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Abstract. In this paper, we propose a hybrid genetic algorithm based on variable grouping and 

uniform design for global optimization problems, a function formula based grouping (FBG) 

strategy is adopted to classify the separable variables into different groups and put the 

interactive variables into the same group. In this way, the problem considered can be changed 

into several lower dimension sub-problems. The solution can be more easily obtained by 

simultaneously solving these sub-problems. Then, an efficient crossover operator is designed by 

using a specific uniform design method. When we have no prior knowledge on global optimal 

solution, this crossover operator has more possibility to find high quality solutions. Furthermore, 

in order to enhance the diversity and efficient explore the search space, an adapted mutation 

operator is design to adaptively adjust the search scope, and a local search scheme is proposed to 

speed up the search. By integrating all these schemes, a hybrid genetic algorithm is proposed for 

global optimization problems. Finally, the experiments are conducted on widely used 

benchmarks and the results indicate the proposed algorithm is efficient and effective.  

Keywords: genetic algorithm, hybrid algorithm, uniform design, variable grouping 

1 Introduction 

Optimization problems in science and engineering are getting more and more attention in past years, and 

many real-world problems in different domains can be formulated as the optimization of a continuous 

function. The Genetic Algorithm (GA) is very popular in solving optimization problems, and it has been 

applied in many domains, such as pattern recognition, neural network, timetabling problem [22, 24, 28] 

and so on. GA develops very fast since it was first proposed by J. Holland for global optimization in real-

world applications. The widely used evolutionary algorithms such as Particle Swarm Optimization (PSO) 

[10], Bee Colony Algorithm (ABC) [6] and Differential Evolution (DE) [26] can all be seen as variants 

of GA. 

Like other evolutionary algorithms (EAs), GA is a very simple but competitive search technique for 

solving global optimization problems. GA repeats crossover, mutation, and selection operators by 

generation to evolve its solution toward the global optimum. With the development of various modern 

intelligent algorithms, an increasing tendency in merging GA and other heuristic methods is upward. As 

a result, much more attentions have been focused on the design of various hybrid genetic algorithms. 

 However, there are two major challenges for GA in solving global optimization problems. One is the 

premature convergence and the other is the slow convergence speed. Premature means the algorithm can 

be easily trapped in local minima and the slowly convergent speed means that GA needs lots of function 

evaluations (FEs) to find the global optimal solution. Many works focus on these two problems have 

been done to improve the performance of GA [11, 22, 28, 30, 31], such as combining with other schemas 

[12], adding other search method into GA [17], and so on. Despite many success stories, classical GA 

often lose their efficacy and advantages when they are applied to large and complex problems such as 

those with high dimension and search space, and the reason for this phenomenon is not only there are lots 

of local optimal solutions, but also the population might lapse into the local space s. In this paper we 
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focus on the following three points. 

Firstly, how to generate a good initial population and design efficient genetic operators? There are a 

variety of population initialization techniques such as random population generation by pseudo-random 

number generators, the population generated by uniform experimental design such as orthogonal design 

[11, 33], and by hybrid and multi-step technique [7] etc. For more information about the variety of 

population initialization techniques and the analysis of its effect, please refer to [4, 8-9]. Among these 

methods, the uniform design is a powerful tool to generate the initial population, which can make the 

EAs more robust and statistically sound, and orthogonal design and Latin square [5, 11-12, 30] are two 

famous uniform design methods in EAs. In literature [11], the authors applied the quantization technique 

and orthogonal design to enhance the crossover operator and generate the initial population, and they got 

good results. Compared to orthogonal design, Latin square is more easily and has the similar property as 

orthogonal design. It can help the algorithm to generate points scattering uniformly over a specific 

domain. In literature [12], the authors used Latin square to improve the evolutionary algorithm. Wang 

and Dang proposed an efficient evolutionary algorithm based on level set and Latin square [30]. Except 

for the initial population generation, the uniform design method can also be used to design efficient 

mutation and crossover operators. In this paper, we improve the population initialization method by 

combining permutation Latin square design and feasible solution division technique. The diversity of the 

population will increase by dividing feasible solution and using permutation Latin square design method. 

Also, we use the permutation Latin square method to design a crossover operator. Furthermore, an 

adaptive mutation operator is designed.  

