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Abstract. AC drive system with common DC-bus is widely used in industry process, however, 

because of inductance in rectifier and negative resistance characteristic of inverter-motor system, 

DC-bus fluctuation often appears. With small signal method and power-fed AC drive test-bed, 

this paper studies stability of AC drive system with common DC-bus. First, structure of AC 

drive system with common DC-bus and power-fed test-bed are introduced, and its small signal 

mathematic model is derived. Then, stability of test-bed is studied from the point of DC-link 

stability, and system parameter and operation point effect on stability is also discussed. Beyond 

that, system stability area is compared with ordinary AC drive system. The conclusion shows 

that common DC-bus system has a priority than ordinary AC drive system without power-fed 

structure in the view of DC-bus stability. Experiment results validate above analysis conclusions. 

What’s more, the conclusion provides an advice for drive system parameter choice. 

Keywords: AC drive system, common DC-bus, DC-link stability, power-fed test-bed, small 

signal method 

1 Introduction 

As the development of full controlled power electronic device and relative control theory, AC drive 

technology has been mature and AC drive system supplied by voltage source converter (VSC) is more 

and more widely used [1-2]. For energy saving, common DC-bus is popular in AC drive system, while 

DC-bus voltage fluctuation often shows up in AC drive system because of inductance in converter main 

circuit and negative resistance characteristic of inverter-motor system. 

DC-bus stability problem of AC drive system has been concerned for a long time [1, 3-18], and there 

are several typical methods used to analyze this issue. A lot of researchers use equivalent circuit method. 

For instance, according to DC side characteristic of VSC-motor system, Sudhoff, Corzine and Glover 

treats them as a current source, and analyzes DC-bus stability using small signal analysis method [3]. By 

assuming motor rotational speed changing slowly, Marx, Pierfederici and Davat  makes the same 

conclusion with Sudhoff et al. by treating VSC-motor as a constant power load [3-4]. Zhang and Li uses 

series connection of resistance and electromotive force as the equivalence of VSC-motor system [5]. 

While some researchers like to convert DC-bus impedance to AC side of inverter and combining it with 

motor model [6-8]. Some researchers tend to analyze this problem from the view of motor parameter. For 

example, with motor model under two-phase synchronous rotating frame, Shen derives its impedance, 

calculates DC side equivalent value and analyzes motor parameter effect on system stability [9]. While, 

Fallside and Patel uses Lyapunov function to analyze AC drive system stability [10]. Instead of requiring 

definite Lyapunov function (V), Fallside and Patel determine stability area by judging definite area of V 

or its differentiation dV [10]. To eliminate the un-stability, many theories has been used. Instability 

problem shows up in AC drive system where VSC is supplied by PWM converter, so DC-bus voltage is 

controlled by power balance theory and input/output feedback linearization to eliminate motor load 

influence on DC-bus voltage [11]. While Machado, Trovao and Antunes solves this with Kalman filter 

[12]. This issue has been studied for so long time, but it is still a tough problem, and it involves more 
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application area, where micro-grid system is included [15-18], so this problem should be solved well 

soon.  

Although lots of research has been done in above literatures, they usually do the research with ordinary 

AC drive system, where inverters are usually powered separately. This paper studies DC-bus stability of 

power-fed AC drive system in which there are two inverter-motor systems and a common DC-bus is 

shared by these two inverters. This structure is widely used in industrial process now mentioned ahead. 

2 System Structure and Mathematic Model 

2.1 System Structure 

Generally speaking, common DC-bus AC drive system contains four kinds of components: converter, 

inverter-motor, capacitance and energy storing/feedback device. Its diagram is shown in Fig. 1 [1].  

 

Fig. 1. Diagram of common DC-bus AC drive system 

For generalization, in Fig. 1, quantities of converter, inverter-motor, energy storing/feedback device 

and motor are m, n, i and j. For power-fed AC drive test-bed discussed in this paper, m=1, n=2, i=0, and 

j=1. And its structure is shown in Fig. 2. 

 

Fig. 2. Power-fed test-bed system structure 

As is shown in Fig. 2, the power-fed test-bed system adopts silicon controlled rectifier (SCR) as 

converter, DC side of two inverters (Inverter1 and Inverter2) are connected together (called common DC-

bus), and two motors (M1 and M2) are coupled with shaft. Because of system structure, Inverter1-M1 

and Inverter2-M2 are role equivalent. During operation, usually one motor works as drive motor and 

takes closed loop rotational speed control (generally M1), and the other works as load modeling and 

takes torque as controlled variable (generally M2).Of course, these two motors can work with other 

controlled variable combination, for instance, M1 and M2 take torque and speed control separately. 

