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Abstract. Near-duplicate document detection attracts much attention from researchers since the growth of 

documents production is very high. The main problem confronted while looking for duplicate or near-duplicate 

document detection is a very high dimensional data which increases the time and space requirements for 

processing the data. With the trend of production of new documents, the system to detect similarity among 

documents becomes almost impracticable. We are proposing a new approach for solving this problem which 

consists in reducing the dimensionality of data and also use efficiently parallel programming to fully maximize 

the available capacity of the hardware. The intuition we have by using parallel programming is that more 

processors/core will perform better than only one processor if their management is well done. We have 

implemented our method and tested it empirically and experimental results have demonstrated that our algorithm 

performs better than other methods used for All Pairs Similarity Search (APSS) which employ multi-core and 

multi-programming to deduct the similarity of the documents. The results show that our method can reduce up to 

65% terms to be used in similarity computation and its execution time is better than Partition-based Similarity 

Search method which uses parallel processing for document similarity. 

Keywords: dimensionality reduction, document similarity algorithm, pairwise document similarity, parallel 

programming, query likelihood 

1 Introduction 

Near-duplicate document detection has attracted the attention of many researchers for a few decades ago. 

Nowadays, the development of technology for processing and storing data has allowed the production of 

billions of documents and web pages stored in the cloud. This way, the system to determine near-

duplicate document has a big number of terms to be computed. Applications for Near-Duplicate 

Document Detection use many data to identify objects or set of objects similar one to another under a 

specified threshold. Given the massive data to be involved, to determine document similarity becomes a 

time-consuming process [1, 10]. Recently, researchers have proposed different methods to solve this 

problem but as the number of documents increases the performance of these methods suffer. For example, 

the method which uses shingles even if has a very good precision, it becomes impractical for a large 

corpus. TF-IDF also has been very efficient as metric to calculate the similarity between documents but 

fails for big datasets because the increase in the number of documents implies an exponential increase in 

the number of terms to be considered in the computation. The exact method which compares every term 

in two different documents is also impractical and fails for few documents only. In this paper, we are 

proposing a new method which considers the reduction of the terms to be used in the corpus so that the 

comparison of terms is applied to a subset of terms representing the large dataset. 

The objective of Pairwise Document Similarity detection is to determine which document is related to 

another one in the corpus, having the threshold to be used for making such decision. This task becomes 

very complex when it is performed on large corpus because each document is compared to every 

document in the corpus, giving a Cartesian product with execution time of Ω (2n). The function of 

document similarity gives the importance on a word in the document which determines if the word 

should be used in similarity computation or not [11, 18]. This is very important for our method because 

                                                           
* Corresponding Author 



Efficient Parallel Method for Documents Similarity in a Large Dataset 

252 

two documents may not be similar by comparing every word but still have the same content and only a 

small portion differentiates them or some parts of the document are relocated to different places within 

another document. The objective of our method is to identify that important content within the document 

and efficiently use it to determine the similarity among the documents. Because the document similarity 

detection system needs to handle a very large collection of documents, an ideal algorithm for such system 

should give a response in real-time. Thus, efficiency has been the main focus on different approaches 

solving the similarity problem. Different methods have been implemented by researchers to solve this 

problem, but sophisticated data structures and clever algorithms optimization alone are not sufficient 

anymore. 

In this paper, we are presenting a new method to approach this complex problem by performing 

efficiently the similarity computation of documents. The contribution of our method can be summarized 

as follows: the first is to reduce the dimensionality of the large collection of documents to a subset of 

terms. This subset is selected to represent the large document collection with the intuition that applying 

similarity function to reduced terms will increase the efficiency of the process; the second contribution is 

to exploit the available processing power of parallel computer using Multi-core, GPU, and cluster of 

computer, and the third contribution is to use best data structures to allow optimized algorithm and to let 

it be shared among several processes executed by multiprocessor of the machine and avoid inter-

processor communication. The results of our proposed method have shown that our method performs 

better than previously proposed method, even better results for large data collection which justify the 

scalability of our method. 

