
Journal of Computers Vol. 28, No. 3, 2017, pp. 251-264

doi:10.3966/199115592017062803020

251

Efficient Parallel Method for Documents Similarity

in a Large Dataset

Niyigena Papias1, and Zuping Zhang1*

1 School of Information Science and Engineering, Central South University,

Changsha, 410083, PR China

papiasni@yahoo.fr, zpzhang@csu.edu.cn

Received 12 October 2016; Revised 06 March 2017; Accepted 30 March 2017

Abstract. Near-duplicate document detection attracts much attention from researchers since the growth of

documents production is very high. The main problem confronted while looking for duplicate or near-duplicate

document detection is a very high dimensional data which increases the time and space requirements for

processing the data. With the trend of production of new documents, the system to detect similarity among

documents becomes almost impracticable. We are proposing a new approach for solving this problem which

consists in reducing the dimensionality of data and also use efficiently parallel programming to fully maximize

the available capacity of the hardware. The intuition we have by using parallel programming is that more

processors/core will perform better than only one processor if their management is well done. We have

implemented our method and tested it empirically and experimental results have demonstrated that our algorithm

performs better than other methods used for All Pairs Similarity Search (APSS) which employ multi-core and

multi-programming to deduct the similarity of the documents. The results show that our method can reduce up to

65% terms to be used in similarity computation and its execution time is better than Partition-based Similarity

Search method which uses parallel processing for document similarity.

Keywords: dimensionality reduction, document similarity algorithm, pairwise document similarity, parallel

programming, query likelihood

1 Introduction

Near-duplicate document detection has attracted the attention of many researchers for a few decades ago.

Nowadays, the development of technology for processing and storing data has allowed the production of

billions of documents and web pages stored in the cloud. This way, the system to determine near-

duplicate document has a big number of terms to be computed. Applications for Near-Duplicate

Document Detection use many data to identify objects or set of objects similar one to another under a

specified threshold. Given the massive data to be involved, to determine document similarity becomes a

time-consuming process [1, 10]. Recently, researchers have proposed different methods to solve this

problem but as the number of documents increases the performance of these methods suffer. For example,

the method which uses shingles even if has a very good precision, it becomes impractical for a large

corpus. TF-IDF also has been very efficient as metric to calculate the similarity between documents but

fails for big datasets because the increase in the number of documents implies an exponential increase in

the number of terms to be considered in the computation. The exact method which compares every term

in two different documents is also impractical and fails for few documents only. In this paper, we are

proposing a new method which considers the reduction of the terms to be used in the corpus so that the

comparison of terms is applied to a subset of terms representing the large dataset.

The objective of Pairwise Document Similarity detection is to determine which document is related to

another one in the corpus, having the threshold to be used for making such decision. This task becomes

very complex when it is performed on large corpus because each document is compared to every

document in the corpus, giving a Cartesian product with execution time of Ω (2n). The function of

document similarity gives the importance on a word in the document which determines if the word

should be used in similarity computation or not [11, 18]. This is very important for our method because

* Corresponding Author

Efficient Parallel Method for Documents Similarity in a Large Dataset

252

two documents may not be similar by comparing every word but still have the same content and only a

small portion differentiates them or some parts of the document are relocated to different places within

another document. The objective of our method is to identify that important content within the document

and efficiently use it to determine the similarity among the documents. Because the document similarity

detection system needs to handle a very large collection of documents, an ideal algorithm for such system

should give a response in real-time. Thus, efficiency has been the main focus on different approaches

solving the similarity problem. Different methods have been implemented by researchers to solve this

problem, but sophisticated data structures and clever algorithms optimization alone are not sufficient

anymore.

In this paper, we are presenting a new method to approach this complex problem by performing

efficiently the similarity computation of documents. The contribution of our method can be summarized

as follows: the first is to reduce the dimensionality of the large collection of documents to a subset of

terms. This subset is selected to represent the large document collection with the intuition that applying

similarity function to reduced terms will increase the efficiency of the process; the second contribution is

to exploit the available processing power of parallel computer using Multi-core, GPU, and cluster of

computer, and the third contribution is to use best data structures to allow optimized algorithm and to let

it be shared among several processes executed by multiprocessor of the machine and avoid inter-

processor communication. The results of our proposed method have shown that our method performs

better than previously proposed method, even better results for large data collection which justify the

scalability of our method.

