
Journal of Computers Vol. 28, No. 4, 2017, pp. 38-48

doi:10.3966/199115592017082804005

38

Self-Stabilizing Distributed Formation of Minimal k-Dominating

Sets in Mobile Ad Hoc Networks

Li-Hsing Yen1*, and Zong-Long Chen2

1 Department of Computer Science, National Chiao Tung University

Hsinchu 300, Taiwan, ROC

lhyen@cs.nctu.edu.tw

2 Department of Computer Science and Information Engineering, National University of Kaohsiung

Kaohsiung 811, Taiwan, ROC

erice1211@gmail.com

Received 18 June 2015; Revised 19 February 2016; Accepted 27 December 2016

Abstract. Dominating set in a mobile ad-hoc network (MANET) is a collection of devices acting

as servers that store, forward, or backup data for other devices not in the set. To fulfill the

service requirement, every device is either a dominator or adjacent to a dominator. Devices of

the latter case are dominatees. To provide a more robust service, we can extend the definition of

dominating set to k-dominating set, where each dominatee must be adjacent to at least k

dominators (k is a constant). This paper proposes a self-stabilizing protocol that identifies a k-

dominating set in a MANET. The identified set is guaranteed minimal in the sense that it

contains no proper subset that is also a k-dominating set. We prove correctness and analyze

stability property of this protocol. Simulation results indicate that the proposed protocol finds k-

dominating sets of smaller size when compared with existing approaches. The message overhead

of the proposed protocol is proportional to the number of nodes and is small with either small or

large k.

Keywords: distributed algorithms, dominating set, MANET, self-stabilization

1 Introduction

In a mobile ad-hoc network (MANET), we can designate some devices as servers that provide a certain

type of service to other nearby devices. Possible service types include message queuing, message

forwarding, and data backlog. An important issue in this environment is to find a collection of devices

that has the smallest size without degrading the service level. This issue relates to the classical

dominating set problem, where dominators are servers in our environment. Dominating sets also serve

other purposes. For example, dominating sets can be used for an energy-saving node scheduling in

MANETs and wireless sensor networks [1-2]. Connected dominating sets can also serve as backbone

nodes in MANETs [3].

We can model a MANET as a connected, undirected graph G = (V, E), where V are devices while E

are communication links between devices. If S is a subset of V such that every node in V \ S is adjacent to

some node in S, then S is a dominating set. Nodes in S are dominators and all nodes in V \ S are

dominatees. If S contains no proper subset that is also a dominating set, then S is a minimal dominating

set.

When the service level demanded by a dominatee cannot be fulfilled by a single dominator, we may

need to aggregate service from several dominators to meet the demand of the dominatee. Providing

several dominators to a dominatee can also help load sharing and fault tolerance. Therefore, to provide a

better quality of service, dominating sets can be extended to k-dominating sets. Given a k-dominating set

* Corresponding Author

Journal of Computers Vol. 28, No. 4, 2017

39

S, every node not in S is adjacent to at least k nodes in S. Here k is a positive integer.

Self-stabilizing distributed algorithms guarantee that regardless of whether the initial state of a

distributed system is legitimate or not, the whole system eventually enters a legitimate state and remains

in the set of legitimate states [4]. Self-stabilization tolerates transient faults by always coming back to

correct states after transient faults. In MANETs, devices dynamically joins or leaves the network due to

mobility or changes of power status (e.g., entering or leaving doze mode). Furthermore, transmission

may not necessarily succeed due to collisions or interference. Such dynamic participations and

transmission failures place a design challenge to the correctness of conventional protocols and algorithms.

On the other hand, transient faults caused by dynamic participations or transmission failures are no

problems in self-stabilizing algorithms because these algorithms are designed to cope with such faults.

This is why we study self-stabilizing algorithms in MANETs.

Several self-stabilizing algorithms have been proposed to identify 1-dominating sets in distributed

systems [5-9]. Huang et al. [10-11] developed self-stabilizing algorithms for minimal 2-dominating sets.

Kamei and Kakugawa [12] proposed a self-stabilizing approximation algorithm to find minimum k-

domination. Recently, we proposed a game-theoretic self-stabilizing approach to multi-dominating set in

a distributed system [13]. All the above-mentioned algorithms are expressed in guarded commands [14],

which help formal correctness verification of the design. However, guarded commands are grounded in

the shared-variable execution environment, which allows local variables of a node to be directly read by

neighboring nodes. This is certainly not possible in MANETs. In this paper, we discuss challenges

concerning the transformation of an algorithm in guarded commands to a protocol running in MANETs.

