of the proposed algorithm for

global optimization problems with continuous variables; The experiments are conducted in Section 5;

Finally, Section 6 concludes this paper and makes the discussions.

2 Variable Grouping Strategy

This section defines the notion of non-separable variables and provides various grouping methods and a

description of CC and formula based grouping (FBG) strategy.

2.1 Cooperative Co-evolutionary

We consider the following global optimization problem:

min ()f

 s.t

⎧
⎨

≤ ≤⎩

x

l x u
 (1)

Where ()1 2
, ,...,

N
x x x=x is a vector in N

R , ()f x is the objective function, ()1 2
, ,...,

N
l l l=l , and

()1 2
, ,...,

N
u u u=u with [],

i i i
x l u= for 1~i N= .

As the dimension of the problem increases, the problem solving will become more difficult and the

function evaluations of a GA will increase dramatically. To reduce the difficulty of the problem solving

and the function evaluations, we can use a grouping method to divide all the variables into several groups

and evolve them one by one with an optimization algorithm. The CC is proposed for this purpose [20].

The critical steps of CC can be summarized as follows: 1) Problem decomposition into several

subcomponents: a decomposition method is used to divide the N-dimensional decision vector into groups

...

I m
G G of variables. Each group is optimized with a separate subpopulation of the corresponding

dimension
i

G N< . 2) Each subcomponent optimization independently: an optimizer is applied to the

population for optimizing the decision variables in the current group. 3) Solution combination of the

subcomponents: in order to evaluate the fitness of the individuals from a certain subpopulation, a

representative element from each of the other subpopulations is selected. In this cooperation step, a

population completed with N-dimensional candidate solutions is constructed by concatenating the

representatives to each element of the current subpopulation. In the conventional CC framework,

optimizing a group with the corresponding subpopulation is called a phase.

2.2 Decision Variable Interactions

CC is an effective method for solving large-scale optimization problems. This effectiveness is attributed

to the decomposition of a large-scale problem into a set of smaller subproblems. However, one drawback

of CC is that its performance is sensitive to the choice of decomposition strategy. Here, we give the

notion of variable interactions and review various decomposition strategies. The formal definition of

separability and non-separability according to [27] is as follows:

Definition 1 A function
1 2

(, ,...,)
N

f x x x is separable iff

 ()
1 2 1 2 2

(, ,...,) 1 2 1 2 (, ,...,) (,...), (,...),..., (...,)
NN

x x x x x x N
arg min f x x x arg min f x arg min f x arg min f x= (2)

The decomposition strategy that identifies interacting decision variables and divides the search space

into subspaces of lower dimensionality is the most important component of CC algorithms. A function f

is separable if Equation 2 holds, and its global optimum can be reached by successive line search along

the axes. Therefore, if a certain function is not separable, there must be interactions between at least two

variables in the decision vector. In other words, if it is possible to find the global optimum of a function

by optimizing one dimension at a time regardless of the values taken by other dimensions, then the

function is said to be separable. It is nonseparable otherwise.

A Hybrid Genetic Algorithm Based on Variable Grouping and Uniform De-sign for Global Optimization

96

2.3 Formula Based Grouping

The ideal goal of problem decomposition is that the decision variables in one subcomponent are non-

separable, and the decision variables in any two subcomponents are separable. Recently, grouping

strategies have been proposed extensively, such as random grouping [34], MLCC [35], variable

interaction learning grouping (CCVIL [2]), route distance grouping [16], differential grouping [18], delta

grouping [19], and so on. However, these strategies still cannot accurately group the variables. For

example, random grouping method randomly shuffles the indices of the variables to obtain a different

grouping at the beginning of each cycle and it uses a constant group size, and randomly decomposes the

high-dimensional variable vector into several sub groups. These are then optimized with a certain EA.

The problem of random grouping is that the best group size is not known in advance. MLCC adopts a

multilevel strategy for decomposition. It maintains a decomposer pool from which decomposers with

different group sizes are selected depending on the problem under investigation and the stage of the

evolution. For nonseparable problems, MLCC tends to select the decomposers with large group sizes.

However, determining a good pool of decomposers is hard in practice since the interaction between

variables is usually not known beforehand. CCVIL needs lots of fitness evolutions and so on.