2 Related Work

In the past few decades ago, many types of research have been done for document similarity. The

methods in the state of the art can be grouped into two main categories: heuristics methods and exacts

methods. In exact methods, researchers try to find an exact solution as in the context of a database but the

practicability is minimal. For Heuristics methods, researchers use different techniques to give a solution

to this problem as hashing, shingling, and dimensionality reduction. In this category of research, Charikar

has defined in [15, 17] a hashing scheme as a distribution on a family of hash functions operating on a

collection of vectors in which for any two vectors, the probability that their hash value becomes equal is

proportional to their similarity.

The large data set available and computation nature of pairwise similarity are a limiting factor for the

Near-Duplicate detection applicability to large-scale real-world problems and calls for alternative

approaches. Given a corpus of documents in a d dimensional space, existing pairwise similarity search

algorithm compute O(n2) similarity scores [2, 16]. With the trend of data production and data availability,

a good approach should not be limited to the optimization of the algorithms used but also should consider

the new technologies offered by the hardware and use both techniques for an efficient solution.

The hardware performance improvements are currently achieved not by faster processors but by

increasing the number of processor cores. This yields adaptive algorithms which take this advantage and

use the parallelism in order to solve problems which were before resources greedy. Nowadays, historic

difficulties of parallel programming are almost overcome: the cost of parallel systems has significantly

decreased and, in fact, by 2008 it was becoming difficult to find a single CPU desktop system, with a

single core, CPUs being relegated to notebooks and embedded devices. By 2012, even smartphones were

starting to support multiple CPUs [13].

One goal of parallel programming among others is performance. Traditionally, the main goal of

parallelization was to speed up the computation needed to solve a particular problem by engaging several

processors and dividing the total amount of work among them [3]. Given the recent trends on the part of

all major manufacturers towards multicore/multithreaded systems, parallelism is the way to go for those

wanting the avail themselves of the full performance of their systems. For decades, different types of

researches have been done to use in a perfect way parallelism for effective heuristic optimal or near-

optimal solutions to difficult optimizations problems. Algorithms have been designed for exploiting high-

performance and parallel computing resources for randomized iterative evolutionary computation [3, 9].

High performance and parallel computing have been extensively studied to tackle the previously

mentioned computational challenges in Near-Duplicate document detection because this application has a

very good application field for parallelism. With exponentially growing data sets and modern

Journal of Computers Vol. 28, No. 3, 2017

253

multiprocessors/multi-core system architecture, it is obvious that serial solutions for document similarity

detection are the major rate-limiting factor for the applicability of similarity detection for large data

collections, so parallelization becomes inevitable. In this context, Awekar et al. [2] were interested in the

implementation of a parallel solution of All Pairs Similarity Search for shared memory multi-processor

machines. In their method, the inverted index to use in similarity computation is shared among

processors. They have provided different techniques to optimize the inverted index code performance and

ease Map Reduce paradigm. However, even with extensive optimization to filter unnecessary

computation, MapReduce communication with the inverted index can increase quadratically as the data

set size scales up and can incur significant synchronization and I/O overhead. To improve the method

presented above, Kulkarni [9] has extended an alternative selective search, an approach that partitions the

data set based on document similarity to obtain topic-based shards with few computational resources. In

his approach, only a few shards that are estimated to contain relevant documents are searched. Even

though this approach achieves a good level of effectiveness, its efficiency suffers for large data set. Our

method brings an improvement to come up with a solution to these weaknesses: the corpus is reduced,

thus, the superset of terms in documents collection is represented by a subset of terms which have the

same power to represent the documents. With existing methods even though the index is shared in

multiprocessor, the locking mechanism between different processor is hindering the performance of the

method. Our method allows all the processes to access simultaneously the data structure created to

eliminate the idle time of the processors due to the waiting time needed to avoid data race.

We show how to exploit massively parallel high-end computing resources for solving document

similarity problem which belongs to a classic combinatorial optimization problem. To achieve this

objective, our method uses index sharing technique and divides the computation into independent tasks

over the central concurrent dictionary shared across all processors as a read-only data structure. The

approach performs an early removal of unwanted comparisons which eliminate and reduce a significant

amount of I/O, memory access, and computation. To compute the similarity among documents, our

method allows multiple processors to access the created data structure in parallel and real-time. It is clear

that the design of the new data structure will not need locking scheme which allows concurrent access to

move “freely”. The off-line creation of the data structure will use lazy values to avoid the long wait of

tasks while locking to avoid concurrent update of the same variable by multiple processes at the same

time.

3 Efficient Parallel Document Similarity Detection Method (EPDS)

3.1 The Representation of Document for Similarity

Document similarity system performance depends on the choice made while representing a document;

thus a more comprehensive representation of a document leads to a more efficient system. The design of

the method we are proposing will use a better document representation to ease document similarity

computation. The state of the art has defined several methods to represent a document in Information

Retrieval. Among them, the approach using probability ranking principle has achieved a considerable

recognition in the last few decades, because the probability is the best method to be used when

representing and implementing the uncertainty.