We also propose a self-stabilizing protocol that is based on our previous work in [13]. Simulation results

indicate that the proposed approach find smaller 1-dominating sets, 2-dominating sets, and k-dominating

sets when compared with existing approaches. The message overhead of the proposed approach is

proportional to the number of nodes and is small with either small or large k.

The remainder of this paper is organized as follows: A brief background is described in Section 2.

Section 3 elaborates on the proposed approach. In Section 4, simulation results are discussed and

compared among subject schemes. Lastly Section 5 concludes this paper.

2 Preliminaries

Self-stabilization for a system can be defined with respect to a predicate over all states of the system [15].

The predicate under consideration specifies all correct or legitimate states of the system. In case of our

minimal k-dominating set problem, the predicate identifies a system state legitimate if and only if all

nodes claiming themselves dominators in this state indeed constitute a minimal k-dominating set. A

distributed algorithm is self-stabilizing with respect to the predicate if the following two conditions hold:

‧Convergence. Starting from arbitrary state (possibly illegitimate), the algorithm eventually reaches a

legitimate state.

‧Closure. Any state following a legitimate state is also legitimate.

Most existing self-stabilizing algorithms are expressed in the form of guarded commands [14]. A

guarded command specifies one rule that consists of a condition part (a Boolean expression) followed by

an action part (statements). A guarded command is enabled if its condition part is evaluated true. A

process1 executes the action part of a command only when that command is enabled. Processes update

their local states in action parts. The execution of the action part is assumed atomic, i.e., not interleaved

with the execution of any other guarded command. When a process has more than one enabled

commands, only one of them can be executed at a time. Which command is executed in this case is

nondeterministic.

Self-stabilizing algorithms usually assume some type of execution models that can be characterized by

the presence of a particular type of scheduler or daemon. In a central daemon execution model, only one

process can execute at a time. With a synchronous daemon, all processes are scheduled to execute in

parallel, which is a perfect match for a synchronous distributed algorithm. A distributed daemon

subsumes the aforementioned models in the sense that any non-empty subset of processes can execute in

parallel.

In Yen and Chen’s, we have presented a distributed algorithm that runs under a central daemon to

1We use process and node interchangeably in this paper.

Self-Stabilizing Distributed Formation of Minimal k-Dominating Sets in Mobile Ad Hoc Networks

40

identify a minimal k-dominating set [13]. This algorithm consists of six guarded commands (R1 - R6) for

each process pi, as shown below

R1 |Ni ∩ {pj | x(j) = true}| < k ∧ x(i) ≠ true ∧ g(i) ≠ UNDER → g(i) := UNDER

R2 |Ni ∩ {pj | x(j) = true}| = k ∧ x(i) ≠ true ∧ g(i) ≠ EQUAL → g(i) := EQUAL

R3 (|Ni ∩ {pj | x(j) = true}| > k ∨ x(i) = true) ∧ g(i) ≠ OVER → g(i) := OVER

R4 |Ni| < k ∧ x(i) ≠ true → x(i) := true

R5 |Ni| ≥ k ∧ ∃ pj ∈ Ni : g(j) = UNDER ∧ x(i) ≠ true → x(i) := true

R6 |Ni| ≥ k ∧ ∀pj ∈ Ni : g(j) = OVER ∧ x(i) ≠ false → x(i) := false

The condition part and the associated action part of each command are separated by “→”. Ni denotes

the set of pi’s neighbors. Each process pi uses a local Boolean variable x(i) to denote whether pi chooses to

be in the dominating set. It uses another variable g(i) to indicate pi’s current need for dominators. When

g(i) = UNDER, pi is a dominate and it has fewer adjacent dominators than needed. When g(i) = EQUAL,

pi is a dominatee and it has exactly k adjacent dominators. g(i) = OVER means either pi has more adjacent

dominators than needed or pi itself is a dominator (so it needs no dominator at all.) Each process pi

decides x(i) based on the g(j) values of all its neighbor pj ∈ Ni, and updates g(i) according to x(i) and the

values of x(j)’s for which pj ∈ Ni.

