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Abstract. Dominating set in a mobile ad-hoc network (MANET) is a collection of devices acting 

as servers that store, forward, or backup data for other devices not in the set. To fulfill the 

service requirement, every device is either a dominator or adjacent to a dominator. Devices of 

the latter case are dominatees. To provide a more robust service, we can extend the definition of 

dominating set to k-dominating set, where each dominatee must be adjacent to at least k 

dominators (k is a constant). This paper proposes a self-stabilizing protocol that identifies a k-

dominating set in a MANET. The identified set is guaranteed minimal in the sense that it 

contains no proper subset that is also a k-dominating set. We prove correctness and analyze 

stability property of this protocol. Simulation results indicate that the proposed protocol finds k-

dominating sets of smaller size when compared with existing approaches. The message overhead 

of the proposed protocol is proportional to the number of nodes and is small with either small or 

large k.  

Keywords: distributed algorithms, dominating set, MANET, self-stabilization  

1 Introduction 

In a mobile ad-hoc network (MANET), we can designate some devices as servers that provide a certain 

type of service to other nearby devices. Possible service types include message queuing, message 

forwarding, and data backlog. An important issue in this environment is to find a collection of devices 

that has the smallest size without degrading the service level. This issue relates to the classical 

dominating set problem, where dominators are servers in our environment. Dominating sets also serve 

other purposes. For example, dominating sets can be used for an energy-saving node scheduling in 

MANETs and wireless sensor networks [1-2]. Connected dominating sets can also serve as backbone 

nodes in MANETs [3]. 

We can model a MANET as a connected, undirected graph G = (V, E), where V are devices while E 

are communication links between devices. If S is a subset of V such that every node in V \ S is adjacent to 

some node in S, then S is a dominating set. Nodes in S are dominators and all nodes in V \ S are 

dominatees. If S contains no proper subset that is also a dominating set, then S is a minimal dominating 

set. 

When the service level demanded by a dominatee cannot be fulfilled by a single dominator, we may 

need to aggregate service from several dominators to meet the demand of the dominatee. Providing 

several dominators to a dominatee can also help load sharing and fault tolerance. Therefore, to provide a 

better quality of service, dominating sets can be extended to k-dominating sets. Given a k-dominating set 
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S, every node not in S is adjacent to at least k nodes in S. Here k is a positive integer. 

Self-stabilizing distributed algorithms guarantee that regardless of whether the initial state of a 

distributed system is legitimate or not, the whole system eventually enters a legitimate state and remains 

in the set of legitimate states [4]. Self-stabilization tolerates transient faults by always coming back to 

correct states after transient faults. In MANETs, devices dynamically joins or leaves the network due to 

mobility or changes of power status (e.g., entering or leaving doze mode). Furthermore, transmission 

may not necessarily succeed due to collisions or interference. Such dynamic participations and 

transmission failures place a design challenge to the correctness of conventional protocols and algorithms. 

On the other hand, transient faults caused by dynamic participations or transmission failures are no 

problems in self-stabilizing algorithms because these algorithms are designed to cope with such faults. 

This is why we study self-stabilizing algorithms in MANETs. 

Several self-stabilizing algorithms have been proposed to identify 1-dominating sets in distributed 

systems [5-9]. Huang et al. [10-11] developed self-stabilizing algorithms for minimal 2-dominating sets. 

Kamei and Kakugawa [12] proposed a self-stabilizing approximation algorithm to find minimum k-

domination. Recently, we proposed a game-theoretic self-stabilizing approach to multi-dominating set in 

a distributed system [13]. All the above-mentioned algorithms are expressed in guarded commands [14], 

which help formal correctness verification of the design. However, guarded commands are grounded in 

the shared-variable execution environment, which allows local variables of a node to be directly read by 

neighboring nodes. This is certainly not possible in MANETs. In this paper, we discuss challenges 

concerning the transformation of an algorithm in guarded commands to a protocol running in MANETs. 

We also propose a self-stabilizing protocol that is based on our previous work in [13]. Simulation results 

indicate that the proposed approach find smaller 1-dominating sets, 2-dominating sets, and k-dominating 

sets when compared with existing approaches. The message overhead of the proposed approach is 

proportional to the number of nodes and is small with either small or large k. 