The simple way to detect near duplicates is to sequentially submit each document from a collection as

a query to the system to search for highly similar documents in the same collection. By the use of an

inverted index as adopted in most Near-Duplicate detection algorithms, the time complexity for this

process is sub-linear (to the number of documents in the collection), however, it can be O(n2) in the worst

case. The main objective of our method is to rank documents optimally given a document so that similar

documents would be ranked above no similar ones. To allow the system to have the best efficiency, our

method uses Language Model which refers to a probabilistic model in the text and defines the probability

distribution of terms in a given document. In this modeling, as proposed by Ponte and Croft, the query is

assumed to be a sample of words drawn according to a language model estimated based on a document

[6]. Thus, two documents will be considered as similar if their Language Model gives the highest

probability.

To get the result, we need to define both language model for the document considered as a query and

other documents in the collection to be able to sort out the probability. Let consider Q as a query, D as a

Efficient Parallel Method for Documents Similarity in a Large Dataset

254

document, and θD as a language model estimated on document D. The score of D is a conditional

probability p(Q|θD), in other words it means Score(Q, D) = p(Q|θD). According to this score, we define a

binary random variable Xi∈{0, 1} for each word wi to indicate whether word wi is present (Xi = 1) or

absent (Xi = 0) in the query. Thus model θD would have precisely |V| parameters, i.e., θD = p (Xi = 1|D) i

∈ [1, |V|], which can model presence and absence of all the words in the query. Thus, according to this

model, the query likelihood can be written as

 (|) (1|)
i

iw Q
P Q D p X Dθ

∈

= =∏ . (1)

In this formula, the first product represents the words in the query and the second words not occurring

in the query. To capture TF, we can treat each word wi in D as a sample from our model where only wi

has shown up and all other words are absent. Thus according to the maximum likelihood (ML) estimator,

p(Xi = 1|D) is equal to the relative frequency of word wi in D, i.e.,

(,)
(1|)

| |

i

i

c W D
p X D

D
= = (2)

Where c(wi, D) is the count of word wi in D and |D| is the length of D (i.e., the total word)

You may prepare your camera-ready manuscript with MS-Word using this typeset together with the

template joc.dot (see Sect. 3) or any other text processing system. In the latter case, please follow these

instructions closely in order to make the volume look as uniform as possible.

Our method uses the probability model to efficiently sort out similar documents in a large data set.

Like in other All Pairs Similarity Search process, our method considers every document in the collection

to be represented as a query and is compared to the rest of documents in the same corpus. Thus, our

method uses “Language Model” to obtain the weight of every term in every document and then rank the

documents according to the weight of their respective terms. Only documents with the probability of

similarity greater or equal to the threshold will be maintained. To rank the documents, we determine the

probability by which the query (represented by a document) can be generated by another document

language model [8]. As we want to produce the documents responding to the query, we would in general

like to calculate P(D|Q) to rank the documents. Using Bayes’ rule, the probability is given by the formula:

 (|) (|) ().P D Q P D Q P D= (3)

The right-hand side is rank equivalent to the left-hand side (i.e. we can ignore the normalizing constant

P(Q). P(D) is the prior probability of a document and P(Q|D) is the query likelihood given the document.

The probability of ranking a document is P(Q|D) which is given by the following formula

1

(|) (|)
n

i

i

P Q D P q D
=

=∏ (4)

Where qi is a query term, and we know that there are n words (or terms) in the query. To compute this

score, we need to have estimates for the language model probabilities. The obvious estimate would be

,
(|)

| |

i

i

fq D
P q D

d
= (5)

Where fqi, D is the number of times word fi occurs in document D, and |D| is the number of words in D.

For a multinomial distribution, this is the maximum likelihood estimate, which means this is the estimate

that makes observed value of fqi, D most likely.

The execution time of exact method to determine Pairwise document similarity is quadratic to the data

size and thus does not scale well for a big dataset. Our method reduces the execution time by using two

techniques: data size reduction and parallel processing. While processing the similarity, all the terms in

the corpus will not be considered because it’s obvious that some terms in the documents cannot help for

determining its similarity to other documents. These terms are considered as noise, removing them from

the text cannot affect the determination of document similarity but will reduce considerably the size of

text to go through in the computation. Moreover, our method presents an efficient algorithm which

considers the input of hardware new technologies: with the recent trends on the part of all major

manufacturers towards multi-core/multithreaded systems, parallelism should be considered if we want to

Journal of Computers Vol. 28, No. 3, 2017

255

fully benefit from the performance of the systems.