To overcome this shortcoming, the formula based grouping (FBG) strategy [31-32] is adopted to

decompose the problem in this paper. FBG can identify the separable variables and the interacting

variables, and can correctly group the variables into the several independent groups. Each group can be

optimized independently. The FBG framework is as follows: First, building a set N-Sep whose elements

are the factors determining variables interaction; Second, matching these elements to the test problem;

finally, if an element is matched, putting the variables connected by the element into a group. Note that a

general objective function consists of the finite number of four arithmetic operations ‘ + ’, ‘ − ’,‘× ’ and

‘ ÷ ’ and composite operations of basic elementary functions (e.g. exponential functions x

a , logarithmic

functions log ax). Based on these, a set N-Sep is constructed as follows:

(1) Variables separability in four arithmetic operations. If function
1 2 m

() ...f x x x x= + + + then each

i
x ; where i =1 ~m, it is obvious that the operators‘ + ’and ‘ − ’ do not affect the variables separability. So

in this function the variables can be optimized independently, and thus the variables
1, 2
, ,...,

m
x x x in this

function are separable. While if a function contains ‘× ’ and ‘ ÷ ’ of two variables, these two variables can

not be optimized independently and thus they are non-separable. We put ‘× ’ and ‘ ÷ ’ into a set N -Sep.

(2) Variables separability in a composite function. For a basic elementary function ()()g h x , the

variables in x are separable if ()g y is monotone and the variables in ()h x are separable, for example,

() y
g y e= ;

1 2
()h x x x= + ; ()()g h x , it’s obvious that

1
x and

2
x is separate ; otherwise, variables in

()()g h x are non-separable. Therefore, put the non-monotonic functions (e.g. trigonometric functions,

inverse trigonometric functions, etc.) of the basic elementary functions into N -Sep.

(3) Some special circumstances about the variables separability. From item (1), we know that the

variables linked by operations ‘ × ’ or ‘ ÷ ’are non-separable, nevertheless, if two functions are

exponential functions, and the variables in exponential function are separable, then the variables in ‘× ’ or

‘ ÷ ’of two exponential functions are separable. Put ‘× ’ and ‘ ÷ ’ into a set N -Sep. (except that both

composite functions are exponential functions).

From these three cases, the set N -Sep can be constructed, and the variables can be classified into

different groups by the following Algorithm 1.

Algorithm 1 The flow of the formula based variable grouping strategy FBG

Step1. The elements in N -Sep. can be seen as strings (such as cos and sin);

Step2. Using regular expressions to match these strings in N-Sep for each problem;

Step3. If a string is matched from the problem, then these variables contained in this string will be

classified into a group, and so on;

Step4. If some variables are not matched, then they are separable, and each variable is put into a group.

According to Algorithm 1, the variables can be classified into several independent groups, and each

group can be optimized independently. We adopt FBG strategy in our paper to divide the original

problem into several sub problems to make the optimization easier and more efficient. Thus the original

Journal of Computers Vol. 28, No. 3, 2017

97

problem can be divided into several independent sub-problems. For detailed information, please refer to

literature [31, 32].

3 Genetic Operators and Local Search Scheme

The genetic algorithm follows the general procedure of an evolutionary algorithm [1]. The initial

population P
G

which consists of NP individuals
,i G

X , 1,2,...,i NP= where G is the current generation.

Then, crossover, mutation, and selection operations are employed, and the above process is repeated until

a termination criterion is reached.

3.1 Crossover Operator Based on Permutation Latin Square

After FBG strategy is used to divide the N-dimensional vectors into several groups, the crossover

operator will work on every independent group and get several potential offspring. To design the

crossover, we first introduce the concept of permutation Latin square. For any ()1 2
, ,...,

q

q
x x x R∈ , a shift

mapping :
q q

S R R→ is defined as

 () ()1 2 2 3 1
, ,..., , ,..., ,

q q
S x x x x x x x= (3)

Definition 2 A q q× matrix is called a permutation Latin square of order q if the matrix satisfies the

following conditions:

(I).Its first row ()1 2
, ,...,

q
a x x x= , denoted as

1
V , is a permutation of ()1,2,...,q .

(II).Its i th− row, denoted as
i

V , is given by ()1i i
V S V

−

= for 2 ~i q= .