Parameters implication in Fig. 2 is as following: 
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Us: AC voltage RMS value; 

Rac: AC-side resistance of SCR; 

Lac: AC-side inductance of SCR; 

Rdc: DC-bus resistance; 

Ldc: DC-bus inductance; 

Cdc: DC-bus capacitance. 

2.2 Mathematic Model of Test-bed System 

When power-fed test-bed works at steady state, assume DC-bus voltage is Udc, trigger angle of SCR isα, 

rotational speed of shaft is n(r/min), load torque simulated is Tm(Nm), power flowing into Inverter1 and 

Inverter2 are P1 and P2, and efficiencies of M1 and M2 are η1 and η2 respectively. 

Ignoring inverter power loss, inverter-motor system could be treated as a controlled current source 

according to power balance law. What’s more, AC side resistance and inductance of SCR can be 

converted to DC side with equivalent parameters [3]. With this operation, equivalent circuit of test-bed 

can be derived and is shown in Fig. 3. 
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Fig. 3. Equivalent circuit of power-fed AC drive test-bed 

In Fig. 3, parameters implication is as following: 

ue: equivalent DC source voltage for AC source; 

Re: equivalent DC resistance of DC-bus and SCR; 

Le: equivalent DC inductance of DC-bus and SCR; 

Ce: equivalent DC capacitance of DC-bus and SCR; 

iR: DC-bus current provided by SCR; 

iI1: equivalent controlled current source for Inverter1-motor1; 

iI2: equivalent controlled current source for Inverter2-motor2. 

Parameter values and relationships among above them are [0]: 
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iI1 = P1/udc

 

 (4) 

 

iI2 = P2/udc 

 

 (5) 

According to Fig. 3, equation (4) and (5), state equation of power-fed test-bed equivalent circuit is 

obtained: 
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 (6) 

Considering small displacement around operating point, and assume displacements of DC-bus voltage 

and DC currents flowing into inverters are Δudc, ΔiI1 and ΔiI2, we have: 
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So small-signal mathematic model for power-fed test-bed is derived: 
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3 DC-bus Stability Analysis 

3.1 DC-Bus Voltage Stability Constraint Condition 

According to equation (7), characteristic equation of small-signal model is: 
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In (8), λ is characteristic value of the equation.  

On the basis of Routh stability criteria, if the system is stable, then λ and relative parameter should 

satisfy the following constraint condition: 
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3.2 System Operation Point’s Effect 

From equation (9), how system parameters (Re, Le, Ce) and operation point (udc, P1, P2) influence DC-bus 

stability can be demonstrated in the way of Table 1. In Table 1, “+” stands for “the bigger the parameter 

is, the more stable the system is”, while “-” stands for ‘the smaller the parameter is, the more stable the 

system is’. 

Table 1. System parameter and operation point effect on stability 

Parameter/operation point Re Le Ce udc P1+P2 

Effect on system stability + - + + - 

 

From Table 1, system parameters (Re, Le, Ce) and udc effect on DC-bus stability is obvious. But, for P1 

and P2, it needs more specific discussion at different operation point. 

Considering Inverter1-M1 and Inverter2-M2 have the same parameter, and their functions are 
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symmetrical, in the following, it is under this supposition: M1 works as a drive motor and M2 works as a 

load emulator, that is to say, M2 works as a generator. Thus, DC power flowing into Inverter1 is always 

positive (P1>0); while, with consideration of M2 power loss, the sign of P2 is not definite, and it is 

determined by system operation point. 

Effect of rotational speed. In order to confirm sign of P2, motor power loss and mechanical power input 

of M2 should be compared. As a popular and widely used control strategy, vector control is used in test-

bed system. With vector control, stator current can be decomposed into two components: flux current and 

torque current, and these two components determine motor power loss together. For operation point 

under nominal frequency, flux current is generally a constant, so power loss has positive correlation with 

torque current, while torque current component is in scale to torque load. 

If torque load is the same, for a higher rotational speed, mechanical power input to M2 is bigger, while 

there is no obvious change for its power loss. So, for higher speed, mechanical power input is more likely 

bigger than motor power loss, and M2is more likely works as a generator, and send power to DC-bus 

through Inverter2, that is to say P2 < 0. At this condition, (9) is much easier to satisfy, in other words, the 

system is much more stable.  

While, under same torque load, when rotational speed is very small, there could be a condition: M2 

works as a generator, but mechanical power input to M2 is smaller than its power loss, and M2 absorbs 

power from DC-bus (P2>0) in fact. Then, (9) is difficult to satisfy, in other words, the system is less 

stable. 

From above discussion, at same Re, Le, Ce, udc and torque load, higher speed point is more stable than 

low speed point. 

Effect of torque load. Similarly, for same rotational speed, when torque load is small, power loss of M2 

is small, M2 would output power to DC-bus, that is to say P2<0, and system is much easier to be stable. 