Fig. 1 shows the overview of the proposed method. It shows that the main input of parallel processing

in document similarity is the creation of the index to be used during the process. Many processors can

work in parallel to build the index without interfering each other. In serial processing, the creation of

such index takes more time because the process considers every term in the document which increases

the execution time. Again our method use parallel processing to process the query: the index created have

an array of all the terms in a document collection and every term has a posting list associated with the

term. Every list contains all documents in which the term appear and the weight of the term in the

document. We have seen before that every document is considered by our method as a query, thus, to

compute the similarity between a query with a document, the system fetch all posting lists for every term

in the query to compute the probability according to the weight of every term. Because the query

document has many terms, our method uses parallel processing to retrieve and compute the probability

because there will not be any interference between processors.

Fig. 1. EPDS method overview

3.2 Reducing Dataset Size

Document dimensionality is the first problem that hinders document similarity systems. The system is

dealing with millions of documents and thousands of billions of terms. To give an efficient solution, our

method reduces this dimensionality by representing every document in the collection by a set of

important phrases to be considered in the place of the document. By taking n important phrases in the

document, we expect to capture the whole idea in the document with an intuition that if two documents

are having the same important phrase it means that they are similar. Our method reads all documents in

the corpus, but only top n phrase in every document are kept. The algorithm to perform this task uses a

word frequency in the given document. After preprocessing of the text (removal of all noise in the

document, i.e. stop words, punctuation and words containing only a few characters), the frequency of

each word is computed and kept in the dictionary. This data structure is chosen because it is fast and

allows a constant access time Θ(1) which will help our method to speed up the access of term. To

determine which sentence to be considered in this process, our method uses the weight of every term in

the document, so the sentence which has terms with high weight will be chosen to represent the

document. The following algorithm implements this idea.

Efficient Parallel Method for Documents Similarity in a Large Dataset

256

Create_Documents Summary Algorithm

//This algorithm summarizes documents in corpus by representing each
document by its top n phrases
Input: The Corpus to summarize
 Paral_Level -> The number of processors/cores to be used
Output: Dictionary of Document summary

LPhrase = Empty list
LFrequencies = Empty list
Reader : The corpus reader
ReducedCorpus: The empty Corpus
//Get the list of all documents names from corpora
For i From 1 to Paral_Level
 //Obtain the small number of document in corpus to be summarized
by a task
 Srart_Task (
 ReducedCorpus = Get_nDocuments in Corpus(Paral_Level)
 For each Doc in ReducedCorpus
 Scores = []
 Doc = RemoveStopWords(Doc)
 Doc = Steemer(Doc)
 ListSent = SentenceTokenizer(Doc)
 For each word in Doc
 freq = Get the word frequency in the document
 DictSum.Add (word, freq)
 End for
 For each word in ListSent, i: Counter
 If word in DictSum then
 Scores[i] = Scores[i] + DictSum[word]
 End if
 End for
 DocSummary = Get top sentences in Scores
 ReducedCorpus.Append(DocID, DocSummary)
 End for
)

End For
//Create the language Model of the LFrequencies (every term is given
its weight)
For i From 1 to Paral_Level
 Srart_Task (
 LWords = GetWordTokens (ReducedCorpus)
 For each w in LWords
 Freq = Find_Frequency (w)
 LFrequencies.Add (w, Freq)
 End for
)
End For

//The dictionary can be written to the file for the future use
Return (Dict)

After the summarization of the documents in the collection, our method proceeds by creating the

Language Model of the reduced corpus which will be used in Near Document Similarity Detection. As

the document is represented by top n sentences, so the term should be normalized to the total number of

documents which remains after the reduction of documents to n sentences representing every document.

Journal of Computers Vol. 28, No. 3, 2017

257

This weighting scheme used by our method is also known as TF-IDF in Information Retrieval. In the

previous section, we have seen that to determine the similarity between documents, we should compare

the Language Model of both documents; so to allow the system to perform this comparison, there are

important data we need to keep in the concurrent dictionary such as term, documentID, and the weight

(representing the probability of the term).

The creation of this data structure will be in parallel to reduce the execution time used by the serial

method. In this scheme, the number of documents to be considered in the collection is divided into

different groups which will be allocated to each processor/core. These cores are using a concurrent

dictionary which allows them to access the dictionary in shared memory without the data race problem

and any other communication between the processors. This is very important for execution time

reduction because there will not be a waste time by any processor in waiting for the locking procedure

needed in memory shared data structures or the management of extra communication among different

process. The algorithm to implement the idea is the following.