2 Related Work 

In the past few decades ago, many types of research have been done for document similarity. The 

methods in the state of the art can be grouped into two main categories: heuristics methods and exacts 

methods. In exact methods, researchers try to find an exact solution as in the context of a database but the 

practicability is minimal. For Heuristics methods, researchers use different techniques to give a solution 

to this problem as hashing, shingling, and dimensionality reduction. In this category of research, Charikar 

has defined in [15, 17] a hashing scheme as a distribution on a family of hash functions operating on a 

collection of vectors in which for any two vectors, the probability that their hash value becomes equal is 

proportional to their similarity. 

The large data set available and computation nature of pairwise similarity are a limiting factor for the 

Near-Duplicate detection applicability to large-scale real-world problems and calls for alternative 

approaches. Given a corpus of documents in a d dimensional space, existing pairwise similarity search 

algorithm compute O(n2) similarity scores [2, 16]. With the trend of data production and data availability, 

a good approach should not be limited to the optimization of the algorithms used but also should consider 

the new technologies offered by the hardware and use both techniques for an efficient solution. 

The hardware performance improvements are currently achieved not by faster processors but by 

increasing the number of processor cores. This yields adaptive algorithms which take this advantage and 

use the parallelism in order to solve problems which were before resources greedy. Nowadays, historic 

difficulties of parallel programming are almost overcome: the cost of parallel systems has significantly 

decreased and, in fact, by 2008 it was becoming difficult to find a single CPU desktop system, with a 

single core, CPUs being relegated to notebooks and embedded devices. By 2012, even smartphones were 

starting to support multiple CPUs [13]. 

One goal of parallel programming among others is performance. Traditionally, the main goal of 

parallelization was to speed up the computation needed to solve a particular problem by engaging several 

processors and dividing the total amount of work among them [3]. Given the recent trends on the part of 

all major manufacturers towards multicore/multithreaded systems, parallelism is the way to go for those 

wanting the avail themselves of the full performance of their systems. For decades, different types of 

researches have been done to use in a perfect way parallelism for effective heuristic optimal or near-

optimal solutions to difficult optimizations problems. Algorithms have been designed for exploiting high-

performance and parallel computing resources for randomized iterative evolutionary computation [3, 9]. 

High performance and parallel computing have been extensively studied to tackle the previously 

mentioned computational challenges in Near-Duplicate document detection because this application has a 

very good application field for parallelism. With exponentially growing data sets and modern 
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multiprocessors/multi-core system architecture, it is obvious that serial solutions for document similarity 

detection are the major rate-limiting factor for the applicability of similarity detection for large data 

collections, so parallelization becomes inevitable. In this context, Awekar et al. [2] were interested in the 

implementation of a parallel solution of All Pairs Similarity Search for shared memory multi-processor 

machines. In their method, the inverted index to use in similarity computation is shared among 

processors. They have provided different techniques to optimize the inverted index code performance and 

ease Map Reduce paradigm. However, even with extensive optimization to filter unnecessary 

computation, MapReduce communication with the inverted index can increase quadratically as the data 

set size scales up and can incur significant synchronization and I/O overhead. To improve the method 

presented above, Kulkarni [9] has extended an alternative selective search, an approach that partitions the 

data set based on document similarity to obtain topic-based shards with few computational resources. In 

his approach, only a few shards that are estimated to contain relevant documents are searched. Even 

though this approach achieves a good level of effectiveness, its efficiency suffers for large data set. Our 

method brings an improvement to come up with a solution to these weaknesses: the corpus is reduced, 

thus, the superset of terms in documents collection is represented by a subset of terms which have the 

same power to represent the documents. With existing methods even though the index is shared in 

multiprocessor, the locking mechanism between different processor is hindering the performance of the 

method. Our method allows all the processes to access simultaneously the data structure created to 

eliminate the idle time of the processors due to the waiting time needed to avoid data race. 