Secondly, how to design an efficient local search mechanism? It has been proven that the local search 

method can greatly improve the performance of GA. In literature [29, 37], the authors integrated local 

search method into GA to further improve the search performance. Other authors [17, 21, 36] also 

combined the specific local search or self-adaptive local search methods into GAs to enhance their 

performances. DFP Quasi-Newton method [3] is an efficient local search method to get the local optimal 

solution, but it requires that the function is differentiable and has to compute the derivatives of the 

function. In this paper, we use a modified Quasi-newton method as the local search method, in which the 

derivatives are not required. 

Thirdly, to further enhance the performance of the algorithm, the variable decomposition method is 

used. When the dimension of the problem increases, the performance of GA will drop dramatically [15]. 

This is often referred to the curse of dimensionality. Potter and De Jong made the first attempt to solve 

this problem by divide and conquer strategy and proposed the cooperative co-evolutionary (CC) 

framework [20]. The main idea of CC is to divide the n dimensional variables into m sub-groups, and 

thus decompose the original problem into several lower dimensional sub problems. Then these sub-

problems will be evolved separately. This procedure is called grouping or decomposition. However, CC 

is very sensitive to grouping strategies. If related (interacted) variables are not grouped together, the 

performance of CC deteriorates dramatically [25]. So the key point is how to decompose the problem. 

Many grouping strategies have been successively proposed such as those in [2, 14, 16, 18-19, 31-32, 34- 

35]. The formula based grouping (FBG) strategy [31-32] does the decomposition by analysing the 

formula expression, so it can correctly identify the variable interaction and decompose the problem into 

several sub groups. We adopt FBG strategy to decompose the problem before optimization to make the 

optimization more effective. 

In this paper, we propose a hybrid genetic algorithm based on variable grouping and uniform design. 

More specifically, we have the following research objectives: 

(1) We use the uniform design method called permutation Latin square to generate the initial 

population and design the crossover operator, so that the initial population and the offspring can evenly 

distribute in the search space. 

(2) To improve the efficiency of the proposed algorithm, we introduce a local search algorithm to the 

genetic algorithm. 

(3) We design a new selection operator and adaptive mutation operator to enhance the diversity of 

population. 

(4) A formula based grouping (FBG) strategy is adopted to divide the problem into several lower 

dimensional sub-problems to improve the performance of GA. 

The remainder of this paper is organized as follows: Section 2 gives a review of variable interaction 

problems and describes the adopted variable grouping strategy; The genetic operators and the local 
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search scheme are introduced in Section 3; Section 4 gives the framework of the proposed algorithm for 

global optimization problems with continuous variables; The experiments are conducted in Section 5; 

Finally, Section 6 concludes this paper and makes the discussions. 

2 Variable Grouping Strategy 

This section defines the notion of non-separable variables and provides various grouping methods and a 

description of CC and formula based grouping (FBG) strategy. 

2.1 Cooperative Co-evolutionary 

We consider the following global optimization problem: 

 

min ( )f

  s.t  

⎧
⎨

≤ ≤⎩

x

l x u
 (1) 

Where ( )1 2
, ,...,

N
x x x=x  is a vector in N

R , ( )f x  is the objective function, ( )1 2
, ,...,

N
l l l=l , and 

( )1 2
, ,...,

N
u u u=u  with [ ],

i i i
x l u=  for 1~i N= . 

As the dimension of the problem increases, the problem solving will become more difficult and the 

function evaluations of a GA will increase dramatically. To reduce the difficulty of the problem solving 

and the function evaluations, we can use a grouping method to divide all the variables into several groups 

and evolve them one by one with an optimization algorithm. The CC is proposed for this purpose [20]. 

The critical steps of CC can be summarized as follows: 1) Problem decomposition into several 

subcomponents: a decomposition method is used to divide the N-dimensional decision vector into groups 

...

I m
G G of variables. Each group is optimized with a separate subpopulation of the corresponding 

dimension
i

G N< . 2) Each subcomponent optimization independently: an optimizer is applied to the 

population for optimizing the decision variables in the current group. 3) Solution combination of the 

subcomponents: in order to evaluate the fitness of the individuals from a certain subpopulation, a 

representative element from each of the other subpopulations is selected. In this cooperation step, a 

population completed with N-dimensional candidate solutions is constructed by concatenating the 

representatives to each element of the current subpopulation. In the conventional CC framework, 

optimizing a group with the corresponding subpopulation is called a phase. 