Create_ProbabilityDistribution Algorithm

//This algorithm create a dictionary for terms in documents given
their probability distribution
Input: LFrequencies The Probability Distribution list for all
documents in corpus
 Paral_Level -> The level of parallelism
 Output: Dictionary, data structure to help parallel search to
compute documents similarity
 Dict = Empty Dictionary
 DocSimilList = Empty list

 //split the task in parallel tasks
 For i From 1 to Paral_Level
 Srart_Task (
 For each PDistr in LFrequencies
 PostingTerm = [Array(PDistr.Document, PDistr.Weight)]
 Dict[PDistr.Term].Append (PostingTerm)
 End For
)
 End For
 Return (Dict)

3.3 Pairwise Computation

The creation of dictionary representing the Language Model is an off-line process and should be timely

updated to take into consideration new documents in the collection. The process to determine the

similarity among documents has the Language Model as input to be used to rank the documents

according to the query. As we need the pairwise similarity, each document in the corpus is considered to

be a query, so the process will need the list of documents ID as well. Documents are considered to be

similar if they are sharing a certain number of terms not less than a threshold, so the algorithm needs to

create a data structure which will allow linking all documents sharing a particular term. Our method uses

a concurrent dictionary to implement this data structure whereby the key of the dictionary is the term of

the document while the value is the list of other documents in corpus sharing any term with the document

represented as key. This list (value of the dictionary) contains pairs of document ID and the total weight

of the shared terms. At this stage, we have the Language Model implemented in a dictionary which will

improve access time to any value in the LM since access a value in a dictionary is constant Θ(1). The

algorithm takes the list of all the documents and, in parallel, every Language Model for all documents

(considered as a query) is compared to the Language Model of the collection in the dictionary we have

created.

The similarity is given by applying the formula (4). The main input of this algorithm is the

computation of similarity in parallel. Actually, the formula is not directly applied by one process but

Efficient Parallel Method for Documents Similarity in a Large Dataset

258

many processes will contribute to the computation of the formula: a concurrent dictionary is used to be

updated by several processes each. The list of documents in the collection is divided into several chunks

which will be assigned to a different process. For a particular process, it will scan every term in the LM

of the documents, get the list of documents sharing the same term in the dictionary, compute the

similarity probability by using dot product, then add or update the similarity of the two documents in the

dictionary. The algorithm concludes the process by eliminating all documents in the data structure with

insufficient terms compared to the threshold. At this point, the similarity between documents can be read

in the dictionary in a constant time.

Create_Similarity Dictionary Algorithm

//This algorithm create a dictionary for similarity. Posting key is
document name, value is the similarity //with the query
Input: DictionaryProb The Dictionary for Probability Distribution
 Query: The query document/Text
 Paral_Level -> The level of parallelism
 Output: List of similarity between query and different documents
sorted in decreasing order.
 //split the task in parallel tasks
 For i From 1 to Paral_Level
 Srart_Task (

 For each Term in Query IN Parallel
 Docs = getDocumetFromPosting(Term)
 For each d in Docs
 Dictionary[d.filename].Append(d.Prob * q.Prob)
 End For
 End For
)
 End For
 //Get the list of sorted probabilities
 SortedDoc = []
 For term, Weight in DictionaryProb. Iteritems()
 sortedDoc.Append(term, Weight)
 End For
 SortedDoc = SortedDoc.Sort(Weight).Decreasing
 Return (SortedDoc)

3.4 Time and Space complexity

The pairwise document similarity detection is known to be in the family of problems that involves

combinatorial objects because it has to generate all subsets of documents collection, comparing each

document to the rest. We recall that number of subsets of n element set is 2n, so the execution time for

such algorithms becomes Ω(2n). This execution time becomes impractical and need other alternatives to

give a solution to the problem. In our method, we are using an approximation algorithm which is not

exponential running time even though it is not an exact method. Actually, execution time reduction is one

of the most challenging goals of parallel programming. Theoretically, adding extra processors to a

processing system leads to a smaller execution time of a program compared with its execution time using

a fewer processors system or a single machine[12, 20]. Here we want to highlight how our method

reduces execution time for the process of pairwise document similarity. Let’s assume that there are m

terms in n documents. Starting by the first algorithm, the cost is linear time O(m) for reading the corpus.