We show how to exploit massively parallel high-end computing resources for solving document 

similarity problem which belongs to a classic combinatorial optimization problem. To achieve this 

objective, our method uses index sharing technique and divides the computation into independent tasks 

over the central concurrent dictionary shared across all processors as a read-only data structure. The 

approach performs an early removal of unwanted comparisons which eliminate and reduce a significant 

amount of I/O, memory access, and computation. To compute the similarity among documents, our 

method allows multiple processors to access the created data structure in parallel and real-time. It is clear 

that the design of the new data structure will not need locking scheme which allows concurrent access to 

move “freely”. The off-line creation of the data structure will use lazy values to avoid the long wait of 

tasks while locking to avoid concurrent update of the same variable by multiple processes at the same 

time. 

3 Efficient Parallel Document Similarity Detection Method (EPDS) 

3.1 The Representation of Document for Similarity 

Document similarity system performance depends on the choice made while representing a document; 

thus a more comprehensive representation of a document leads to a more efficient system. The design of 

the method we are proposing will use a better document representation to ease document similarity 

computation. The state of the art has defined several methods to represent a document in Information 

Retrieval. Among them, the approach using probability ranking principle has achieved a considerable 

recognition in the last few decades, because the probability is the best method to be used when 

representing and implementing the uncertainty. 

The simple way to detect near duplicates is to sequentially submit each document from a collection as 

a query to the system to search for highly similar documents in the same collection. By the use of an 

inverted index as adopted in most Near-Duplicate detection algorithms, the time complexity for this 

process is sub-linear (to the number of documents in the collection), however, it can be O(n2) in the worst 

case. The main objective of our method is to rank documents optimally given a document so that similar 

documents would be ranked above no similar ones. To allow the system to have the best efficiency, our 

method uses Language Model which refers to a probabilistic model in the text and defines the probability 

distribution of terms in a given document. In this modeling, as proposed by Ponte and Croft, the query is 

assumed to be a sample of words drawn according to a language model estimated based on a document 

[6]. Thus, two documents will be considered as similar if their Language Model gives the highest 

probability. 

To get the result, we need to define both language model for the document considered as a query and 

other documents in the collection to be able to sort out the probability. Let consider Q as a query, D as a 
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document, and θD as a language model estimated on document D. The score of D is a conditional 

probability p(Q|θD), in other words it means Score(Q, D) = p(Q|θD). According to this score, we define a 

binary random variable Xi∈{0, 1} for each word wi to indicate whether word wi is present (Xi = 1) or 

absent (Xi = 0) in the query. Thus model θD would have precisely |V| parameters, i.e., θD = p (Xi = 1|D) i 

∈ [1, |V|], which can model presence and absence of all the words in the query. Thus, according to this 

model, the query likelihood can be written as 

 ( | ) ( 1| )
i

iw Q
P Q D p X Dθ

∈

= =∏ . (1) 

In this formula, the first product represents the words in the query and the second words not occurring 

in the query. To capture TF, we can treat each word wi in D as a sample from our model where only wi 

has shown up and all other words are absent. Thus according to the maximum likelihood (ML) estimator, 

p(Xi = 1|D) is equal to the relative frequency of word wi in D, i.e.,  
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Where c(wi, D) is the count of word wi in D and |D| is the length of D (i.e., the total word) 

You may prepare your camera-ready manuscript with MS-Word using this typeset together with the 

template joc.dot (see Sect. 3) or any other text processing system. In the latter case, please follow these 

instructions closely in order to make the volume look as uniform as possible.  

Our method uses the probability model to efficiently sort out similar documents in a large data set. 