The remainder of this paper is organized as follows: A brief background is described in Section 2. 

Section 3 elaborates on the proposed approach. In Section 4, simulation results are discussed and 

compared among subject schemes. Lastly Section 5 concludes this paper. 

2 Preliminaries 

Self-stabilization for a system can be defined with respect to a predicate over all states of the system [15]. 

The predicate under consideration specifies all correct or legitimate states of the system. In case of our 

minimal k-dominating set problem, the predicate identifies a system state legitimate if and only if all 

nodes claiming themselves dominators in this state indeed constitute a minimal k-dominating set. A 

distributed algorithm is self-stabilizing with respect to the predicate if the following two conditions hold: 

‧Convergence. Starting from arbitrary state (possibly illegitimate), the algorithm eventually reaches a 

legitimate state. 

‧Closure. Any state following a legitimate state is also legitimate. 

Most existing self-stabilizing algorithms are expressed in the form of guarded commands [14]. A 

guarded command specifies one rule that consists of a condition part (a Boolean expression) followed by 

an action part (statements). A guarded command is enabled if its condition part is evaluated true. A 

process1 executes the action part of a command only when that command is enabled. Processes update 

their local states in action parts. The execution of the action part is assumed atomic, i.e., not interleaved 

with the execution of any other guarded command. When a process has more than one enabled 

commands, only one of them can be executed at a time. Which command is executed in this case is 

nondeterministic. 

Self-stabilizing algorithms usually assume some type of execution models that can be characterized by 

the presence of a particular type of scheduler or daemon. In a central daemon execution model, only one 

process can execute at a time. With a synchronous daemon, all processes are scheduled to execute in 

parallel, which is a perfect match for a synchronous distributed algorithm. A distributed daemon 

subsumes the aforementioned models in the sense that any non-empty subset of processes can execute in 

parallel. 

In Yen and Chen’s, we have presented a distributed algorithm that runs under a central daemon to 
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identify a minimal k-dominating set [13]. This algorithm consists of six guarded commands (R1 - R6) for 

each process pi, as shown below 

 

R1 |Ni ∩ {pj | x(j) = true}| < k ∧ x(i) ≠ true ∧ g(i) ≠ UNDER → g(i) := UNDER 

R2  |Ni ∩ {pj | x(j) = true}| = k ∧ x(i) ≠ true ∧ g(i) ≠ EQUAL → g(i) := EQUAL 

R3  (|Ni ∩ {pj | x(j) = true}| > k ∨ x(i) = true) ∧ g(i) ≠ OVER → g(i) := OVER 

R4  |Ni| < k ∧ x(i) ≠ true → x(i) := true 

R5  |Ni| ≥ k ∧ ∃ pj ∈ Ni : g(j) = UNDER ∧ x(i) ≠ true → x(i) := true 

R6  |Ni| ≥ k ∧ ∀pj ∈ Ni : g(j) = OVER ∧ x(i) ≠ false → x(i) := false 

 

The condition part and the associated action part of each command are separated by “→”. Ni denotes 

the set of pi’s neighbors. Each process pi uses a local Boolean variable x(i) to denote whether pi chooses to 

be in the dominating set. It uses another variable g(i) to indicate pi’s current need for dominators. When 

g(i) = UNDER, pi is a dominate and it has fewer adjacent dominators than needed. When g(i) = EQUAL, 

pi is a dominatee and it has exactly k adjacent dominators. g(i) = OVER means either pi has more adjacent 

dominators than needed or pi itself is a dominator (so it needs no dominator at all.) Each process pi 

decides x(i) based on the g(j) values of all its neighbor pj ∈ Ni, and updates g(i) according to x(i) and the 

values of x(j)’s for which pj ∈ Ni. 

3 The Proposed Approach 

3.1 Transformation of Guarded Commands  

Guarded commands are grounded in the shared-variable execution environment and are characterized by 

two properties. First, a process can write and can only write its own local variables. Second, a process 

can read and can only read its own local variables plus local variables of its neighboring processes. This 

execution environment is not readily available in MANETs. 