A permutation Latin square of order q with a being its first row is denoted as ().Ls q a , and its i th− row

and the j th− column element is denoted as
,i j

v . Permutation Latin-square design is one of the uniform

design methods ([5]) which have been widely used in many application problems. It can generate points

uniformly scattered in a domain. We want to make use of the permutation Latin square to design an

efficient crossover operator. Note that the crossover operator is mainly focused on exploration, i.e.,

searching for the good solution near their parents. Keep this in mind, when two parents are given, it is

better for us to find a way which has the more possibility to generate better offspring near their parents

by using crossover operator. How to realize it? Since we do not know initially where the optimal solution

is, it is reasonable to generate the offspring which scatter near their parents as uniformly as possible. We

use permutation Latin-square to design a crossover operator as follows. Suppose that the domain

considered is given by

 [] { }, , 1~
q

j j j
L U x R l x u j q= ∈ ≤ ≤ = (4)

Where
j

x ,
j
l and

j
u are the j th− component of x , L and U, respectively. Choose a row vector q

a R∈

and generate a permutation Latin square of order q , () ().

ij
q q

Ls q a v
×

= . Then permutation Latin-square

generates a set of uniformly scattered points in [],L U as follows:

 (){ }1 2
, ,..., , 1~

i i

i i in
W W w w w i q= = (5)

Where ()
2 1

,i, 1~
2

ij

ij j j j

v
w l u l j q

n

−

= + − = . For any two parents ()1 2
, ,...,

i

i i in
X x x x= , 1,2x = , define

 ()1 2
, ,...,

n
L l l l= , ()1 2

, ,...,
n

U u u u= (6)

With

 { }1 2
min ,

j j j
l x x= , { }1 2

max ,
j j j

u x x= , 1~j n= (7)

A Hybrid Genetic Algorithm Based on Variable Grouping and Uniform De-sign for Global Optimization

98

and define a domain

 { }, , 1~
n

j j j
L U x R x u j n⎡ ⎤ = ∈ ≤ ≤ =⎣ ⎦ (8)

Choose a proper Latin square ().

ij
Ls q a v= of order q . If q n≥ , the i-th offspring

 ()1 2
, ,...,

i

i i in
O o o o= (9)

is generated by

 ()
2 1

, 1~
2

ij

ij j j j

v
o l u l j n

q

−

= + − = (10)

for 1~i q= . If q n< , divide the components of 1
X , 2

X , L and U into q sub-vectors in the same way

as follows:

 ()1 1 2
, ,...,

q
X A A A= , ()2 1 2

, ,...,

q
X B B B= (11)

 ()1 2
, ,...,

q
L L L L= , ()1 2

, ,...,

q
U U U U= (12)

Where j
A , j

B , j
L and j

U are sub-vectors of the same dimension and the dimensions of q sub-vectors

are randomly determined. The i th− offspring

 ()1 2
, ,...,

i i i i

q
O O O O= (13)

is generated by

 ()
2 1

, 1~
2

iji

j j j j

v
O L U L j q

q

−

= + − = (14)

for i 1~ q= .

Example 1. We choose q 4= and the first row of Latin square ()a 1,2,3,4= . Then the Latin square of

order 4 is

 ()

1 2 3 4

2 3 4 1
s 4,

3 4 1 3

4 1 3 2

L a

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

Suppose that 4n = and two parents are ()1
0,0,0,0X = and ()2

1,1,1,1X = , respectively. Then we

have q n≥ . In this case, we obtain from Eq. (6) that

 () ()0,0,0,0 , 1.1.1.1L U= =

and we obtain from Eq. (9) and Eq. (10) that four offsprings are

()

()

()

()

1

2

3

4

1
1,3,5,7

8

1
3,5,7,1

8

1
5,7,1,3

8

1
7,1,3,5

8

O

O

O

O

=

=

=

=

Journal of Computers Vol. 28, No. 3, 2017

99

Suppose that 6n = and two parents are ()1
0,0,0,0,0,0X = and ()2

1,1,1,1,1,1X = , respectively. Then we

have
q n< . In this case, we obtain from Eq. (6) that

 () ()0,0,0,0.0,0 , 1.1.1.1,1,1L U= =

Suppose that 1
X , 2

X , L andU are randomly divided into 4 sub-vectors as follows:

() ()

() ()

1 1 2 3 4 2 1 2 3 4

1 2 3 4 1 2 3 4

, , , , , , ,

L ,L ,,L ,L , , , ,

X A A A A X B B B B

L U U U U U

= =

= =

Where

1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4

L (0,0,0),L 0,L 0,,L 0,

(1,1,1), 1, 1,, 1.