Like in other All Pairs Similarity Search process, our method considers every document in the collection 

to be represented as a query and is compared to the rest of documents in the same corpus. Thus, our 

method uses “Language Model” to obtain the weight of every term in every document and then rank the 

documents according to the weight of their respective terms. Only documents with the probability of 

similarity greater or equal to the threshold will be maintained. To rank the documents, we determine the 

probability by which the query (represented by a document) can be generated by another document 

language model [8]. As we want to produce the documents responding to the query, we would in general 

like to calculate P(D|Q) to rank the documents. Using Bayes’ rule, the probability is given by the formula: 

 ( | ) ( | ) ( ).P D Q P D Q P D=  (3) 

The right-hand side is rank equivalent to the left-hand side (i.e. we can ignore the normalizing constant 

P(Q). P(D) is the prior probability of a document and P(Q|D) is the query likelihood given the document. 

The probability of ranking a document is P(Q|D) which is given by the following formula 
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Where qi is a query term, and we know that there are n words (or terms) in the query. To compute this 

score, we need to have estimates for the language model probabilities. The obvious estimate would be  
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Where fqi, D is the number of times word fi occurs in document D, and |D| is the number of words in D. 

For a multinomial distribution, this is the maximum likelihood estimate, which means this is the estimate 

that makes observed value of fqi, D most likely. 

The execution time of exact method to determine Pairwise document similarity is quadratic to the data 

size and thus does not scale well for a big dataset. Our method reduces the execution time by using two 

techniques: data size reduction and parallel processing. While processing the similarity, all the terms in 

the corpus will not be considered because it’s obvious that some terms in the documents cannot help for 

determining its similarity to other documents. These terms are considered as noise, removing them from 

the text cannot affect the determination of document similarity but will reduce considerably the size of 

text to go through in the computation. Moreover, our method presents an efficient algorithm which 

considers the input of hardware new technologies: with the recent trends on the part of all major 

manufacturers towards multi-core/multithreaded systems, parallelism should be considered if we want to 
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fully benefit from the performance of the systems. 

Fig. 1 shows the overview of the proposed method. It shows that the main input of parallel processing 

in document similarity is the creation of the index to be used during the process. Many processors can 

work in parallel to build the index without interfering each other. In serial processing, the creation of 

such index takes more time because the process considers every term in the document which increases 

the execution time. Again our method use parallel processing to process the query: the index created have 

an array of all the terms in a document collection and every term has a posting list associated with the 

term. Every list contains all documents in which the term appear and the weight of the term in the 

document. We have seen before that every document is considered by our method as a query, thus, to 

compute the similarity between a query with a document, the system fetch all posting lists for every term 

in the query to compute the probability according to the weight of every term. Because the query 

document has many terms, our method uses parallel processing to retrieve and compute the probability 

because there will not be any interference between processors. 

 

Fig. 1. EPDS method overview 

3.2 Reducing Dataset Size 

Document dimensionality is the first problem that hinders document similarity systems. The system is 

dealing with millions of documents and thousands of billions of terms. To give an efficient solution, our 

method reduces this dimensionality by representing every document in the collection by a set of 

important phrases to be considered in the place of the document. By taking n important phrases in the 

document, we expect to capture the whole idea in the document with an intuition that if two documents 

are having the same important phrase it means that they are similar. Our method reads all documents in 

the corpus, but only top n phrase in every document are kept. The algorithm to perform this task uses a 

word frequency in the given document. After preprocessing of the text (removal of all noise in the 

document, i.e. stop words, punctuation and words containing only a few characters), the frequency of 

each word is computed and kept in the dictionary. This data structure is chosen because it is fast and 

allows a constant access time Θ(1) which will help our method to speed up the access of term. To 

determine which sentence to be considered in this process, our method uses the weight of every term in 

the document, so the sentence which has terms with high weight will be chosen to represent the 

document. The following algorithm implements this idea. 