The first challenge in transforming guarded commands into a protocol for MANETs is that local 

variables of a node in MANETs cannot be directly read by their neighbors. Building a distributed shared 

memory system to enable such access in MANET is overkill and is not practical. We therefore handle 

this in the transformed algorithm. 

A node can passively or actively inform its neighbors of any update on local variables. In the passive 

approach, a node requests the current values of its neighbor’s local variables whenever these values are 

needed. This involves a request-response communication pattern, which may fail due to transmission 

failures or other reasons. Even the request succeeds, it probably does not complete in an atomic way due 

to message delay. This violates the assumption that executions of guarded commands should be atomic. 

The active approach is to let nodes propagate actively any change of local variables to their neighbors. 

We take this approach and realize the propagation by multicast. Because messages may get lost or 

delayed, neighbors can only have cached versions of these variables which may not be the current values. 

We use xi(i) (resp. gi(i)) to denote x(i) (resp. g(i)) owned by pi. Variables xj(i)’s and gj(i)’s, where j ≠ i, 

are values of xi(i) and gi(i), respectively, cached by node pj ∈ Ni. For all pj ∉ Ni, xj(i)’s and gj(i)’s are 

undefined. 

The transformation uses delayed-update technique to reduce the frequency of propagations. Every pi 

has a back-off timer Ti. When pi receives a message and detects the need to update xi(i) or gi(i), it loads a 

random value to Ti. Only when Ti expires can pi update these variables. If pi receives more messages 

before Ti expires, only one update is performed. The frequency of updates is thus reduced. It is possible 

the scheduled update on xi(i) or gi(i) is no longer needed at the time when Ti expires. The reason is that 

the precondition for the update is invalidated by the reception of subsequent messages during Ti’s active 

period. Therefore, pi has to recheck whether the update is still valid when Ti expires. 

Each guarded command in the algorithm updates only one local variable (either x(i) or g(i)). Since a 

central daemon schedules only one rule at a time, the values of x(i)’s and g(i)’s are not simultaneously 

and consistently updated. For example, it is possible that x(i) = false and g(i) = UNDER initially for some 

pi. Later pi executes R5 to change x(i) to true while g(i) is still UNDER. In the transformation, we prevent 

such inconsistency by rechecking and updating gi(i) following the update of xi(i). 
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Algorithm 1 shows the resulting transformation as three event-driven procedures for each process pi. 

Executions of these procedures are mutually exclusive. Six conditions (C1 to C6) used by the algorithm 

are shown in Fig. 1. These conditions correspond to the condition parts of R1 to R6. Fig. 2 shows a 

typical run of the algorithm in a four-node system. 

 

Fig. 1. Six conditions used by Algorithm 1 
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Fig. 2. A typical execution run 

Algorithm 1 Event-driven procedures for each process pi 

On initialization      � Procedure 1 

if any of C1 to C6 is true then 

load Ti with a random value 

end if 

end 

 

On receiving a multicast {xj(j), gj(j)} from pj  � Procedure 2 

xi(j) ← xj(j) 

gi(j) ← gj(j) 

if any of C1 to C6 is true then 

load Ti with a random value if Ti is not running 

else 

stop and reset Ti 

end if 

end 

 

When Ti expires      � Procedure 3 

if C4 or C5 is true then 

xi(i) ← true 

else if C6 is true then 

C1: δ(pi) < k ∧ xi(i) ≠ true ∧ gi(i) ≠ UNDER 

C2:  δ(pi) = k ∧ xi(i) ≠ true ∧ gi(i) ≠ EQUAL 

C3:  (δ(pi) > k ∨ xi(i) = true) ∧ gi(i) ≠ OVER 

C4:  |Ni| < k ∧ xi(i) ≠ true 

C5:  |Ni| ≥ k ∧ ∃ pj ∈ Ni : gi(j) = UNDER ∧ xi(i) ≠ true 

C6:  |Ni| ≥ k ∧ ∀pj ∈ Ni : gi(j) = OVER ∧ xi(i) ≠ false 

where δ(pi) = |Ni ∩ {pj | xi(j) = true}| 
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xi(i) ← false 