A A A A

U B U B U B U B

= = = = = = = =

= = = = = = = =

Then we obtain from Eq. (13) and Eq. (14) that four offsprings are

()

()

()

()

1

2

3

4

1
1,1,1,3,5,7

8

1
3,3,3,5,7,1

8

1
5,5,5,7,1,3

8

1
7,7,7,1,3,5

8

O

O

O

O

=

=

=

=

3.2 Adaptive Mutation Operator

The purpose of mutation is to increase the diversity of population and avoid the premature. In

conventional mutation process [11, 30], the GA chooses the mutation offspring with an given

possibility
m
p , and they didn’t consider the diversity of the population. In this paper, we propose an

improved adaptive mutation operator based on the diversity on every dimension.

The main idea is that when the numerical variance of some dimensions is relatively small, it may mean

the diversity at these dimensions is very low and it is necessary to increase the diversity of these

dimensions. The algorithm selects several individuals from the current population ()P k and crossover

offspring set ()O k with mutation rate
m
p for mutation.

The algorithm framework is shown in Algorithm 2, and the meaning of the notations used in the

Algorithm 2 is as follows:

M The total number of individuals selected to take part in mutation;

Q The number of individuals in () ()P k O k∪ ;

N The dimension of the problem;

D : A parameter of positive integer which means D dimensions will undergo the mutation,

where D N< .

()1 2
, ,...,

D
d d d d= : determine the dimensions

1 2
, ,...,

D
d d d will undergo the mutation. For 30N > we

choose 5D = and for 30N > we choose 10D = ;

Algorithm 2 Adaptive Mutation Operator

Choose individuals for mutation;

for 1i = to Q do

A Hybrid Genetic Algorithm Based on Variable Grouping and Uniform De-sign for Global Optimization

100

if
m

rand p< then

The th
i individual is selected for mutation;

end if

end for Suppose M individuals have been chosen to take part in mutation.

for 1j = to N do

Calculate the j-th dimensional mean value ()m j and standard deviation ()std j of () ()P k O k∪ ;

end for

Let ()1 2
, ,...,

D
d d d d= denote the indices of the D dimensions with the smallest std values;

For each chosen individual, its
j

d th− dimension value ()jZ d will be changed by mutation to

() () () ()() () ()

() () () ()()

,

,

j j j j j

j j j j

Z d Z d Z d l d r if Z d m j

Z d Z d u d Z d r else

⎧ = − − ∗ <⎪
⎨

= + − ∗⎪
⎩

 (15)

for 1~j D= .

3.3 Local Search Scheme

To speed up the convergence, we introduce a local search scheme DFP Quasi-newton method into our

algorithm. DFP Quasi-newton method is an efficient local search method to get the local optimal

solutions, but it requires that the function is differentiable and has to compute the derivatives of the

function. In this paper, we propose a modified the Quasi-newton method in which the derivatives are not

required. We use difference quotient to estimate the partial derivative as follows:

() ()()

2

i i

i

f x H f x Hf x

x h

+ − −∂
≈

∂
 (16)

where ()0,...,0,H,...,0
I

H = with h being the i th− component. We used the modified DFP Quasi-Newton

method as the local search method to improve the convergence speed of the algorithm. The modified

DFP Quasi-Newton method is shown in Algorithm 3.

Algorithm 3 The local search method

Step1. Choose an initial point 0
x and an initial positive definite matrix 0 n

H I= ; 0
H H= and searching

precision remarked as eps ;

Step2. If ()kg x eps≤ eps then algorithm stops, the optimal solution is set to k
x , otherwise, go to

step3.

Step3. Set the search direction ()kP Hg x= − ;

Step4. Calculate the step length l by

()
0

min ()kf x P k
λ

λ
>

+

and set 1k k
x x Pλ

+

= + ;

Step5. If 1k n+ = , let 0
H H= ; 0k = , otherwise, set

()()

() ()

()()

() ()

1 1 1 1

1 1 1 1

T T
k k k k k k k k k

T T
k k k k k k k k k

x x x H g g g g H
H H

x x g g g g H g g

+ + + +

+ + + +

− − −

= + −

− − − −

 (17)

Go to step3.

Journal of Computers Vol. 28, No. 3, 2017

101

4 A Hybrid Genetic Algorithm

In this section we propose a hybrid genetic algorithm based on variable grouping and uniform design for

global optimization problems. The permutation Latin square method is used in the initialization of the

population and crossover operator to enhance the search capability of the algorithm. Also, we adopt FBG

grouping strategy in the crossover process.

4.1 Space Division and Population Initialization

In this paper, we use the Latin square (),
s

L N a to generate evenly scattered points in the solution space.