Efficient Parallel Method for Documents Similarity in a Large Dataset 

256 

 
Create_Documents Summary Algorithm 

 
//This algorithm summarizes documents in corpus by representing each 
document by its top n phrases 
Input: The Corpus to summarize  
  Paral_Level -> The number of processors/cores to be used 
Output: Dictionary of Document summary 
 
LPhrase = Empty list 
LFrequencies = Empty list 
Reader : The corpus reader 
ReducedCorpus: The empty Corpus 
//Get the list of all documents names from corpora 
For i From 1 to Paral_Level  
 //Obtain the small number of document in corpus to be summarized 
by a task 
 Srart_Task ( 
 ReducedCorpus = Get_nDocuments in Corpus(Paral_Level) 
   For each Doc in ReducedCorpus 
       Scores = [] 
          Doc = RemoveStopWords(Doc) 
          Doc = Steemer(Doc) 
 ListSent = SentenceTokenizer(Doc) 
 For each word in Doc 
  freq = Get the word frequency in the document 
  DictSum.Add (word, freq) 
 End for 
 For each word in ListSent, i: Counter 
  If word in DictSum then 
   Scores[i] = Scores[i] + DictSum[word] 
  End if 
 End for 
   DocSummary = Get top sentences in Scores 
   ReducedCorpus.Append(DocID, DocSummary) 
 End for 
) 

End For 
//Create the language Model of the LFrequencies (every term is given 
its weight) 
For i From 1 to Paral_Level  
 Srart_Task ( 
         LWords = GetWordTokens (ReducedCorpus) 
 For each w in LWords 
     Freq = Find_Frequency ( w ) 
     LFrequencies.Add (w, Freq) 
 End for 
 ) 
End For 
 
//The dictionary can be written to the file for the future use 
Return (Dict) 

 

After the summarization of the documents in the collection, our method proceeds by creating the 

Language Model of the reduced corpus which will be used in Near Document Similarity Detection. As 

the document is represented by top n sentences, so the term should be normalized to the total number of 

documents which remains after the reduction of documents to n sentences representing every document. 
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This weighting scheme used by our method is also known as TF-IDF in Information Retrieval. In the 

previous section, we have seen that to determine the similarity between documents, we should compare 

the Language Model of both documents; so to allow the system to perform this comparison, there are 

important data we need to keep in the concurrent dictionary such as term, documentID, and the weight 

(representing the probability of the term).  

The creation of this data structure will be in parallel to reduce the execution time used by the serial 

method. In this scheme, the number of documents to be considered in the collection is divided into 

different groups which will be allocated to each processor/core. These cores are using a concurrent 

dictionary which allows them to access the dictionary in shared memory without the data race problem 

and any other communication between the processors. This is very important for execution time 

reduction because there will not be a waste time by any processor in waiting for the locking procedure 

needed in memory shared data structures or the management of extra communication among different 

process. The algorithm to implement the idea is the following. 
 

Create_ProbabilityDistribution Algorithm 

//This algorithm create a dictionary for terms in documents given 
their probability distribution 
Input: LFrequencies The Probability Distribution list for all 
documents in corpus 
 Paral_Level -> The level of parallelism 
 Output: Dictionary, data structure to help parallel search to 
compute documents similarity 
 Dict = Empty Dictionary 
 DocSimilList = Empty list 
 
 //split the task in parallel tasks 
 For i From 1 to Paral_Level  
       Srart_Task ( 
       For each PDistr in LFrequencies  
           PostingTerm = [Array(PDistr.Document, PDistr.Weight)] 
           Dict[PDistr.Term].Append (PostingTerm) 
       End For 
       ) 
 End For 
 Return (Dict) 

3.3 Pairwise Computation 

The creation of dictionary representing the Language Model is an off-line process and should be timely 

updated to take into consideration new documents in the collection. The process to determine the 

similarity among documents has the Language Model as input to be used to rank the documents 

according to the query. As we need the pairwise similarity, each document in the corpus is considered to 

be a query, so the process will need the list of documents ID as well. Documents are considered to be 

similar if they are sharing a certain number of terms not less than a threshold, so the algorithm needs to 

create a data structure which will allow linking all documents sharing a particular term. Our method uses 

a concurrent dictionary to implement this data structure whereby the key of the dictionary is the term of 

the document while the value is the list of other documents in corpus sharing any term with the document 

represented as key. This list (value of the dictionary) contains pairs of document ID and the total weight 

of the shared terms. At this stage, we have the Language Model implemented in a dictionary which will 

improve access time to any value in the LM since access a value in a dictionary is constant Θ(1). The 

algorithm takes the list of all the documents and, in parallel, every Language Model for all documents 

(considered as a query) is compared to the Language Model of the collection in the dictionary we have 

created. 