2.2 Decision Variable Interactions  

CC is an effective method for solving large-scale optimization problems. This effectiveness is attributed 

to the decomposition of a large-scale problem into a set of smaller subproblems. However, one drawback 

of CC is that its performance is sensitive to the choice of decomposition strategy. Here, we give the 

notion of variable interactions and review various decomposition strategies. The formal definition of 

separability and non-separability according to [27] is as follows: 

Definition 1 A function 
1 2

( , ,..., )
N

f x x x is separable iff 

 ( )
1 2 1 2 2

( , ,..., ) 1 2 1 2  ( , ,..., )  ( ,...),  ( ,...),...,  (..., )  
NN

x x x x x x N
arg min f x x x arg min f x arg min f x arg min f x=  (2) 

The decomposition strategy that identifies interacting decision variables and divides the search space 

into subspaces of lower dimensionality is the most important component of CC algorithms. A function f 

is separable if Equation 2 holds, and its global optimum can be reached by successive line search along 

the axes. Therefore, if a certain function is not separable, there must be interactions between at least two 

variables in the decision vector. In other words, if it is possible to find the global optimum of a function 

by optimizing one dimension at a time regardless of the values taken by other dimensions, then the 

function is said to be separable. It is nonseparable otherwise. 
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2.3 Formula Based Grouping 

The ideal goal of problem decomposition is that the decision variables in one subcomponent are non-

separable, and the decision variables in any two subcomponents are separable. Recently, grouping 

strategies have been proposed extensively, such as random grouping [34], MLCC [35], variable 

interaction learning grouping (CCVIL [2]), route distance grouping [16], differential grouping [18], delta 

grouping [19], and so on. However, these strategies still cannot accurately group the variables. For 

example, random grouping method randomly shuffles the indices of the variables to obtain a different 

grouping at the beginning of each cycle and it uses a constant group size, and randomly decomposes the 

high-dimensional variable vector into several sub groups. These are then optimized with a certain EA. 

The problem of random grouping is that the best group size is not known in advance. MLCC adopts a 

multilevel strategy for decomposition. It maintains a decomposer pool from which decomposers with 

different group sizes are selected depending on the problem under investigation and the stage of the 

evolution. For nonseparable problems, MLCC tends to select the decomposers with large group sizes. 

However, determining a good pool of decomposers is hard in practice since the interaction between 

variables is usually not known beforehand. CCVIL needs lots of fitness evolutions and so on. 

To overcome this shortcoming, the formula based grouping (FBG) strategy [31-32] is adopted to 

decompose the problem in this paper. FBG can identify the separable variables and the interacting 

variables, and can correctly group the variables into the several independent groups. Each group can be 

optimized independently. The FBG framework is as follows: First, building a set N-Sep whose elements 

are the factors determining variables interaction; Second, matching these elements to the test problem; 

finally, if an element is matched, putting the variables connected by the element into a group. Note that a 

general objective function consists of the finite number of four arithmetic operations ‘ + ’, ‘ − ’,‘× ’ and 

‘ ÷ ’ and composite operations of basic elementary functions (e.g. exponential functions x

a , logarithmic 

functions log ax ). Based on these, a set N-Sep is constructed as follows: 

(1) Variables separability in four arithmetic operations. If function 
1 2 m

( ) ...f x x x x= + + +  then each 

i
x ; where i =1 ~m, it is obvious that the operators‘ + ’and ‘ − ’ do not affect the variables separability. So 

in this function the variables can be optimized independently, and thus the variables 
1, 2
, ,...,

m
x x x in this 

function are separable. While if a function contains ‘× ’ and ‘ ÷ ’ of two variables, these two variables can 

not be optimized independently and thus they are non-separable. We put ‘× ’ and ‘ ÷ ’ into a set N -Sep. 

(2) Variables separability in a composite function. For a basic elementary function ( )( )g h x , the 

variables in x  are separable if ( )g y  is monotone and the variables in ( )h x  are separable, for example, 

( ) y
g y e= ; 

1 2
( )h x x x= + ; ( )( )g h x , it’s obvious that 

1
x  and 

2
x  is separate ; otherwise, variables in 

( )( )g h x  are non-separable. Therefore, put the non-monotonic functions (e.g. trigonometric functions, 

inverse trigonometric functions, etc.) of the basic elementary functions into N -Sep. 

(3) Some special circumstances about the variables separability. From item (1), we know that the 

variables linked by operations ‘ × ’ or ‘ ÷ ’are non-separable, nevertheless, if two functions are 

exponential functions, and the variables in exponential function are separable, then the variables in ‘× ’ or 

‘ ÷ ’of two exponential functions are separable. Put ‘× ’ and ‘ ÷ ’ into a set N -Sep. (except that both 

composite functions are exponential functions). 