end if 

if C1 is true then 

gi(i) ← UNDER 

else if C2 is true then 

gi(i) ← EQUAL 

else if C3 is true then 

gi(i) ← OVER 

end if 

multicast {xi(i), gi(i)} to neighbors 

end 

3.2 Correctness Proof  

We shall now prove the correctness of Algorithm 1, i.e., it does identify a minimal k-dominating set 

when the system enters a stable state. We first introduce the following definitions and notations. For each 

process pi, Li is an assignment of one value to each of pi’s local variable. For each communication 

channel ci,j by which process pi sends message to pj, Mi,j is the channel state of ci,j, which contains all 

messages currently in-transit in ci,j. Let τi denote the status of Ti such that τi = true if Ti is active (running) 

and τi = false otherwise. A global state (or state for short) is defined by s = {Li, τi, Mi,j}i =1…n. This 

definition is specifically for networking environment. A global state for algorithms running in shared 

memory model comprises only {Li} and need not include the contents of local timers and channel states. 

Stable states in our design correspond to quiescent global states, i.e., states where no further state 

transition is possible. In the distributed algorithm expressed in guarded commands, a state is stable only 

if no command is enabled in any process. This condition corresponds to a state in our transformation 

where none of {C1, …, C6} holds in any node. However, as the transformation additionally involves 

timers and message transmissions, stable states in our transformation also demands no active timers and 

in-transit messages. 

Definition 1: A state s = {{Li}, {τi}, {Mi,j}} is stable if the following conditions all hold. 

‧C1 to C6 are all false in every pi. 

‧τi = false for all pi. 

‧Mi,j = φ for all ci,j. 

Let A(s, i) denote the last procedure executed by pi before reaching state s. The values of A(s, i) are 

defined to be init, recv, and Tout when the last executed procedures are Procedures 1, 2, and 3, 

respectively. 

Variable gi(i) is said to be correct if its value matches those shown in Tables 1. Observe that gi(i) is 

correct right after the execution of Procedure 3. The following property is also easy to see. 

Property 1: gi(i) is correct if and only if C1, C2, and C3 are false in pi. 

Table 1. Correct values of gi(i) 

 xi(i) 

δ(pi) false true 

< k UNDER OVER 

= k EQUAL OVER 

> k OVER OVER 

 

The following lemmas are needed for our main result. 

Lemma 1: If state s is stable, gi(i) is correct for all pi in s. 

Proof: Suppose, by way of contradiction, that gi(i) is not correct for some pi in s. By Property 1, this 

implies that C1, C2, or C3 holds. Now consider the value of A(s, i). A(s, i) ≠ Tout because Procedure 3 

guarantees the correctness of gi(i). If A(s, i) were init or recv, then C1, C2, or C3 would be detected true 

and Ti would be activated during the execution of A(s, i). Consequently, τi = true in s, which contradicts 

with the assumption that s is a stable state. We thus have the proof.  

Lemma 2: If |Ni| < k for some node pi, xi(i) must be true in any stable state. 
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Proof: |Ni| < k implies the truth of C4, which causes the activation of Ti initially through Procedure 1. 

The expiration of Ti and the subsequent execution of Procedure 3 will then set xi(i) to true. The only way 

to change xi(i) back to false demands the truth of C6, which is impossible because |Ni| < k. Therefore, xi(i) 

must be true in any stable state.  

Theorem 1: In stable states, D = { pi | xi(i) = true} is a minimal k-dominating set. 

Proof: We first prove that D is a k-dominating set. By way of contradiction, assume that D is not a k-

dominating set in some stable state s. This means that there exists at least one node pj such that xj(j) = 

false ∧ δ (pj) < k in s. By Lemma 1, gj(j) must be correct in s, which means 

 gj(j) = UNDER. (1) 

By Lemma 2, xj(j) = false implies that |Nj| ≥ k. It follows that there exists some pi ∈ Nj such that 

 xi(i) = false. (2) 

By Lemma 2 again, (2) implies that 

 |Ni| ≥ k. (3) 

(1) to (3) together imply that C5 must be true for pi in s. However, this contradicts with the assumption 

that s is stable. Therefore, D must be a k-dominating set. 