The similarity is given by applying the formula (4). The main input of this algorithm is the 

computation of similarity in parallel. Actually, the formula is not directly applied by one process but 
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many processes will contribute to the computation of the formula: a concurrent dictionary is used to be 

updated by several processes each. The list of documents in the collection is divided into several chunks 

which will be assigned to a different process. For a particular process, it will scan every term in the LM 

of the documents, get the list of documents sharing the same term in the dictionary, compute the 

similarity probability by using dot product, then add or update the similarity of the two documents in the 

dictionary. The algorithm concludes the process by eliminating all documents in the data structure with 

insufficient terms compared to the threshold. At this point, the similarity between documents can be read 

in the dictionary in a constant time. 
 

Create_Similarity Dictionary Algorithm 

//This algorithm create a dictionary for similarity. Posting key is 
document name, value is the similarity //with the query 
Input: DictionaryProb The Dictionary for Probability Distribution  
 Query: The query document/Text 
 Paral_Level -> The level of parallelism 
 Output: List of similarity between query and different documents 
sorted in decreasing order. 
 //split the task in parallel tasks 
 For i From 1 to Paral_Level  
       Srart_Task ( 
 
       For each Term in Query IN Parallel 
           Docs = getDocumetFromPosting(Term) 
           For each d in Docs 
             Dictionary[d.filename].Append(d.Prob * q.Prob) 
       End For 
  End For 
  ) 
 End For 
 //Get the list of sorted probabilities 
 SortedDoc = [] 
 For term, Weight in DictionaryProb. Iteritems() 
     sortedDoc.Append(term, Weight) 
 End For 
 SortedDoc = SortedDoc.Sort(Weight).Decreasing 
 Return (SortedDoc) 

3.4 Time and Space complexity 

The pairwise document similarity detection is known to be in the family of problems that involves 

combinatorial objects because it has to generate all subsets of documents collection, comparing each 

document to the rest. We recall that number of subsets of n element set is 2n, so the execution time for 

such algorithms becomes Ω(2n). This execution time becomes impractical and need other alternatives to 

give a solution to the problem. In our method, we are using an approximation algorithm which is not 

exponential running time even though it is not an exact method. Actually, execution time reduction is one 

of the most challenging goals of parallel programming. Theoretically, adding extra processors to a 

processing system leads to a smaller execution time of a program compared with its execution time using 

a fewer processors system or a single machine[12, 20]. Here we want to highlight how our method 

reduces execution time for the process of pairwise document similarity. Let’s assume that there are m 

terms in n documents. Starting by the first algorithm, the cost is linear time O(m) for reading the corpus. 

Since it takes a constant time to find, insert or update, the total execution time to create the list of 

vocabulary and its weight is O(m). The algorithm continues in creating the dictionary in parallel. For 

sequential algorithm, the execution time should be O(m) but here, the algorithm use parallelism which 

reduces considerably the time, so the parallel execution time becomes O(m/p) p being the number of 

processors to include in parallelism. Speed up is shown in our experiments by comparing the serial 
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execution time and the parallel execution time. We show how much time a parallel program works faster 

than its serial version used to solve the same problem. Many conflicting parameters such as parallel 

overhead, hardware architecture, programming paradigm, programming style may negatively affect the 

execution [12]. Our method deal successfully with these parameters and the results show that our method 

performs very well. 

4 Experiments 

In this section, we are presenting experiments performed to show the efficiency of our method. The aim 

of our method is to reduce the pairwise document similarity execution time by using all cores present in 

the system with the intuition that many processors sharing a task will perform better than one processor. 