From these three cases, the set N -Sep can be constructed, and the variables can be classified into 

different groups by the following Algorithm 1. 
 

Algorithm 1 The flow of the formula based variable grouping strategy FBG 

Step1.  The elements in N -Sep. can be seen as strings (such as cos and sin ); 

Step2.  Using regular expressions to match these strings in N-Sep for each problem; 

Step3.  If a string is matched from the problem, then these variables contained in this string will be 

classified into a group, and so on; 

Step4.  If some variables are not matched, then they are separable, and each variable is put into a group. 

 

According to Algorithm 1, the variables can be classified into several independent groups, and each 

group can be optimized independently. We adopt FBG strategy in our paper to divide the original 

problem into several sub problems to make the optimization easier and more efficient. Thus the original 
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problem can be divided into several independent sub-problems. For detailed information, please refer to 

literature [31, 32]. 

3 Genetic Operators and Local Search Scheme 

The genetic algorithm follows the general procedure of an evolutionary algorithm [1]. The initial 

population P
G

which consists of NP individuals
,i G

X , 1,2,...,i NP= where G is the current generation. 

Then, crossover, mutation, and selection operations are employed, and the above process is repeated until 

a termination criterion is reached. 

3.1 Crossover Operator Based on Permutation Latin Square 

After FBG strategy is used to divide the N-dimensional vectors into several groups, the crossover 

operator will work on every independent group and get several potential offspring. To design the 

crossover, we first introduce the concept of permutation Latin square. For any ( )1 2
, ,...,

q

q
x x x R∈ , a shift 

mapping :
q q

S R R→  is defined as 

 ( ) ( )1 2 2 3 1
, ,..., , ,..., ,

q q
S x x x x x x x=  (3) 

Definition 2 A q q× matrix is called a permutation Latin square of order q  if the matrix satisfies the 

following conditions: 

(I).Its first row ( )1 2
, ,...,

q
a x x x= , denoted as

1
V , is a permutation of ( )1,2,...,q . 

(II).Its i th−  row, denoted as
i

V , is given by ( )1i i
V S V

−

= for 2 ~i q= . 

A permutation Latin square of order q  with a  being its first row is denoted as ( ).Ls q a , and its i th− row 

and the j th−  column element is denoted as
,i j

v . Permutation Latin-square design is one of the uniform 

design methods ([5]) which have been widely used in many application problems. It can generate points 

uniformly scattered in a domain. We want to make use of the permutation Latin square to design an 

efficient crossover operator. Note that the crossover operator is mainly focused on exploration, i.e., 

searching for the good solution near their parents. Keep this in mind, when two parents are given, it is 

better for us to find a way which has the more possibility to generate better offspring near their parents 

by using crossover operator. How to realize it? Since we do not know initially where the optimal solution 

is, it is reasonable to generate the offspring which scatter near their parents as uniformly as possible. We 

use permutation Latin-square to design a crossover operator as follows. Suppose that the domain 

considered is given by 

 [ ] { }, , 1~
q

j j j
L U x R l x u j q= ∈ ≤ ≤ =   (4)  

Where
j

x , 
j
l and 

j
u are the j th−  component of x , L and U, respectively. Choose a row vector q

a R∈  

and generate a permutation Latin square of order q , ( ) ( ).

ij
q q

Ls q a v
×

= . Then permutation Latin-square 

generates a set of uniformly scattered points in [ ],L U  as follows: 

 ( ){ }1 2
, ,..., , 1~

i i

i i in
W W w w w i q= =   (5) 

Where ( )
2 1

,i, 1~
2

ij

ij j j j

v
w l u l j q

n

−

= + − = . For any two parents ( )1 2
, ,...,

i

i i in
X x x x= , 1,2x = , define 

 ( )1 2
, ,...,

n
L l l l= , ( )1 2

, ,...,
n

U u u u=  (6) 

With 

 { }1 2
min ,

j j j
l x x= , { }1 2

max ,
j j j

u x x= , 1~j n=   (7) 
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and define a domain 

 { }, , 1~
n

j j j
L U x R x u j n⎡ ⎤ = ∈ ≤ ≤ =⎣ ⎦   (8) 

Choose a proper Latin square ( ).