3 The Proposed Approach

3.1 Transformation of Guarded Commands

Guarded commands are grounded in the shared-variable execution environment and are characterized by

two properties. First, a process can write and can only write its own local variables. Second, a process

can read and can only read its own local variables plus local variables of its neighboring processes. This

execution environment is not readily available in MANETs.

The first challenge in transforming guarded commands into a protocol for MANETs is that local

variables of a node in MANETs cannot be directly read by their neighbors. Building a distributed shared

memory system to enable such access in MANET is overkill and is not practical. We therefore handle

this in the transformed algorithm.

A node can passively or actively inform its neighbors of any update on local variables. In the passive

approach, a node requests the current values of its neighbor’s local variables whenever these values are

needed. This involves a request-response communication pattern, which may fail due to transmission

failures or other reasons. Even the request succeeds, it probably does not complete in an atomic way due

to message delay. This violates the assumption that executions of guarded commands should be atomic.

The active approach is to let nodes propagate actively any change of local variables to their neighbors.

We take this approach and realize the propagation by multicast. Because messages may get lost or

delayed, neighbors can only have cached versions of these variables which may not be the current values.

We use xi(i) (resp. gi(i)) to denote x(i) (resp. g(i)) owned by pi. Variables xj(i)’s and gj(i)’s, where j ≠ i,

are values of xi(i) and gi(i), respectively, cached by node pj ∈ Ni. For all pj ∉ Ni, xj(i)’s and gj(i)’s are

undefined.

The transformation uses delayed-update technique to reduce the frequency of propagations. Every pi

has a back-off timer Ti. When pi receives a message and detects the need to update xi(i) or gi(i), it loads a

random value to Ti. Only when Ti expires can pi update these variables. If pi receives more messages

before Ti expires, only one update is performed. The frequency of updates is thus reduced. It is possible

the scheduled update on xi(i) or gi(i) is no longer needed at the time when Ti expires. The reason is that

the precondition for the update is invalidated by the reception of subsequent messages during Ti’s active

period. Therefore, pi has to recheck whether the update is still valid when Ti expires.

Each guarded command in the algorithm updates only one local variable (either x(i) or g(i)). Since a

central daemon schedules only one rule at a time, the values of x(i)’s and g(i)’s are not simultaneously

and consistently updated. For example, it is possible that x(i) = false and g(i) = UNDER initially for some

pi. Later pi executes R5 to change x(i) to true while g(i) is still UNDER. In the transformation, we prevent

such inconsistency by rechecking and updating gi(i) following the update of xi(i).

Journal of Computers Vol. 28, No. 4, 2017

41

Algorithm 1 shows the resulting transformation as three event-driven procedures for each process pi.

Executions of these procedures are mutually exclusive. Six conditions (C1 to C6) used by the algorithm

are shown in Fig. 1. These conditions correspond to the condition parts of R1 to R6. Fig. 2 shows a

typical run of the algorithm in a four-node system.

Fig. 1. Six conditions used by Algorithm 1

p3

p1

U

p3

U

xi(i) = false

xi(i) = true

U: gi(i) = UNDER

O: gi(i) = OVER

U U

U
p1

p2

p4

U

U

O p2 U

O

U

O p4 U

O

O

O

O

O

O

OO

O

E

O p4E

O

E

O p3

E: gi(i) = EQUAL

Fig. 2. A typical execution run

Algorithm 1 Event-driven procedures for each process pi

On initialization � Procedure 1

if any of C1 to C6 is true then

load Ti with a random value

end if

end

On receiving a multicast {xj(j), gj(j)} from pj � Procedure 2

xi(j) ← xj(j)

gi(j) ← gj(j)

if any of C1 to C6 is true then

load Ti with a random value if Ti is not running

else

stop and reset Ti

end if

end

When Ti expires � Procedure 3

if C4 or C5 is true then

xi(i) ← true

else if C6 is true then

C1: δ(pi) < k ∧ xi(i) ≠ true ∧ gi(i) ≠ UNDER

C2: δ(pi) = k ∧ xi(i) ≠ true ∧ gi(i) ≠ EQUAL

C3: (δ(pi) > k ∨ xi(i) = true) ∧ gi(i) ≠ OVER

C4: |Ni| < k ∧ xi(i) ≠ true

C5: |Ni| ≥ k ∧ ∃ pj ∈ Ni : gi(j) = UNDER ∧ xi(i) ≠ true

C6: |Ni| ≥ k ∧ ∀pj ∈ Ni : gi(j) = OVER ∧ xi(i) ≠ false

where δ(pi) = |Ni ∩ {pj | xi(j) = true}|

Self-Stabilizing Distributed Formation of Minimal k-Dominating Sets in Mobile Ad Hoc Networks