If the torque load is heavy, power loss of M2 would be large, and the condition of P2>0 appears, then 

system would be less stable. 

From the above, at same Re, Le, Ce, udc and rotational speed, small load emulation is more stable than 

heavy load. System operation point effect on DC-Link stability is clear. The same conclusion will be 

derived if M1 and M2 switch their role. 

3.3 Stability Comparison of Common DC-bus AC Drive System and Ordinary One 

For ordinary AC drive system, it can be treat as a special condition of AC drive system with common 

DC-bus, and its stable constraint condition can be derived with the same method for power-fed test-bed 

by considering P2 =0, which is in detail: 
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Assuming a common DC-bus AC drive system and an ordinary one have the same system 

parameter(Re, Le, Ce), and two kinds of system work at a same operation point (udc, rotational speed and 

torque load), then equation (9) is easier to satisfy than equation (10) when the rotational speed is high 

enough and torque load is light enough to make P2 < 0, because we have equation (11) under this 

condition: 
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There is a possibility that AC drive system with common DC-bus is less stable than ordinary one, and 

this occurs only if rotational speed is too small and torque load is very heavy at the same time, which 

would lead toP2 > 0. But this kind of operation mode takes a very small ratio. 

So we can have a corollary: generally speaking, AC drive system with common DC-bus is much more 
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stable than ordinary one. 

4 Experiment Results 

To validate above analysis conclusion, comparison experiments is taken on an AC drive system with 

common DC-bus: power-fed AC drive test-bed. During experiment, M1 and M2 adopt general operation 

mode: M1 works as drive motor, and M2 works as load emulator. In the following results, udc stands for 

DC-bus voltage, Fr is rotor frequency, Tm is torque load emulated and ia is phase-A current of 

M1.Because Fr equals shaft rotation frequency multiply pole pairs, so Fr stands for rotational speed. 

4.1 Effect of Rotational Speed 

If two operation points take same udc and Tm, then the higher speed operation point would be more stable. 

Results showed in Fig. 4 and Fig. 5 prove this conclusion. 
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Fig. 4. udc = 400V, Fr = 5Hz, Tm = 480Nm 
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Fig. 5. udc = 400V, Fr = 10Hz, Tm = 480Nm 

For results in Fig. 4, system operation condition is: udc =400V, Fr=5Hz, Tm=480Nm. As is shown, DC-

bus voltage fluctuation appears, and its wave range is about 100V.  

When increasing Fr to 10Hz and keeping other operation condition, experiment result is shown in Fig. 

5. Obviously, in Fig. 5, DC-bus voltage fluctuation decreases a lot, and its wave range is less than 5V. 

During above two experiments, the controllers have been well tuned. So in both Fig. 4 and Fig. 5, Fr is 

well controlled, and motor current is also steady and have good waveform. With all the same condition 

except rotational speed, udc appears very differently and the difference is coincident with analysis 
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conclusion. 

4.2 Effect of Torque Load 

When udc and Fr are the same, heavy load operation point would be less stable.  

For results in Fig. 6, system operation condition is: udc = 400V, Fr = 5Hz, Tm = 360Nm. As is shown in 

Fig. 6, DC-bus voltage fluctuation is very small, and wave range is less than 5V. 
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Fig. 6. udc = 400V, Fr = 5Hz, Tm = 360Nm 

Compare Fig. 4 and Fig. 6 and their operation conditions, the analysis conclusion is validated. 

4.3 Effect of DC-bus Voltage 

Increase udc to 600V while keeping other conditions the same with Fig. 4, result in Fig. 7 is observed. By 

comparing Fig. 4 and Fig. 7, effect of udc on system stability is derived and it is coincident with former 

conclusion in section 3.2. 
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Fig. 7. udc = 600V, Fr = 5Hz, Tm = 480Nm 

5 Conclusion 

This paper analyzes DC-link stability of AC drive system with common DC-bus and validates relative 

conclusions by experiments on power-fed AC drive test-bed. After demonstrating general structure of AC 

drive system with common DC-bus, this paper introduces power-fed test-bed, and derives its small signal 

mathematic model. In this model, inverter-motor is treated as a controlled current source and AC side 

components of SCR are converted to their DC side equivalent parameter. Then, from mathematic model 
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characteristic equation, DC-link stability constraint condition is derived, on the basis of that, system 

parameters and operation point effect on stability are analyzed and derives several conclusions: (1) if 

other conditions are the same, high speed area is more stable than low speed, (2) if other conditions are 

the same, light load is beneficial to stability, (3) if other conditions are the same, high DC-bus voltage is 

good to system stability, (4) comparing with ordinary one, AC drive system with common DC-bus has its 

advantage in stability expect special operation condition: rotational speed is very low and torque load is 

very heavy at the same time. Besides, the conclusion could be useful for system parameter choosing. 
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