ij
Ls q a v=  of order q . If q n≥ , the i-th offspring 

 ( )1 2
, ,...,

i

i i in
O o o o=   (9) 

is generated by 

 ( )
2 1

, 1~
2

ij

ij j j j

v
o l u l j n

q

−

= + − =    (10) 

for 1~i q= . If q n< , divide the components of 1
X , 2

X , L  and U  into q  sub-vectors in the same way 

as follows: 

 ( )1 1 2
, ,...,

q
X A A A= , ( )2 1 2

, ,...,

q
X B B B=    (11) 

 ( )1 2
, ,...,

q
L L L L= , ( )1 2

, ,...,

q
U U U U=   (12) 

Where j
A , j

B , j
L  and j

U are sub-vectors of the same dimension and the dimensions of q  sub-vectors 

are randomly determined. The i th−  offspring  

 ( )1 2
, ,...,

i i i i

q
O O O O=   (13) 

is generated by 

 ( )
2 1

, 1~
2

iji

j j j j

v
O L U L j q

q

−

= + − =   (14) 

for i 1~ q= . 

Example 1. We choose q 4=  and the first row of Latin square ( )a 1,2,3,4= . Then the Latin square of 

order 4 is 

 ( )

1 2 3 4

2 3 4 1
s 4,

3 4 1 3

4 1 3 2

L a

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

  

Suppose that 4n =  and two parents are ( )1
0,0,0,0X = and ( )2

1,1,1,1X = , respectively. Then we 

have q n≥ . In this case, we obtain from Eq. (6) that 

 ( ) ( )0,0,0,0 , 1.1.1.1L U= =   

and we obtain from Eq. (9) and Eq. (10) that four offsprings are 

 

( )

( )

( )

( )

1

2

3

4

1
1,3,5,7

8

1
3,5,7,1

8

1
5,7,1,3

8

1
7,1,3,5

8

O

O

O

O

=

=

=

=
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Suppose that 6n = and two parents are ( )1
0,0,0,0,0,0X =  and ( )2

1,1,1,1,1,1X = , respectively. Then we 

have 
q n< . In this case, we obtain from Eq. (6) that 

 ( ) ( )0,0,0,0.0,0 , 1.1.1.1,1,1L U= =   

Suppose that 1
X , 2

X , L  andU are randomly divided into 4 sub-vectors as follows: 

 

( ) ( )

( ) ( )

1 1 2 3 4 2 1 2 3 4

1 2 3 4 1 2 3 4

, , , , , , ,

L ,L ,,L ,L , , , ,

X A A A A X B B B B

L U U U U U

= =

= =

  

Where 

 

1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4

L (0,0,0),L 0,L 0,,L 0,

(1,1,1), 1, 1,, 1.

A A A A

U B U B U B U B

= = = = = = = =

= = = = = = = =

  

Then we obtain from Eq. (13) and Eq. (14) that four offsprings are 

 

( )

( )

( )

( )

1

2

3

4

1
1,1,1,3,5,7

8

1
3,3,3,5,7,1

8

1
5,5,5,7,1,3

8

1
7,7,7,1,3,5

8

O

O

O

O

=

=

=

=

  

3.2 Adaptive Mutation Operator 

The purpose of mutation is to increase the diversity of population and avoid the premature. In 

conventional mutation process [11, 30], the GA chooses the mutation offspring with an given 

possibility
m
p , and they didn’t consider the diversity of the population. In this paper, we propose an 

improved adaptive mutation operator based on the diversity on every dimension. 

The main idea is that when the numerical variance of some dimensions is relatively small, it may mean 

the diversity at these dimensions is very low and it is necessary to increase the diversity of these 

dimensions. The algorithm selects several individuals from the current population ( )P k  and crossover 

offspring set ( )O k  with mutation rate 
m
p  for mutation. 

The algorithm framework is shown in Algorithm 2, and the meaning of the notations used in the 

Algorithm 2 is as follows: 

M The total number of individuals selected to take part in mutation; 

Q  The number of individuals in ( ) ( )P k O k∪ ; 

N  The dimension of the problem; 

D : A parameter of positive integer which means D  dimensions will undergo the mutation, 

where D N< . 