42

xi(i) ← false

end if

if C1 is true then

gi(i) ← UNDER

else if C2 is true then

gi(i) ← EQUAL

else if C3 is true then

gi(i) ← OVER

end if

multicast {xi(i), gi(i)} to neighbors

end

3.2 Correctness Proof

We shall now prove the correctness of Algorithm 1, i.e., it does identify a minimal k-dominating set

when the system enters a stable state. We first introduce the following definitions and notations. For each

process pi, Li is an assignment of one value to each of pi’s local variable. For each communication

channel ci,j by which process pi sends message to pj, Mi,j is the channel state of ci,j, which contains all

messages currently in-transit in ci,j. Let τi denote the status of Ti such that τi = true if Ti is active (running)

and τi = false otherwise. A global state (or state for short) is defined by s = {Li, τi, Mi,j}i =1…n. This

definition is specifically for networking environment. A global state for algorithms running in shared

memory model comprises only {Li} and need not include the contents of local timers and channel states.

Stable states in our design correspond to quiescent global states, i.e., states where no further state

transition is possible. In the distributed algorithm expressed in guarded commands, a state is stable only

if no command is enabled in any process. This condition corresponds to a state in our transformation

where none of {C1, …, C6} holds in any node. However, as the transformation additionally involves

timers and message transmissions, stable states in our transformation also demands no active timers and

in-transit messages.

Definition 1: A state s = {{Li}, {τi}, {Mi,j}} is stable if the following conditions all hold.

‧C1 to C6 are all false in every pi.

‧τi = false for all pi.

‧Mi,j = φ for all ci,j.

Let A(s, i) denote the last procedure executed by pi before reaching state s. The values of A(s, i) are

defined to be init, recv, and Tout when the last executed procedures are Procedures 1, 2, and 3,

respectively.

Variable gi(i) is said to be correct if its value matches those shown in Tables 1. Observe that gi(i) is

correct right after the execution of Procedure 3. The following property is also easy to see.

Property 1: gi(i) is correct if and only if C1, C2, and C3 are false in pi.

Table 1. Correct values of gi(i)

 xi(i)

δ(pi) false true

< k UNDER OVER

= k EQUAL OVER

> k OVER OVER

The following lemmas are needed for our main result.

Lemma 1: If state s is stable, gi(i) is correct for all pi in s.

Proof: Suppose, by way of contradiction, that gi(i) is not correct for some pi in s. By Property 1, this

implies that C1, C2, or C3 holds. Now consider the value of A(s, i). A(s, i) ≠ Tout because Procedure 3

guarantees the correctness of gi(i). If A(s, i) were init or recv, then C1, C2, or C3 would be detected true

and Ti would be activated during the execution of A(s, i). Consequently, τi = true in s, which contradicts

with the assumption that s is a stable state. We thus have the proof.

Lemma 2: If |Ni| < k for some node pi, xi(i) must be true in any stable state.

Journal of Computers Vol. 28, No. 4, 2017

43

Proof: |Ni| < k implies the truth of C4, which causes the activation of Ti initially through Procedure 1.

The expiration of Ti and the subsequent execution of Procedure 3 will then set xi(i) to true. The only way

to change xi(i) back to false demands the truth of C6, which is impossible because |Ni| < k. Therefore, xi(i)

must be true in any stable state.

Theorem 1: In stable states, D = { pi | xi(i) = true} is a minimal k-dominating set.

Proof: We first prove that D is a k-dominating set. By way of contradiction, assume that D is not a k-

dominating set in some stable state s. This means that there exists at least one node pj such that xj(j) =

false ∧ δ (pj) < k in s. By Lemma 1, gj(j) must be correct in s, which means

 gj(j) = UNDER. (1)

By Lemma 2, xj(j) = false implies that |Nj| ≥ k. It follows that there exists some pi ∈ Nj such that

 xi(i) = false. (2)

By Lemma 2 again, (2) implies that

 |Ni| ≥ k. (3)

(1) to (3) together imply that C5 must be true for pi in s. However, this contradicts with the assumption

that s is stable. Therefore, D must be a k-dominating set.