When the feasible solution space is large, it may be desirable to generate more potential chromosomes

for a better coverage, so we divide the solution space into S subspaces, where S is the design parameter.

We choose the s th− dimension such that

 { }
s s i i

u l max u l− = − (18)

Where 1,2,...,i N= ; Then in each subspace, N points are generated evenly. Thus the total N S× points

will be generated. The best NP points among these N S× points form the initial population.

The following steps of Algorithm 4 and Algorithm 5 show the space division process and initialization.

Algorithm 4 Divide Solution Space

Step1. Select the s th− dimension, which satisfies us { }
s s i i

u l max u l− = − , where 1,2,...,i N= ;

Step2. Cut the feasible region into S domains along dimensions () () () () () ()1 , 1 , 2 , 2 , ..., ,L U L U L S U S⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦

where the lower and upper bounds of the i-th domain along dimension s are

() ()

()

1

 1,2,..., N

s s

s s

s s

s s

u l
l i l i

S
i

u l
u i u i

S

⎧ −⎛ ⎞
= + −⎪ ⎜ ⎟

⎪ ⎝ ⎠
=⎨

−⎛ ⎞⎪ = + ⎜ ⎟⎪ ⎝ ⎠⎩

 (19)

The lower and upper bounds in any domain along any other dimension j are still
j
l and

j
u

Algorithm 5 Population initialization

Step1. Use algorithm 4 to divide the solution space to S sub spaces such that NP N S< × , where NP is

the population size;

Step2. Use Latin square (),
s

L N a of order N to generate N points in each sub-space according to the

method in crossover operator;

Step3. Among the N S∗ points, select NP best points as the initial population.

4.2 The Proposed Hybrid Genetic Algorithm

In this section, we present the proposed hybrid genetic algorithm. We generate a good initial

population with chromosomes and use permutation Latin square method to generate good initial

population, and then evolve and improve the population iteratively. Besides, we apply the proposed

crossover and the adaptive mutation operator to generate a set of potential offspring in iteration. Then we

select the point with the smallest function values from these potential offspring and the parents to form

the next generation. The overall algorithm is as Algorithm 6.

Algorithm 6 A hybrid genetic algorithm based on FBG and Latin square

Set the initial iteration number k=0 and the maximal number of generationsMax_gen ;

Use algorithm 5 to generate the initial population ()P k ;

While k Max_gen< do

A Hybrid Genetic Algorithm Based on Variable Grouping and Uniform De-sign for Global Optimization

102

Randomly select some individuals from current population with probability
c
p . These points together

with the best point of the population will take part in crossover and mutation procedure;

Use the crossover described in section 3.1 to generate the set of offspring ()O k ;

Generate the set of offspring ()M k by using mutation algorithm 2;

Select NP chromosomes from () () ()P k O k M k∪ ∪ with the smallest function value to form the

next generation.

Identify the best point _new best ;

Execute the local search algorithm 3 by using the current best point as the initial point to get a new

point '

x ;

Set '

_new best x= ;

1k k= + ;

end While

When the stop criterion is satisfied, output the current best individual;

5 Experiments

5.1 Test Functions

We execute the proposed algorithm to solve the following test functions:

()1

1

sin

N

i i

i

f x x
=

= −∑

()()2

2

1

10cos 2 10

N

i i

i

f x xπ
=

= − +∑

()2

3

1 1

1 1
20exp 0.2 exp cos 2

N N

i i

i i

f x x
N N

π

= =

⎛ ⎞ ⎛ ⎞
= − − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

∑ ∑

2

4

1 1

1
cos 1

4000

NN

i

i

i i

x
f x

i
= =

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
∑ ∏

2

5

1

N

i

i

f ix
=

=∑

2

6

1 1

N i

j

i j

f x
= =

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ ∑

2

7

1

N

i

i

f x
=

=∑

)4

8

1

0,1
N

i

i

f x Random
=

⎡= + ⎣∑

9

1 1

NN

i i

i i

f x x
= =

= +∑ ∏

Table 1 lists the basic characteristics of these test functions.