Since it takes a constant time to find, insert or update, the total execution time to create the list of

vocabulary and its weight is O(m). The algorithm continues in creating the dictionary in parallel. For

sequential algorithm, the execution time should be O(m) but here, the algorithm use parallelism which

reduces considerably the time, so the parallel execution time becomes O(m/p) p being the number of

processors to include in parallelism. Speed up is shown in our experiments by comparing the serial

Journal of Computers Vol. 28, No. 3, 2017

259

execution time and the parallel execution time. We show how much time a parallel program works faster

than its serial version used to solve the same problem. Many conflicting parameters such as parallel

overhead, hardware architecture, programming paradigm, programming style may negatively affect the

execution [12]. Our method deal successfully with these parameters and the results show that our method

performs very well.

4 Experiments

In this section, we are presenting experiments performed to show the efficiency of our method. The aim

of our method is to reduce the pairwise document similarity execution time by using all cores present in

the system with the intuition that many processors sharing a task will perform better than one processor.

For the experiment, we have used a multi-core hardware platform, Intel processor with 4 cores (8

hardware threads) and 4GB memory. As discussed before, our method uses a concurrent dictionary data

structure, which uses lazy values to limit the data race among the processes and avoid the use of locking

scheme for those processes to work independently. The use of this data structure has a positive impact on

the speed of our method as explained in the following section.

The data set used was downloaded from RCV1 which is the public benchmark document corpus for

Text Retrieval Conferences (TREC). From this corpus, we have gathered thousands of documents with

different size. All stop-words were removed and all words in the data set were stemmed. In this set of

experiments, we focus on determining the similarity of a different document each other in the collection.

Determine the similarity between documents involve the determination of important portion of every

document and decide if two or more documents share the same portion. Distinguishing the important

portion of the document becomes a key to improving the efficiency of the task. As discussed before, the

main problem for document similarity systems is the scale of data to be used in the computation. To

solve this problem our method our method reduces the large collection considering only a given number

of phrases to be considered in every document.

4.1 Results Analysis and Comparison

We are comparing our method to other methods within the same family of All Pairs Similarity Search

(APSS). In this family, we find the system like collaborative filtering, query suggestion, detecting spams,

plagiarism detection, web pages mirrors, near duplicate detection and many others. Among these

methods, we have chosen Partition-based Similarity Search (PSS) which uses parallelism to detect all

pairs similarity. This method has two steps algorithms and runs on a cluster machine having multiple

CPU each. We have implemented the algorithm to run on a single machine with several CPU cores (like

our configuration seen above) so that we may perform a fair comparison with our method.

The execution time of pairwise document similarity system depends on the size of the corpora to be

considered. As the data set size increases, the execution time also increases. That’s why our method

reduces the quantity of phrases for every document before it starts the comparison. Each document is

represented by a given number of sentences considered as the important portion of the document. It is

clear that the choice of this number will affect the computation time, precision and recall. A small

number of sentences to represent documents will reduce execution time and will increase the precision at

the expense of recall whereas a big number of sentences will use more time to complete the computation

and will increase the recall but will reduce the precision. This is the normal trade-off between precision

and recall. As shown in Fig. 2, our method present good results on the different number of sentences

chosen. The x coordinates show the number of sentences, y shows the time used for similarity search

among one thousand documents. We are comparing parallel method (our proposed method), PSS, and the

sequential method. We can find that our method performs far better than a sequential method for any

number of sentences chosen, the execution time for a different number of sentences is almost linear as

shown in the Fig. 2. On the other hand, we have tested the input of parallel computation of our method.

We found that the execution time depends on the level of parallelization and the number of core

processors involved. Fig. 3 shows the results of the comparison of three methods with a different number

of retained sentences to represent a document. In this experiment, we are using a collection of 400

documents. We can observe that our method EPDS has a low execution time which increases slowly as

the number of sentences increases.

Efficient Parallel Method for Documents Similarity in a Large Dataset

260

3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3
x 10

4

Number of Sentences

E
x
e
c
u
ti
o
n
 T
im
e
 (
in
 m

ill
is
e
c
o
n
d
s
)
fo
r
4
0
0
 d
o
c
u
m
e
n
ts

EPDS

PPS

Sequential

Fig. 2. Execution time comparisons

100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3
x 10

4

Number of Documents

E
x
e
c
u
ti
o
n
 T
im
e
 (
in
 m

ill
is
e
c
o
n
d
s
)

EPDS 4 Cores

EPDS 8 Cores

PPS 4 CORES

PPS 8 CORES

Sequential

Fig. 3. Comparison of number of processors and sequential

Journal of Computers Vol. 28, No. 3, 2017

261

In the following experiment, we present results that test the efficiency of the proposed method for the

different size of data set and a different number of processors cores. Again we are comparing the parallel

processing EPDS and PSS with the sequential method to perform all-pairs similarity. Fig. 3 shows

experiments performed for different documents and different processors cores. The x coordinate shows

the number of documents while y coordinate displays the time used in milliseconds. When we compare

parallel methods with a sequential method, we can see that two points are to be highlighted: using

multiprocessing is better than sequential process whatever number of processors involved in processing