For the experiment, we have used a multi-core hardware platform, Intel processor with 4 cores (8 

hardware threads) and 4GB memory. As discussed before, our method uses a concurrent dictionary data 

structure, which uses lazy values to limit the data race among the processes and avoid the use of locking 

scheme for those processes to work independently. The use of this data structure has a positive impact on 

the speed of our method as explained in the following section. 

The data set used was downloaded from RCV1 which is the public benchmark document corpus for 

Text Retrieval Conferences (TREC). From this corpus, we have gathered thousands of documents with 

different size. All stop-words were removed and all words in the data set were stemmed. In this set of 

experiments, we focus on determining the similarity of a different document each other in the collection. 

Determine the similarity between documents involve the determination of important portion of every 

document and decide if two or more documents share the same portion. Distinguishing the important 

portion of the document becomes a key to improving the efficiency of the task. As discussed before, the 

main problem for document similarity systems is the scale of data to be used in the computation. To 

solve this problem our method our method reduces the large collection considering only a given number 

of phrases to be considered in every document. 

4.1 Results Analysis and Comparison 

We are comparing our method to other methods within the same family of All Pairs Similarity Search 

(APSS). In this family, we find the system like collaborative filtering, query suggestion, detecting spams, 

plagiarism detection, web pages mirrors, near duplicate detection and many others. Among these 

methods, we have chosen Partition-based Similarity Search (PSS) which uses parallelism to detect all 

pairs similarity. This method has two steps algorithms and runs on a cluster machine having multiple 

CPU each. We have implemented the algorithm to run on a single machine with several CPU cores (like 

our configuration seen above) so that we may perform a fair comparison with our method. 

The execution time of pairwise document similarity system depends on the size of the corpora to be 

considered. As the data set size increases, the execution time also increases. That’s why our method 

reduces the quantity of phrases for every document before it starts the comparison. Each document is 

represented by a given number of sentences considered as the important portion of the document. It is 

clear that the choice of this number will affect the computation time, precision and recall. A small 

number of sentences to represent documents will reduce execution time and will increase the precision at 

the expense of recall whereas a big number of sentences will use more time to complete the computation 

and will increase the recall but will reduce the precision. This is the normal trade-off between precision 

and recall. As shown in Fig. 2, our method present good results on the different number of sentences 

chosen. The x coordinates show the number of sentences, y shows the time used for similarity search 

among one thousand documents. We are comparing parallel method (our proposed method), PSS, and the 

sequential method. We can find that our method performs far better than a sequential method for any 

number of sentences chosen, the execution time for a different number of sentences is almost linear as 

shown in the Fig. 2. On the other hand, we have tested the input of parallel computation of our method. 

We found that the execution time depends on the level of parallelization and the number of core 

processors involved. Fig. 3 shows the results of the comparison of three methods with a different number 

of retained sentences to represent a document. In this experiment, we are using a collection of 400 

documents. We can observe that our method EPDS has a low execution time which increases slowly as 

the number of sentences increases. 
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In the following experiment, we present results that test the efficiency of the proposed method for the 

different size of data set and a different number of processors cores. Again we are comparing the parallel 

processing EPDS and PSS with the sequential method to perform all-pairs similarity. Fig. 3 shows 

experiments performed for different documents and different processors cores. The x coordinate shows 

the number of documents while y coordinate displays the time used in milliseconds. When we compare 

parallel methods with a sequential method, we can see that two points are to be highlighted: using 

multiprocessing is better than sequential process whatever number of processors involved in processing 

[19]. Another thing is that when the number of processors core is increased, the performance increases 

too. Fig. 3 again shows the results of our proposed method EPDS with PSS which use a parallel 

mechanism to sort out the similarity. In the experiment, we have limited the cores to intervene in the 

computation for three methods, first, we limited to four cores and then to eight. Each method was tested 

to see how it reduces the execution time and for all documents, we have chosen neigh sentences to 

represent every document in the collection. The Fig. 3 shows that our method reduces more time 

compared to another method when using four processors/cores and eight processors/cores. 