We then prove that D is also minimal. If D were not minimal, then there would exist at least one node 

pi ∈ D such that D \ {pi} is still a k-dominating set, which implies that δ(pi) ≥ k and ∀pj ∈ Ni : δ (pj) > k. 

The former condition implies that |Ni| ≥ k. The latter condition implies that ∀pj ∈ Ni : gj(j) = OVER since 

all gj(j)’s are correct by Lemma 1. Therefore, C6 holds for pi in stable states, which contradicts with the 

assumption that s is stable.  

3.3 Stability Issues  

Three factors, namely, incoherent states, simultaneous moves, and indirect information, affect stability 

property of Algorithm 1 in MANETs. A state is coherent if ∀pi : ∀pj ∈ Ni : xi(j) = xj(j) ∧ gi(j) = gj(j). 

Intuitively, all nodes in a coherent state have up-to-date information about neighboring node’s variables. 

A coherent state becomes incoherent after some node pi has updated its variables but at least one of its 

neighbors has yet been informed of the update. The only reason of such incoherence is due to in-transit 

message as stated below: 

 xi(j) ≠ xj(j) ∨ gi(j) ≠ gj(j) ⇒ Mi,j ≠ φ.  

If nodes are allowed to make changes to their local variables (i.e., execute Procedure 3) in incoherent 

states, then the system may not enter a stable state. Consider the example shown in Fig. 3, where p1 has 

changed x1(1) to true and g1(1) to OVER, but the multicast message to p2 is currently in transit. This is an 

incoherent state since x2(1) ≠ x1(1) and g2(1) ≠ g1(1). If p2 executes Procedure 3 at this moment, it will 

change x2(2) to true and g2(2) to OVER, causing considerable subsequent state transitions. If p2 executes 

Procedure 3 after receiving the message and updating x2(1) and g2(1) (i.e., p2 makes its decision in a 

coherent state), then x2(2) will be false and g2(2) will be EQUAL, and no further state transition is 

possible. 

 

Fig. 3. An incoherent state where a message from p1 to p2 is in transit 

If message delays are small enough to guarantee that Mi,j = φ whenever node pj makes a change to xj(j) 

or gj(j) (i.e., executes Procedure 3), then all decisions are made in coherent states. 

Even nodes make decisions all in coherent states, instability of the algorithm may still occur if 

simultaneous moves of nodes are permitted. Fig. 4 shows such an example. The guarded-command 

version precludes simultaneous moves by assuming a central daemon, which allows only one process to 
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execute at a time. It is possible to realize or emulate a central daemon in MANETs. We may use a 

distributed mutual exclusion algorithm to ensure that modifications to local variables are mutually 

exclusive between neighboring nodes. Identifiers of nodes can be used to break ties when two or more 

neighboring nodes attempt modifications. 

 

Fig. 4. An example where simultaneous moves cause instability 

Unfortunately, decisions made in coherent states without simultaneous moves still do not guarantee 

stability. In fact, although stable states imply coherent states, the converse does not necessarily hold 

because any condition in {C1, …, C6} can be true in a coherent state. An infinite sequence of state 

transitions that comprises only coherent states without simultaneous moves is possible. Fig. 5 shows an 

example that corresponds to the four-node system shown in Fig. 2. 

 

Fig. 5. A state transition loop that comprises only coherent states without simultaneous moves 

The root of this problem comes from indirect information. The main idea behind the algorithm design 

is that pi’s decision of being a dominator or not mainly depends on δ(pj) of all its neighbors pj ∈ Ni 

(except those pj for which |Nj| < k), where δ(pj) = {pk | pk ∈ Nj ∧ xk(k) = true}. pi learns of δ(pj) indirectly 

by gi(j). It is ensured in coherent states that gi(j) = gj(j), but gj(j) does not reflect δ(pj) when some pk ∈ Nj 

has changed xk(k) but pj has not yet updated gj(j).  

To solve this problem, we can let each pi evaluate δ(pj) directly from xk(k) for all pk ∈ Nj. To this end, 

each node pk is required to multicast xk(k) with a transmission range that is twice of that pk uses to 

communicate with its neighbors. This approach also eliminates the need for all gi(j)’s. 