[19]. Another thing is that when the number of processors core is increased, the performance increases

too. Fig. 3 again shows the results of our proposed method EPDS with PSS which use a parallel

mechanism to sort out the similarity. In the experiment, we have limited the cores to intervene in the

computation for three methods, first, we limited to four cores and then to eight. Each method was tested

to see how it reduces the execution time and for all documents, we have chosen neigh sentences to

represent every document in the collection. The Fig. 3 shows that our method reduces more time

compared to another method when using four processors/cores and eight processors/cores.

In the following experiment, we present results that show the comparison of an execution time of the

proposed method and the existing method. As before, we are comparing our method to two other

methods namely PSS and Sequential method using tf-idf because they have proven to produce reliable

results in documents similarity in big data sets. Fig. 4 shows, in brief, the results of performance of these

three methods. We have tested these methods on different groups of documents ranging from 100 to 1000.

Our methods scale very well if compared to other methods because it doesn’t consider all sentences in

the document; this explains the reason why its trend is almost linear.

100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3
x 10

4

Number of Documents

E
x
e
c
u
ti
o
n
 T
im
e
 (
in
 m

ill
is
e
c
o
n
d
s
)

EPDS

PSS

Sequential

Fig. 4. Execution time comparisons with all pairs method

4.2 Effectiveness

We are using Precision, Recall, and F-Measure to measure the effectiveness of our method. Precision is

the ratio of a number of relevant documents retrieved to the total number of irrelevant and relevant

documents [21]. The recall is the ratio of the relevant document retrieved to the total number of the

relevant document in the corpus. F-Measure is an effectiveness measure based on recall and precision. It

has the advantage of summarizing effectiveness in a single number.

Efficient Parallel Method for Documents Similarity in a Large Dataset

262

Let A be the number of relevant documents retrieved, B be the number of relevant documents not

retrieved and C be the number of irrelevant documents retrieved. The Precision (PR), Recall (RC) and F-

Measure (F-Measure) are given by the formula:

A
PR

A C
=

+

 (6)

A
RC

A B
=

+

 (7)

2 RC PR
F Measure

RC PR

× ×
− =

+

 (8)

Our method was tested according to a set of 1000 documents in which 6 pairs of documents were near

similar. We have performed the test by taking a different number of sentences to evaluate the F-Measure

given by our method. As we can see in Table 1, our method has a good F-Measure if we use seven

sentences to summarize the documents in the collection. We can see again that fewer sentences affect the

effectiveness of our method because the precision is very low for fewer sentences, same situation for

more sentences because they affect the recall. Nevertheless, our method performs well when compared to

PPS and sequential method as mentioned before.

Table 1. Effectiveness evaluation by Precision, Recall and F-Measure

Number of Sentences (1000 Docs) Execution Time Precision % Recall % F-Measure %

3 903 29.5 92.3 44.71

4 820 34.6 80.5 48.40

5 870 46.4 73.2 56.80

6 883 52.3 65.4 58.12

7 881 67.8 60.2 63.77

8 922 78.2 51.6 62.17

9 950 83.2 42.8 56.52

10 920 89.2 35.1 50.38

5 Conclusion

In this paper, we presented efficient Near-Duplicate Document similarity algorithms by exploiting the

processor cores to compute the similarity between documents in parallel. The method presented in this

paper uses probabilistic Language Modeling to determine the similarity between two documents. As the

corpus to be considered is very large, our method has represented all documents in the corpus by a given

number of most important sentences to reduce the dimensionality of data to be considered. This process

is offline so it will not affect the execution time of our presented algorithm as it is considered as

preprocessing of the corpus. Considering the hardware performance improvements, our algorithm takes

the advantage of multi-core and computes the similarity between documents in parallel. The data

structure enabling concurrency and avoiding data race was used to achieve the reduction of execution

time up to 65% if we compare our method to a sequential counterpart.

The experimental results validate that the new method achieves significantly higher performance for

Near-Document Similarity detection. Since hardware performance improvements are currently and in the

near future achieved by increasing the number of processor cores, our new method has the potential to

perform even better as the results show that by increasing processor core, the performance increases by

an average of 15%. The method presented in this paper is limited to a system with several cores. In the

future, we would like to benchmark the performance of our algorithm when applied to other parallel

platforms like CUDA and Hadoop which use a cluster of different machines using several processors. If

it can be efficiently executed on a cluster we may increase the number of sentences to consider for

representing a document and then increase the precision and recall of our method.