( )1 2
, ,...,

D
d d d d= : determine the dimensions 

1 2
, ,...,

D
d d d  will undergo the mutation. For 30N >  we 

choose 5D =  and for 30N >  we choose 10D = ; 
 

Algorithm 2 Adaptive Mutation Operator 

 

Choose individuals for mutation; 

for 1i =  to Q  do 
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if 
m

rand p<  then 

The th
i  individual is selected for mutation; 

end if 

end for Suppose M  individuals have been chosen to take part in mutation. 

for 1j =  to N  do 

Calculate the j-th  dimensional mean value ( )m j  and standard deviation ( )std j  of ( ) ( )P k O k∪ ; 

end for 

Let ( )1 2
, ,...,

D
d d d d=  denote the indices of the D  dimensions with the smallest std  values; 

For each chosen individual, its 
j

d th−  dimension value ( )jZ d  will be changed by mutation to 

 

( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )( )

,        

,       

j j j j j

j j j j

Z d Z d Z d l d r if Z d m j

Z d Z d u d Z d r else

⎧ = − − ∗ <⎪
⎨

= + − ∗⎪
⎩

   (15) 

for 1~j D= . 

3.3 Local Search Scheme 

To speed up the convergence, we introduce a local search scheme DFP Quasi-newton method into our 

algorithm. DFP Quasi-newton method is an efficient local search method to get the local optimal 

solutions, but it requires that the function is differentiable and has to compute the derivatives of the 

function. In this paper, we propose a modified the Quasi-newton method in which the derivatives are not 

required. We use difference quotient to estimate the partial derivative as follows: 

 

( ) ( )( )

2

i i

i

f x H f x Hf x

x h

+ − −∂
≈

∂
   (16) 

where ( )0,...,0,H,...,0
I

H = with h  being the i th−  component. We used the modified DFP Quasi-Newton 

method as the local search method to improve the convergence speed of the algorithm. The modified 

DFP Quasi-Newton method is shown in Algorithm 3. 

 

Algorithm 3 The local search method  

Step1. Choose an initial point 0
x  and an initial positive definite matrix 0 n

H I= ; 0
H H=  and searching 

precision remarked as eps ; 

Step2.  If ( )kg x eps≤  eps  then algorithm stops, the optimal solution is set to k
x , otherwise, go to 

step3. 

Step3.  Set the search direction ( )kP Hg x= − ; 

Step4.  Calculate the step length l by 

( )
0

min ( )kf x P k
λ

λ
>

+  

and set 1k k
x x Pλ

+

= + ; 

Step5.  If 1k n+ = , let 0
H H= ; 0k = , otherwise, set 

 

( )( )

( ) ( )

( )( )

( ) ( )

1 1 1 1

1 1 1 1

T T
k k k k k k k k k

T T
k k k k k k k k k

x x x H g g g g H
H H

x x g g g g H g g

+ + + +

+ + + +

− − −

= + −

− − − −

 (17) 

Go to step3. 



Journal of Computers Vol. 28, No. 3, 2017 

101 

4 A Hybrid Genetic Algorithm 

In this section we propose a hybrid genetic algorithm based on variable grouping and uniform design for 

global optimization problems. The permutation Latin square method is used in the initialization of the 

population and crossover operator to enhance the search capability of the algorithm. Also, we adopt FBG 

grouping strategy in the crossover process. 

4.1 Space Division and Population Initialization 

In this paper, we use the Latin square ( ),
s

L N a  to generate evenly scattered points in the solution space. 

When the feasible solution space is large, it may be desirable to generate more potential chromosomes 

for a better coverage, so we divide the solution space into S subspaces, where S  is the design parameter. 

We choose the s th− dimension such that 

 { }
s s i i

u l max u l− = −   (18) 

Where 1,2,...,i N= ; Then in each subspace, N  points are generated evenly. Thus the total N S×  points 

will be generated. The best NP  points among these N S× points form the initial population. 

The following steps of Algorithm 4 and Algorithm 5 show the space division process and initialization. 

 

Algorithm 4 Divide Solution Space 

Step1.  Select the s th−  dimension, which satisfies us { }
s s i i

u l max u l− = − , where 1,2,...,i N= ; 

Step2.  Cut the feasible region into S  domains along dimensions ( ) ( ) ( ) ( ) ( ) ( )1 , 1 , 2 , 2 , ..., ,L U L U L S U S⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦   

where the lower and upper bounds of the i-th domain along dimension s are  

 

( ) ( )

( )

1

         1,2,..., N

s s

s s

s s

s s

u l
l i l i

S
i

u l
u i u i

S

⎧ −⎛ ⎞
= + −⎪ ⎜ ⎟

⎪ ⎝ ⎠
=⎨

−⎛ ⎞⎪ = + ⎜ ⎟⎪ ⎝ ⎠⎩

   (19) 

The lower and upper bounds in any domain along any other dimension j  are still
j
l  and

j
u  

 
Algorithm 5 Population initialization 

Step1. Use algorithm 4 to divide the solution space to S  sub spaces such that NP N S< × , where NP  is 

the population size; 

Step2. Use Latin square ( ),
s

L N a of order N  to generate N  points in each sub-space according to the 

method in crossover operator; 

Step3. Among the N S∗ points, select NP  best points as the initial population. 