In the following experiment, we present results that show the comparison of an execution time of the 

proposed method and the existing method. As before, we are comparing our method to two other 

methods namely PSS and Sequential method using tf-idf because they have proven to produce reliable 

results in documents similarity in big data sets. Fig. 4 shows, in brief, the results of performance of these 

three methods. We have tested these methods on different groups of documents ranging from 100 to 1000. 

Our methods scale very well if compared to other methods because it doesn’t consider all sentences in 

the document; this explains the reason why its trend is almost linear. 
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Fig. 4. Execution time comparisons with all pairs method 

4.2 Effectiveness 

We are using Precision, Recall, and F-Measure to measure the effectiveness of our method. Precision is 

the ratio of a number of relevant documents retrieved to the total number of irrelevant and relevant 

documents [21]. The recall is the ratio of the relevant document retrieved to the total number of the 

relevant document in the corpus. F-Measure is an effectiveness measure based on recall and precision. It 

has the advantage of summarizing effectiveness in a single number. 
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Let A be the number of relevant documents retrieved, B be the number of relevant documents not 

retrieved and C be the number of irrelevant documents retrieved. The Precision (PR), Recall (RC) and F-

Measure (F-Measure) are given by the formula:  

 

A
PR

A C
=

+

 (6) 

 

A
RC

A B
=

+

 (7) 

 

2 RC PR
F Measure

RC PR

× ×
− =

+

 (8) 

Our method was tested according to a set of 1000 documents in which 6 pairs of documents were near 

similar. We have performed the test by taking a different number of sentences to evaluate the F-Measure 

given by our method. As we can see in Table 1, our method has a good F-Measure if we use seven 

sentences to summarize the documents in the collection. We can see again that fewer sentences affect the 

effectiveness of our method because the precision is very low for fewer sentences, same situation for 

more sentences because they affect the recall. Nevertheless, our method performs well when compared to 

PPS and sequential method as mentioned before.  

Table 1. Effectiveness evaluation by Precision, Recall and F-Measure 

Number of Sentences (1000 Docs) Execution Time Precision % Recall % F-Measure % 

3 903 29.5 92.3 44.71  

4 820 34.6 80.5 48.40  

5 870 46.4 73.2 56.80  

6 883 52.3 65.4 58.12  

7 881 67.8 60.2 63.77  

8 922 78.2 51.6 62.17  

9 950 83.2 42.8 56.52  

10 920 89.2 35.1 50.38  

5 Conclusion 

In this paper, we presented efficient Near-Duplicate Document similarity algorithms by exploiting the 

processor cores to compute the similarity between documents in parallel. The method presented in this 

paper uses probabilistic Language Modeling to determine the similarity between two documents. As the 

corpus to be considered is very large, our method has represented all documents in the corpus by a given 

number of most important sentences to reduce the dimensionality of data to be considered. This process 

is offline so it will not affect the execution time of our presented algorithm as it is considered as 

preprocessing of the corpus. Considering the hardware performance improvements, our algorithm takes 

the advantage of multi-core and computes the similarity between documents in parallel. The data 

structure enabling concurrency and avoiding data race was used to achieve the reduction of execution 

time up to 65% if we compare our method to a sequential counterpart. 

The experimental results validate that the new method achieves significantly higher performance for 

Near-Document Similarity detection. Since hardware performance improvements are currently and in the 

near future achieved by increasing the number of processor cores, our new method has the potential to 

perform even better as the results show that by increasing processor core, the performance increases by 

an average of 15%. The method presented in this paper is limited to a system with several cores. In the 

future, we would like to benchmark the performance of our algorithm when applied to other parallel 

platforms like CUDA and Hadoop which use a cluster of different machines using several processors. If 

it can be efficiently executed on a cluster we may increase the number of sentences to consider for 

representing a document and then increase the precision and recall of our method. 
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