We then prove that D is also minimal. If D were not minimal, then there would exist at least one node

pi ∈ D such that D \ {pi} is still a k-dominating set, which implies that δ(pi) ≥ k and ∀pj ∈ Ni : δ (pj) > k.

The former condition implies that |Ni| ≥ k. The latter condition implies that ∀pj ∈ Ni : gj(j) = OVER since

all gj(j)’s are correct by Lemma 1. Therefore, C6 holds for pi in stable states, which contradicts with the

assumption that s is stable.

3.3 Stability Issues

Three factors, namely, incoherent states, simultaneous moves, and indirect information, affect stability

property of Algorithm 1 in MANETs. A state is coherent if ∀pi : ∀pj ∈ Ni : xi(j) = xj(j) ∧ gi(j) = gj(j).

Intuitively, all nodes in a coherent state have up-to-date information about neighboring node’s variables.

A coherent state becomes incoherent after some node pi has updated its variables but at least one of its

neighbors has yet been informed of the update. The only reason of such incoherence is due to in-transit

message as stated below:

 xi(j) ≠ xj(j) ∨ gi(j) ≠ gj(j) ⇒ Mi,j ≠ φ.

If nodes are allowed to make changes to their local variables (i.e., execute Procedure 3) in incoherent

states, then the system may not enter a stable state. Consider the example shown in Fig. 3, where p1 has

changed x1(1) to true and g1(1) to OVER, but the multicast message to p2 is currently in transit. This is an

incoherent state since x2(1) ≠ x1(1) and g2(1) ≠ g1(1). If p2 executes Procedure 3 at this moment, it will

change x2(2) to true and g2(2) to OVER, causing considerable subsequent state transitions. If p2 executes

Procedure 3 after receiving the message and updating x2(1) and g2(1) (i.e., p2 makes its decision in a

coherent state), then x2(2) will be false and g2(2) will be EQUAL, and no further state transition is

possible.

Fig. 3. An incoherent state where a message from p1 to p2 is in transit

If message delays are small enough to guarantee that Mi,j = φ whenever node pj makes a change to xj(j)

or gj(j) (i.e., executes Procedure 3), then all decisions are made in coherent states.

Even nodes make decisions all in coherent states, instability of the algorithm may still occur if

simultaneous moves of nodes are permitted. Fig. 4 shows such an example. The guarded-command

version precludes simultaneous moves by assuming a central daemon, which allows only one process to

Self-Stabilizing Distributed Formation of Minimal k-Dominating Sets in Mobile Ad Hoc Networks

44

execute at a time. It is possible to realize or emulate a central daemon in MANETs. We may use a

distributed mutual exclusion algorithm to ensure that modifications to local variables are mutually

exclusive between neighboring nodes. Identifiers of nodes can be used to break ties when two or more

neighboring nodes attempt modifications.

Fig. 4. An example where simultaneous moves cause instability

Unfortunately, decisions made in coherent states without simultaneous moves still do not guarantee

stability. In fact, although stable states imply coherent states, the converse does not necessarily hold

because any condition in {C1, …, C6} can be true in a coherent state. An infinite sequence of state

transitions that comprises only coherent states without simultaneous moves is possible. Fig. 5 shows an

example that corresponds to the four-node system shown in Fig. 2.

Fig. 5. A state transition loop that comprises only coherent states without simultaneous moves

The root of this problem comes from indirect information. The main idea behind the algorithm design

is that pi’s decision of being a dominator or not mainly depends on δ(pj) of all its neighbors pj ∈ Ni

(except those pj for which |Nj| < k), where δ(pj) = {pk | pk ∈ Nj ∧ xk(k) = true}. pi learns of δ(pj) indirectly

by gi(j). It is ensured in coherent states that gi(j) = gj(j), but gj(j) does not reflect δ(pj) when some pk ∈ Nj

has changed xk(k) but pj has not yet updated gj(j).

To solve this problem, we can let each pi evaluate δ(pj) directly from xk(k) for all pk ∈ Nj. To this end,

each node pk is required to multicast xk(k) with a transmission range that is twice of that pk uses to

communicate with its neighbors. This approach also eliminates the need for all gi(j)’s.