Journal of Computers Vol. 28, No. 3, 2017

103

Table 1. Basic characteristics of these test functions

Test function Feasible space Global minima Dimension

1
f []500,500

N

− -12569.5 30

2
f []5.12,5.12

N

− 0 30

3
f []32,32

N

− 0 30

4
f []600,600

N

− 0 100

5
f []10,10

N

− 0 30

6
f []100,100

N

− 0 30

7
f []100,100

N

− 0 30

8
f []1.28,1.28

N

− 0 30

9
f []10,10

N

− 0 30

5.2 Control Experiment

We adopt the following parameter values:

(1) We want to take more points distributed evenly in the feasible region at the beginning, and divide

the search space into S sub-domain, where 100S = . Use the Latin square (),
s

L N a with ()1,2,...,a N=

to generate N points in each sub-domain;

(2) The population size: 50NP = ;

(3) Crossover probability 0.2
c
p = ; mutation probability 0.12

m
p = ; the order 10q = Latin square is

used in crossover process. The number of dimensions chosen to take part in mutation is

10 N=100

5 N=30
D

⎧
= ⎨
⎩

(4) Stop criterion: When the best solution cannot be improved further in 20 successive generations

after 100 generations.

5.3 Results and Comparison

We performed 30 independent runs for each algorithm on each test function and recorded: (1) the mean

number of function evaluations (FEs), (2) the mean function value (Mean), (3) the best value (Best), (4)

the worst value (Worst) and (5) the standard deviation of the function values (Std).

Table 2 shows the performance of the proposed hybrid genetic algorithm based on formula based

grouping method (FBG-GA). We see that the mean function values are equal or close to the optimal ones,

and the standard deviations of the function values are relatively small.

In Table 3, we compare the performance of the proposed algorithm FBG-GA with orthogonal learning

cuckoo search algorithm (OLCS) [13] and social learning particle swarm optimization algorithm (SL-

PSO) [23]. It can be seen from Tables 3, that the difference between the mean solution of our algorithm

and the mean solution of each of the compared algorithms is significant (especially for f1and f5). The

algorithm we proposed and the compared algorithms reach a similar level of performance for the most

functions, but our algorithm uses less number of function evaluations. The above comparisons and

analysis indicate that proposed algorithm can yield higher mean solution quality than both of the

compared algorithms. In addition, our algorithm requires a smaller mean number of function evaluations

than the compared algorithms. Furthermore, it gives small standard deviations of function values, and

hence has more stable solution quality.

A Hybrid Genetic Algorithm Based on Variable Grouping and Uniform De-sign for Global Optimization

104

Table 2. The results

Test

function

Function

evaluation
Mean Std Worst Best

Global

minima

1
f 25349 -12569.49 5.3065 02e − -12569.48 -12569.49 -12569.5

2
f 28051 0 0 0 0 0

3
f 31206 8.8818 16e − 0 8.8818 16e − 8.8818 16e − 0

4
f 26699 0 0 0 0 0

5
f 29609 0 0 0 0 0

6
f 27012 0.2499 01e− − 1.2748 04e − 0.2497 01e− − 0.2500− 0

7
f 26708 0 0 0 0 0

8
f 25502 7.9095 03e − 3.3672 03e − 1.4443 02e − 4.4149 03e − 0

9
f 28389 0 0 0 0 0

Table 3. Comparison of SL-PSO, OLCS and the proposed algorithm FBG-GA, where the results for SL-

PSO and OLCS are from [13, 23] personally

Test function Algorithm SL-PSO OLCS FBG-GA

Mean - -12514 -12569.49

Std - 75.7934 5.3065 02e − 1
f

FEs - 900000 25349

Mean 1.55 01e + 0 0

Std 3.19 00e + 0 0 2
f

FEs 200000 300000 28051

Mean 5.51 15e − 8.8817 16e − 8.8818 16e −

Std 5.51 15e − 0 0 3
f

FEs 200000 150000 31206

Mean 0 0 0

Std 0 0 0 4
f

FEs 200000 200000 26699

Mean - 5.0749 05e − 0

Std - 3.3339 05e − 0 5
f

FEs - 300000 29609

Mean 4.66 07e − 5.5768 147e − 0.2499 01e− −

Std 2.48 07e − 1.4262 146e − 1.2748 04e − 6
f

FEs 200000 500000 27012

Mean 4.34 90e − 1.5686 107e − 0

Std 5.26 90e − 4.5543 107e − 0 7
f

FEs 200000 150000 26708

Mean - 5.0749 05e − 7.9095 03e −

Std - 3.3339 05e − 3.3672 03e − 8
f

FEs - 300000 25502

Mean 1.50 46e − - 0

Std 5.34e 47− - 0 9
f

FEs 200000 - 28389

6 Conclusions

We have developed a hybrid genetic algorithm based on FBG grouping strategy and Latin square design

for global numerical optimization with continuous variables. Our objective has been to apply the Latin

square design to enhance the GA so that it can be more statistically sound and robust. In particular, we

apply Latin squares and FBG grouping to design a new crossover operator, so that the problem with high

Journal of Computers Vol. 28, No. 3, 2017

105

dimension can be changed into several lower dimension sub-problems. Besides, we propose a new

mutation operator based on variance. Furthermore, we add the local search in the GA to speed up the

algorithm. The proposed algorithm is executed to solve 9 benchmark test problems, and we compare the

results to SL-PSO and OLCS. The results indicate that it can find optimal or close-to-optimal solutions

for these test functions.