4 Simulation Results 

We conducted simulations to study the performance of the proposed approach and compare it with those 

of existing methods. In our simulations, 50 to 100 wireless nodes were randomly deployed in a 1000 × 

1000 m2 area. Each node has a default transmission range of 200 m. Two wireless nodes are neighbors 
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only when they are within the transmission range of each other. Message delays are sufficiently small to 

disable decision makings in incoherent states. We are primarily concerned with the sizes of the 

dominating sets identified by these methods and protocol overhead. 

We considered several self-stabilizing distributed algorithms that find minimal dominating sets. These 

algorithms were respectively proposed by Hedetniemi, Hedetniemi, Jacobs and Srimani [5], Xu, 

Hedetniemi, Goddard and Srimani [6], Kakugawa and Masuzawa [7], Turau [8], and Goddard et al. [9]. 

We also tested the k-dominating set algorithm proposed by Kamei and Kakugawa [12] by setting k to 1. 

The guarded-command algorithm and the transformed MANET protocol were also tested. Fig. 6 shows 

average sizes of dominating sets generated by each method when the number of nodes was varied from 

50 to 100. Each average was obtained over 1000 runs. 
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Fig. 6. Average sizes of dominating sets (k = 1) 

All classical self-stabilizing single-domination algorithms [5-9] performed nearly the same. These 

algorithms all generated more dominators than the k-dominating set algorithm proposed by Kamei and 

Kakugawa [12]. Kamei’s algorithm is next to both the guarded-command version and the transformed 

protocol. However, since different algorithms might run under different types of daemons, the results 

here were not obtained on a fair basis and should not be overstretched. 

For 2-dominating sets, we compared the proposed approaches with two algorithms proposed by Huang 

et al. [10-11]. The algorithm proposed by Kamei and Kakugawa [12] was also considered. Fig. 7 shows 

the results for 2-dominating sets. The results indicate that Huang’s algorithm for central daemon [11] 

found more dominators than his algorithm for distributed daemon [10]. Kamei’s algorithm performed 

better than Huang’s algorithms but generally worse than the two proposed approaches. 
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Fig. 7. Average sizes of 2-dominating sets 
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Fig. 8 compares Kamei’s algorithm and the two proposed approaches with the number of nodes fixed 

to 100 and k varied from 1 to 5. The result still shows the outperformance of the proposed approaches 

over Kamei’s algorithm. 
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Fig. 8. Comparison between Kamei’s algorithm and the proposed approaches in term of average  

sizes of k-dominating sets 

For protocol overhead, we measured the average number of multicasts per node when running 

Algorithm 1. Fig. 9 shows the results for k = 1 with respect to the number of nodes in the network. As the 

number of nodes increases, the number of multicasts also increases, because of the network becomes 

denser when more nodes are involved. Fig. 10 shows the results with the number of nodes fixed to 100 

and k varied from 1 to 5. Here the number of multicasts per node does not strictly increase with k. Some 

results with k = 5 are even lower than those with k = 4. The reason is that more nodes turn into 

dominators by condition C4 as k becomes larger. These nodes do not revise their decisions and thus 

multicast only one message during the whole run. Therefore, the proposed method is efficient with either 

small or large k. 
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Fig. 9. Average number of multicasts per node with respect to the number of nodes (k = 1) 
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Fig. 10. Average number of multicasts per node with respect to k 

5 Conclusions 

We have transformed a distributed algorithm expressed in guarded commands that identifies a minimal k-

dominating set in a distributed system into a protocol for MANETs. We have proved that this protocol 

identifies minimal k-dominating sets in stable states. Three factors that affect the stability of the protocol, 

namely, incoherent states, simultaneous moves, and indirect information, have been discussed. 

Simulation results indicate that the transformed protocol performs nearly the same as the distributed 

algorithm expressed in guarded commands, and both perform better than conventional self-stabilizing 

algorithms in terms of average size of dominating sets. The message overhead of the proposed protocol is 

proportional to the number of nodes. The overhead does not increase with k. 
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