4 Simulation Results

We conducted simulations to study the performance of the proposed approach and compare it with those

of existing methods. In our simulations, 50 to 100 wireless nodes were randomly deployed in a 1000 ×

1000 m2 area. Each node has a default transmission range of 200 m. Two wireless nodes are neighbors

Journal of Computers Vol. 28, No. 4, 2017

45

only when they are within the transmission range of each other. Message delays are sufficiently small to

disable decision makings in incoherent states. We are primarily concerned with the sizes of the

dominating sets identified by these methods and protocol overhead.

We considered several self-stabilizing distributed algorithms that find minimal dominating sets. These

algorithms were respectively proposed by Hedetniemi, Hedetniemi, Jacobs and Srimani [5], Xu,

Hedetniemi, Goddard and Srimani [6], Kakugawa and Masuzawa [7], Turau [8], and Goddard et al. [9].

We also tested the k-dominating set algorithm proposed by Kamei and Kakugawa [12] by setting k to 1.

The guarded-command algorithm and the transformed MANET protocol were also tested. Fig. 6 shows

average sizes of dominating sets generated by each method when the number of nodes was varied from

50 to 100. Each average was obtained over 1000 runs.

50 60 70 80 90 100
10

11

12

13

14

15

16

17

Number of nodes

A
v
e
ra
g
e
 s
iz
e
 o
f
d
o
m
in
a
ti
n
g
 s
e
ts

Hedetniemi et al.

Xu et al.

Kamei et al.

Kakugawa et al.

Turau

Goddard et al.

Guarded commands

MANET protocol

Fig. 6. Average sizes of dominating sets (k = 1)

All classical self-stabilizing single-domination algorithms [5-9] performed nearly the same. These

algorithms all generated more dominators than the k-dominating set algorithm proposed by Kamei and

Kakugawa [12]. Kamei’s algorithm is next to both the guarded-command version and the transformed

protocol. However, since different algorithms might run under different types of daemons, the results

here were not obtained on a fair basis and should not be overstretched.

For 2-dominating sets, we compared the proposed approaches with two algorithms proposed by Huang

et al. [10-11]. The algorithm proposed by Kamei and Kakugawa [12] was also considered. Fig. 7 shows

the results for 2-dominating sets. The results indicate that Huang’s algorithm for central daemon [11]

found more dominators than his algorithm for distributed daemon [10]. Kamei’s algorithm performed

better than Huang’s algorithms but generally worse than the two proposed approaches.

50 60 70 80 90 100
19

20

21

22

23

24

25

26

27

28

Number of nodes

A
v
e
ra
g
e
 s
iz
e
 o
f
d
o
m
in
a
ti
n
g
 s
e
ts

Huang et al. (07)

Huang et al. (08)

Kamei et al.

Guarded commands

MANET protocol

Fig. 7. Average sizes of 2-dominating sets

Self-Stabilizing Distributed Formation of Minimal k-Dominating Sets in Mobile Ad Hoc Networks

46

Fig. 8 compares Kamei’s algorithm and the two proposed approaches with the number of nodes fixed

to 100 and k varied from 1 to 5. The result still shows the outperformance of the proposed approaches

over Kamei’s algorithm.

1 2 3 4 5
10

15

20

25

30

35

40

45

50

55

k

A
v
e
ra
g
e
 s
iz
e
 o
f
d
o
m
in
a
ti
n
g
 s
e
ts

Kamei et al.

Guarded commands

MANET protocol

Fig. 8. Comparison between Kamei’s algorithm and the proposed approaches in term of average

sizes of k-dominating sets

For protocol overhead, we measured the average number of multicasts per node when running

Algorithm 1. Fig. 9 shows the results for k = 1 with respect to the number of nodes in the network. As the

number of nodes increases, the number of multicasts also increases, because of the network becomes

denser when more nodes are involved. Fig. 10 shows the results with the number of nodes fixed to 100

and k varied from 1 to 5. Here the number of multicasts per node does not strictly increase with k. Some

results with k = 5 are even lower than those with k = 4. The reason is that more nodes turn into

dominators by condition C4 as k becomes larger. These nodes do not revise their decisions and thus

multicast only one message during the whole run. Therefore, the proposed method is efficient with either

small or large k.