However, there are also two main shortages in our work, one is all problems considered in this study

are unconstrained optimization issues, the other is FBG can’t be used in black-box problems. Future

work may include the extension of the proposed method for large-scale constraint optimization, and the

proposed algorithm will be tested on more test functions and higher dimensions. Besides, adding other

techniques into FBG-GA and applying the proposed algorithm into real-world problems is also an

interesting topic.

Acknowledgement

This work is supported by National Natural Science Foundation of China (No.61472297 and

No.U1404622).

References

[1] R. B. Agrawal, K. Deb, K. Deb, R. B. Agrawal, Simulated binary crossover for continuous search space, Complex Systems

9(1995) 115-148.

[2] W. Chen, T. Weise, Z. Yang, K. Tang, Large-Scale global optimization using cooperative coevolution with variable

interaction learning, in: R. Schaefer, C. Cotta, J. Kolodziej, G. Rudolph (Eds.), PPSN XI, Part II, LNCS 6239, Berlin,

Springer-Verlag, 2010, pp. 300-309.

[3] W. C. Davidon, Variable metric method for minimization, SIAM Journal on Optimization 1(2)(1991) 1-17.

[4] A. de Perthuis, de Laillevault, B. Doerr, C. Doerr, Money for nothing: speeding up evolutionary algorithms through better

initialization, in: Proc. the 2015 Annual Conference on Genetic and Evolutionary Computation, 2015.

[5] K. Fang, Y. Wang, Number-Theoretic Methods in Statistics, Champman & Hall, London, 1994.

[6] D. Karaboga, An idea based on honey bee swarm for numerical optimization, [Technical report] Turky: Erciyes University,

2005.

[7] B. Kazimipour, X. Li, A. Qin, Initialization methods for large scale global optimization, in: Proc. 2013 IEEE Congress on

Evolutionary Computation (CEC), 2013.

[8] B. Kazimipour, X. Li, A. Qin, A review of population initialization techniques for evolutionary algorithms, in: Proc. 2014

IEEE Congress on Evolutionary Computation (CEC), 2014.

[9] B. Kazimipour, X. Li, A. Qin, Effects of population initialization on differential evolution for large scale optimization, in:

Proc. 2014 IEEE Congress on Evolutionary Computation (CEC), 2014.

[10] J. Kennedy, R. Eberhart, Particle swarm optimization, IEEE International Conference in 1995 on Neural Networks 4 (1995)

1942-1948.

[11] Y.-W. Leung, Y. Wang, An orthogonal genetic algorithm with quantization for global numerical optimization, Proceedings

of IEEE Transactions on Evolutionary Computation 5(1)(2001) 41-53.

[12] D.-G. Li, C. Smith, A new global optimization algorithm based on Latin Square theory, in: Proc. IEEE International

Conference in 1996 on Evolutionary Computation, 1996.

[13] W. J. Y. M. Li, Xiangtao, Enhancing the performance of cuckoo search algorithm using orthogonal learning Method,

A Hybrid Genetic Algorithm Based on Variable Grouping and Uniform De-sign for Global Optimization

106

Neural Computing and Applications 24(6)(2013) 1233-1247.

[14] X. Li, X. Yao, Cooperatively coevolving particle swarms for large scale optimization, IEEE Transactions on Evolutionary

Computation 16(2)(2012) 210-224.

[15] Y. Liu, X. Yao, Q. Zhao, T. Higuchi, Scaling up fast evolutionary programming with cooperative coevolution, in: Proc. the

2001 Congress on Evolutionary Computation, 2001.

[16] Y. Mei, X. Li, X. Yao, Cooperative co-evolution with route distance grouping for large-scale capacitated Arc routing

problems, IEEE Transactions on Evolutionary Computation 18(3)(2014) 435-449.