Journal of Computers Vol. 28, No. 3, 2017

263

Acknowledgements

Project supported by the National Natural Science Foundation of China (Grant No. 61379109, M1321007)

and Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120162110077).

References

[1] M.A. Alabduljalil, X. Tang, T. Yang, Optimizing Parallel Algorithm for All Pairs Similarity Search, in: Proc. International

Conference on Tools with Artificial Intelligence, 2008.

[2] A. Awekar, N.F. Samatova, Fast matching for all pairs similarity search, in: Proc. 2009 IEEE/WIC/ACM International

Conference on Web Intelligence, 2009.

[3] T. Davidovic, T.G. Cainic, Parallel local search to schedule communicating tasks on identical processors.

<https://www.cirrelt.ca/DocumentsTravail/CIRRELT-2013-54.pdf>, 2015.

[4] F. Dehne, H. Zaboli, Parallel real-time OLAP on multi-core processors, International Journal of Data Warehousing and

Mining 11(1)(2015) 23-44.

[5] H. Hajishirzi, W.-T. Yih, A. Kolcz. Adaptive near-duplicate detection via similarity learning, in: Proc. 33rd Annual

International ACM SIGIR Conference on Research and Development in Information Retrieval, 2010.

[6] J.M. Ponte, W.B. Croft, A language modeling approach to information retrieval, in: Proc. the 21st Annual International

ACM SIGIR Conference on Research and Development in Information Retrieval, 1998.

[7] D. Cai, C. Zhang, X. He, Unsepervised feature selection for multi-cluster data, in: Proc. the ACM KDD’10, 2010.

[8] C.X. Zhai, Statistical language models for information retrieval a critical review, Information Retrieval 2(3)(2008) 137-213.

[9] A. Kulkarni, J. Callan, Selective search: efficient and effective search of large textual collections, ACM Transactions on

Information Systems 33(4)(2015) 1-33.

[10] E. Peise, D. Fabrega-Travel, P. Bientinesi, High performance solutions for big-data GWAS. <https://arxiv.org/abs/

1403.6426>, 2014.

[11] X. Yuan, J. Long, H. Zhang, Z. Zhang, W. Gui, Optimazing a near-duplicate document detection system with SIMD

technologies, Journal of Computational Information Systems, Binary Information Press 3846(2011) 448-451.

[12] A.I. El-Nashar, To parallelize or not to parallelize, speed up issue, in: Proc. IJDPS, 2011.

[13] P.E. McKennye, Is Parallel Programming Hard, And, If So, What Can You Do About It? IBM, Beaverton, 2015

[14] W.B. Croft, D. Metzler, T. Strohman. Search Engines, Information Retrieval in Practice, Pearson Education, New York

2009.

[15] M.S. Charikar, Similarity estimation techniques from rounding algorithms, in: Proc. the Thirty-fourth Annual ACM

Symposium on Theory of Computing, 2002.

[16] X. Evangelopoulos, V. Giannakouris-Salalidis, L. Iliadis, C. Makris, Y. Plegas, A. Plerou, S. Sioutas, Evaluating

information retrieval using document popularity: An implementation on MapReduce, Journal of Engineering Applications

of Artificial Intelligence 51(2016), 16-23.

[17] V.K. Sharma, N. Mittal, Exploiting parallel sentences and cosine similarity for identifying target language translation,

Journal of Procedia Computer Science 89(2016) 428-433.

[18] T. Xie, Q. Zheng, W. Zhang, A behavioral sequence analyzing framework for grouping students in an e-learning system,

Journal of Knowledge-Based Systems 111(2016) 36-50.

Efficient Parallel Method for Documents Similarity in a Large Dataset

264

[19] K. Seshadri, M. Shalinie S, Chidambaram Kollengode. Design and evaluation of a parallel algorithm for inferring topic

hierarchies, Journal of Information Processing and Management 51(5)(2015) 662-676.

[20] M. Alewiwi, C. Orencik, E. Savaş, Efficient top-k similarity document search utilizing distributed file systems and cosine

similarity, Cluster Computing 19(1)(2016) 109-126.

[21] N. Liu, P. Xiao, Y. Lu, Z.-J. Tang, H.-W. Wang, M.-X. Li, A topic approach to sentence ordering for multidocument

summarization, in: Proc. the 14th IEEE International Symposium on Parallel and Distributed Processing with Applications,

2016.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