50 60 70 80 90 100
2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

Number of nodes

A
v
e
ra
g
e
 n
u
m
b
e
r
o
f
m
u
lt
ic
a
s
ts
 p
e
r
n
o
d
e

k = 1

k = 2

k = 3

Fig. 9. Average number of multicasts per node with respect to the number of nodes (k = 1)

Journal of Computers Vol. 28, No. 4, 2017

47

1 2 3 4 5

2.5

3

3.5

4

k

A
v
e
ra
g
e
 n
u
m
b
e
r
o
f
m
u
lt
ic
a
s
ts
 p
e
r
n
o
d
e

n = 100

n = 90

n = 80

Fig. 10. Average number of multicasts per node with respect to k

5 Conclusions

We have transformed a distributed algorithm expressed in guarded commands that identifies a minimal k-

dominating set in a distributed system into a protocol for MANETs. We have proved that this protocol

identifies minimal k-dominating sets in stable states. Three factors that affect the stability of the protocol,

namely, incoherent states, simultaneous moves, and indirect information, have been discussed.

Simulation results indicate that the transformed protocol performs nearly the same as the distributed

algorithm expressed in guarded commands, and both perform better than conventional self-stabilizing

algorithms in terms of average size of dominating sets. The message overhead of the proposed protocol is

proportional to the number of nodes. The overhead does not increase with k.

References

[1] T. Moscibroda, R. Wattenhofer, Maximizing the lifetime of dominating sets, in Proc. 19th IEEE Int’l Parallel and

Distributed Processing Symposium, 2005.

[2] B. Pazand, A. Datta, Minimum dominating sets for solving the coverage problem in wireless sensor networks, in: Proc.

Lecture Notes in Computer Science 4239, 2006.

[3] B. Liang, Z. Haas, Virtual backbone generation and maintenance in ad hoc network mobility management, in Proc. IEEE

INFOCOM, 2000.

[4] E.W. Dijkstra, Self-stabilizing systems in spite of distributed control, Comm. ACM 17(11)(1974) 643-644.

[5] S.M. Hedetniemi, S. Hedetniemi, D.P. Jacobs, P.K. Srimani, Self-stabilizing algorithms for minimal dominating sets and

maximal independent sets, Computers & Mathematics with Applications 46(5-6)(2003) 805-811.

[6] Z. Xu, S.T. Hedetniemi, W. Goddard, P.K. Srimani, A synchronous self-stabilizing minimal domination protocol in an

arbitrary network graph, in: Proc. Lecture Notes in Computer Science 2918, 2003.

[7] H. Kakugawa, T. Masuzawa, A self-stabilizing minimal dominating set algorithm with safe convergence, in: Int’l Parallel

and Distributed Processing Symposium, 2006.

[8] V. Turau, Linear self-stabilizing algorithms for the independent and dominating set problems using an unfair distributed

scheduler, Inform. Process. Lett. 103(3)(2007) 88-93.

Self-Stabilizing Distributed Formation of Minimal k-Dominating Sets in Mobile Ad Hoc Networks

48

[9] W. Goddard, S.T. Hededtniemi, D.P. Jacobs, P.K. Srimani, Z. Xu, Self-stabilizing graph protocols, Parallel Process. Lett.

18(1)(2008) 189-199.

[10] T.C. Huang, J.C. Lin, C.Y. Chen, C.P. Wang, A self-stabilizing algorithm for finding a minimal 2-dominating set assuming

the distributed demon model, Computers & Mathematics with Applications 54(3)(2007) 350-356.

[11] T.C. Huang, C.Y. Chen, C.P. Wang, A linear-time self-stabilizing algorithm for the minimal 2-dominating set problem in

general networks, Journal of Information Science and Engineering 24(1)(2008) 175-187.

[12] S. Kamei, H. Kakugawa, A self-stabilizing approximation algorithm for the distributed minimum k-domination, IEICE

Trans. on Fundamentals of Electronics, Communications and Computer Sciences 5(2005) 1109-1116.

[13] L.-H. Yen, Z.-L. Chen, Game-theoretic approach to self-stabilizing distributed formation of minimal multi-dominating sets,

IEEE Trans. Parallel Distrib. Syst. 25(12)(2014) 3201-3210.

[14] E.W. Dijkstra, Guarded commands, nondeterminacy, and formal derivation of programs, Comm. ACM 18(8)(1975) 453-

457.

[15] A.D. Kshemkalyani, M. Singhal, Distributed Computing: Principles, Algorithms, and Systems, Cambridge University Press,

Cambridge, 2008.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