[17] D. Molina, M. Lozano, F. Herrera, MA-SW-Chains: Memetic algorithm based on local search chains for large scale

continuous global optimization, in: Proc. 2010 IEEE Congress on Evolutionary Computation (CEC), 2010.

[18] M. Omidvar, X. Li, Y. Mei, X. Yao, Cooperative co-evolution with differential grouping for large scale optimization,

Evolutionary Computation, IEEE Transactions on 18(3)(204) 1378-393.

[19] M. Omidvar, X. Li, X. Yao, Cooperative co-evolution with delta grouping for large scale non-separable function

optimization, in: Proc. 2010 IEEE Congress on Evolutionary Computation, 2010.

[20] M. A. Potter, K. A. D. Jong, Cooperative coevolution: an architecture for evolving co-adapted subcomponents,

Evolutionary Computation 8(2000) 1-29.

[21] A. Qin, P. Suganthan, Self-adaptive differential evolution algorithm for numerical optimization, in: Proc. 2005 IEEE

Congress on Evolutionary Computation Evolutionary Computation, 2005.

[22] R. Raghavjee, N. Pillay, A comparison of genetic algorithms and genetic programming in solving the school timetabling

problem, in: Proc. 2012 Fourth World Congress on Nature and Biologically Inspired Computing (NaBIC), 2012.

[23] Y.J.R. Cheng, A social learning particle swarm optimization algorithm for scalable optimization, Information Sciences: an

International Journal 291(C)(2015) 43-60.

[24] T.-S. Yan, An improved genetic algorithm and its blending application with neural network, in: Proc. 2010 2nd

International Workshop on Intelligent Systems and Applications (ISA), 2010.

[25] R. Salomon, Reevaluating genetic algorithm performance under coordinate rotation of benchmark functions: a survey of

some theoretical and practical aspects of genetic algorithms, Biosystems 39(3)(1995) 263-278.

[26] R. Storn, K. Price, Differential evolution- a simple and efficient heuristic for global optimization over continuous spaces,

Journal of Global Optimization 11(4)(1997) 341-359.

[27] K. Tang, X. Li, P. N. Suganthan, Z. Yang, T. Weise, Benchmark functions for the CEC’2010 special session and

competition on large-scale global optimization, GENE 7(33)(2009) 8.

[28] T.A. Tarique, M.A. Zamee, M.I. Khan, A new approach for pattern recognition with neuro-genetic system using microbial

genetic algorithm, in: Proc. 2014 International Conference on Electrical Engineering and Information Communication

Technology (ICEEICT), 2014.

[29] J.-T. Tsai, T.-K. Liu, J.-H. Chou, Hybrid Taguchi-genetic algorithm for global numerical optimization, Proceedings of

IEEE Transactions on Evolutionary Computation 8(4)(2004) 365-377.

[30] Y. Wang, C. Dang, An evolutionary algorithm for global optimization based on level-set evolution and Latin squares,

Proceedings of IEEE Transactions on Evolutionary Computation Evolutionary Computation 11(5)(2007) 579-595.

[31] F. Wei, Y. Wang, T. Zong, A novel cooperative coevolution for large scale global optimization, in: Proc. 2014 IEEE

International Conference on Systems Man and Cybernetics (SMC), 2014.

[32] F. Wei, Y. Wang, T. Zong, Variable grouping based differential evolution using an auxiliary function for large scale global

Journal of Computers Vol. 28, No. 3, 2017

107

optimization, in: Proc. 2014 IEEE Congress on Evolutionary Computation (CEC), 2014.

[33] Z. Yang, K. Tang, X. Yao, An orthogonal genetic algorithm for multimedia multicast routing, Proceedings of IEEE

Transactions on Evolutionary Computation Evolutionary Computation 3(1)(1999) 53-62.

[34] Z. Yang, K. Tang, X. Yao, Large scale evolutionary optimization using cooperative coevolution, Information Sciences: an

International Journal 178(15)(2008) 2985-2999.

[35] Z. Yang, K. Tang, X. Yao, Multilevel cooperative coevolution for large scale optimization, in: Proc. IEEE Congress on

Evolutionary Computation, 2008.

[36] Z. Yang, K. Tang, X. Yao, Self-adaptive differential evolution with neighborhood search, in: Proc. CEC 2008 on

Evolutionary Computation (IEEE World Congress on Computational Intelligence), .2008.

[37] Q. Zhang, Hybrid estimation of distribution algorithm for global optimization, Engineering Computations 21(1)(2004) 91-

107.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