4.2 The Proposed Hybrid Genetic Algorithm 

In this section, we present the proposed hybrid genetic algorithm. We generate a good initial 

population with chromosomes and use permutation Latin square method to generate good initial 

population, and then evolve and improve the population iteratively. Besides, we apply the proposed 

crossover and the adaptive mutation operator to generate a set of potential offspring in iteration. Then we 

select the point with the smallest function values from these potential offspring and the parents to form 

the next generation. The overall algorithm is as Algorithm 6. 

 

Algorithm 6 A hybrid genetic algorithm based on FBG and Latin square 

Set the initial iteration number k=0  and the maximal number of generationsMax_gen ; 

Use algorithm 5 to generate the initial population ( )P k ; 

While k Max_gen<  do 
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Randomly select some individuals from current population with probability
c
p . These points together 

with the best point of the population will take part in crossover and mutation procedure; 

Use the crossover described in section 3.1 to generate the set of offspring ( )O k ; 

Generate the set of offspring ( )M k  by using mutation algorithm 2; 

Select NP chromosomes from ( ) ( ) ( )P k O k M k∪ ∪  with the smallest function value to form the 

next generation. 

Identify the best point _new best ; 

Execute the local search algorithm 3 by using the current best point as the initial point to get a new 

point '

x ; 

Set '

_new best x= ; 

1k k= + ; 

end While 

When the stop criterion is satisfied, output the current best individual; 

5 Experiments 

5.1 Test Functions 

We execute the proposed algorithm to solve the following test functions: 

( )1

1

sin

N

i i

i

f x x
=

= −∑   

( )( )2

2

1

10cos 2 10

N

i i

i

f x xπ
=

= − +∑   

( )2

3

1 1

1 1
20exp 0.2 exp cos 2

N N

i i

i i

f x x
N N

π

= =

⎛ ⎞ ⎛ ⎞
= − − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

∑ ∑   

2

4

1 1

1
cos 1

4000

NN

i

i

i i

x
f x

i
= =

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
∑ ∏   

2

5

1

N

i

i

f ix
=

=∑   

2

6

1 1

N i

j

i j

f x
= =

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ ∑   

2

7

1

N

i

i

f x
=

=∑   

)4

8

1

0,1
N

i

i

f x Random
=

⎡= + ⎣∑   

9

1 1

NN

i i

i i

f x x
= =

= +∑ ∏   

Table 1 lists the basic characteristics of these test functions. 
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Table 1. Basic characteristics of these test functions 

Test function Feasible space Global minima Dimension 

1
f  [ ]500,500

N

−  -12569.5 30 

2
f  [ ]5.12,5.12

N

−  0 30 

3
f  [ ]32,32

N

−  0 30 

4
f  [ ]600,600

N

−  0 100 

5
f  [ ]10,10

N

−  0 30 

6
f  [ ]100,100

N

−  0 30 

7
f  [ ]100,100

N

−  0 30 

8
f  [ ]1.28,1.28

N

−  0 30 

9
f  [ ]10,10

N

−  0 30 

5.2 Control Experiment 

We adopt the following parameter values: 

(1) We want to take more points distributed evenly in the feasible region at the beginning, and divide 

the search space into S sub-domain, where 100S = . Use the Latin square ( ),
s

L N a  with ( )1,2,...,a N=  

to generate N points in each sub-domain; 

(2) The population size: 50NP = ; 

(3) Crossover probability 0.2
c
p = ; mutation probability 0.12

m
p = ; the order 10q =  Latin square is 

used in crossover process. The number of dimensions chosen to take part in mutation is 

 

10  N=100

5    N=30
D

⎧
= ⎨
⎩

  

(4) Stop criterion: When the best solution cannot be improved further in 20 successive generations 

after 100 generations. 

5.3 Results and Comparison 

We performed 30 independent runs for each algorithm on each test function and recorded: (1) the mean 

number of function evaluations (FEs), (2) the mean function value (Mean), (3) the best value (Best), (4) 

the worst value (Worst) and (5) the standard deviation of the function values (Std).  

Table 2 shows the performance of the proposed hybrid genetic algorithm based on formula based 

grouping method (FBG-GA). We see that the mean function values are equal or close to the optimal ones, 

and the standard deviations of the function values are relatively small. 

In Table 3, we compare the performance of the proposed algorithm FBG-GA with orthogonal learning 

cuckoo search algorithm (OLCS) [13] and social learning particle swarm optimization algorithm (SL-

PSO) [23]. It can be seen from Tables 3, that the difference between the mean solution of our algorithm 

and the mean solution of each of the compared algorithms is significant (especially for f1and f5). The 

algorithm we proposed and the compared algorithms reach a similar level of performance for the most 

functions, but our algorithm uses less number of function evaluations. The above comparisons and 

analysis indicate that proposed algorithm can yield higher mean solution quality than both of the 

compared algorithms. In addition, our algorithm requires a smaller mean number of function evaluations 

than the compared algorithms. Furthermore, it gives small standard deviations of function values, and 

hence has more stable solution quality. 
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Table 2. The results 

Test  

function

Function  

evaluation 
Mean Std Worst Best 

Global  

minima 

1
f  25349 -12569.49 5.3065 02e − -12569.48 -12569.49 -12569.5 

2
f  28051 0 0 0 0 0 

3
f  31206 8.8818 16e −  0 8.8818 16e −  8.8818 16e −  0 

4
f  26699 0 0 0 0 0 

5
f  29609 0 0 0 0 0 

6
f  27012 0.2499 01e− −  1.2748 04e − 0.2497 01e− −  0.2500−  0 

7
f  26708 0 0 0 0 0 

8
f  25502 7.9095 03e − 3.3672 03e − 1.4443 02e −  4.4149 03e −  0 

9
f  28389 0 0 0 0 0 

Table 3. Comparison of SL-PSO, OLCS and the proposed algorithm FBG-GA, where the results for SL-

PSO and OLCS are from [13, 23] personally 

Test function Algorithm SL-PSO OLCS FBG-GA 

Mean - -12514 -12569.49 

Std - 75.7934 5.3065 02e −  1
f  

FEs - 900000 25349 

Mean 1.55 01e +  0 0 

Std 3.19 00e +  0 0 2
f  

FEs 200000 300000 28051 

Mean 5.51 15e −  8.8817 16e −  8.8818 16e −  

Std 5.51 15e −  0 0 3
f  

FEs 200000 150000 31206 

Mean 0 0 0 

Std 0 0 0 4
f  

FEs 200000 200000 26699 

Mean - 5.0749 05e −  0 

Std - 3.3339 05e −  0 5
f  

FEs - 300000 29609 

Mean 4.66 07e −  5.5768 147e −  0.2499 01e− −  

Std 2.48 07e −  1.4262 146e −  1.2748 04e −  6
f  

FEs 200000 500000 27012 

Mean 4.34 90e −  1.5686 107e −  0 

Std 5.26 90e −  4.5543 107e −  0 7
f  

FEs 200000 150000 26708 

Mean - 5.0749 05e −  7.9095 03e −  

Std - 3.3339 05e −  3.3672 03e −  8
f  

FEs - 300000 25502 

Mean 1.50 46e −  - 0 

Std 5.34e 47−  - 0 9
f  

FEs 200000 - 28389 

6 Conclusions 

We have developed a hybrid genetic algorithm based on FBG grouping strategy and Latin square design 

for global numerical optimization with continuous variables. Our objective has been to apply the Latin 

square design to enhance the GA so that it can be more statistically sound and robust. In particular, we 

apply Latin squares and FBG grouping to design a new crossover operator, so that the problem with high 
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dimension can be changed into several lower dimension sub-problems. Besides, we propose a new 

mutation operator based on variance. Furthermore, we add the local search in the GA to speed up the 

algorithm. The proposed algorithm is executed to solve 9 benchmark test problems, and we compare the 

results to SL-PSO and OLCS. The results indicate that it can find optimal or close-to-optimal solutions 

for these test functions.  

However, there are also two main shortages in our work, one is all problems considered in this study 

are unconstrained optimization issues, the other is FBG can’t be used in black-box problems. Future 

work may include the extension of the proposed method for large-scale constraint optimization, and the 

proposed algorithm will be tested on more test functions and higher dimensions. Besides, adding other 

techniques into FBG-GA and applying the proposed algorithm into real-world problems is also an 

interesting topic. 
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