
Journal of Computers Vol. 28, No. 4, 2017, pp. 189-196

doi:10.3966/199115592017082804020

189

A Distributed Resource Access Algorithm Based on DHT

Xiaotao Wei1*, Taifeng Cao1, Wenwei Wu1, and Lei Su2

1 School of Software Engineering, Beijing Jiaotong University,

Beijing, P. R. China

{weixt, 16121728, 16126221}@bjtu.edu.cn

2 Leshi Internet Information and Technology Corp., Beijing,

Yao Jiayuan Road 105, Leshi building, Beijing, P. R. China

sulei1@le.com

Received 18 October 2016; Revised 13 June 2017; Accepted 26 June 2017

Abstract. Distributed storage system plays an important role in cloud computing. Its

performance directly affects the efficiency of cloud computing system. To maintain load

balancing among all the data servers is the key to achieve high performance of distributed

storage system. In this paper, a novel algorithm named dynamic greedy algorithm is proposed to

improve the data access efficiency of distributed storage system by keeping data servers load

balancing. The algorithm can generate an optimized reading scheme when downloading data

from distributed storage system. It takes into account not only the speed of data servers but also

the current load of data servers. This algorithm is evaluated in a distributed storage system

model using the dynamic hashing table mechanism. Experimental results show that compared

with greedy algorithm, the proposed algorithm can generate better scheme in data reading

operations and significantly improve the efficiency of distributed storage system.

Keywords: distributed storage system, dynamic greedy algorithm, load balancing

1 Introduction

Distributed storage system is one of the most important part in cloud computing. With the explosive

growth of information to be handled, more efforts should be taken to improve the performance of

distributed storage system. Load balancing plays a significant role in this field. Traditionally, there are

two methods to implement the load balancing in distributed storage system. One is to provide new

distributed storage architectures or make improvement on existed architectures. The other is to improve

the load balancing algorithm for certain architectures.

The architecture is the foundation of the distributed storage system. So, improvements on architecture

can make optimization from strategy level. Florence and Shanthi proposed an improved architecture and

employed the firefly algorithm for load balancing [1]. They associate the node and the server, so that

there is sufficient information for the access plan optimization. Nikita tried to make partition in the cloud

environment, and assigned a master server to manage the load balancing in the cluster [2]. In addition,

they improved the efficiency of data access by introducing the Bloom Filter algorithm. Belkhouraf et al.

[3] developed a semi-centralized and multi cluster architecture, which can handle huge number of clients,

requests, and deal with big data.

Besides providing new distributed storage architectures, researchers also try to optimize the existed

architectures by improve the load balancing algorithms. Alam and Varshney used the Folded Crossed

Cube Network in homogeneous multiprocessor system [4]. The algorithm achieves a global load

balancing in the whole storage system by reducing the number of the maximum parallel tasks. Wu, Song

and Gong proposed a time-based load balancing algorithm. The algorithm optimizes storage job

scheduling by generating a load balancing table [5]. Wang, Liu, Chen, Xu and Dai proposed a scheduling

* Corresponding Author

A Distributed Resource Access Algorithm Based on DHT

190

algorithm which is based on adaptive time span and genetics algorithm [6]. They used variance to

construct a load-dense, multi-weight fitness function between different nodes. And the task sequence can

be optimized and the load balancing of the storage system is achieved. Shahapure and Jayarekha

proposed an optimal cost based scheduling algorithm by constructing a service list [7]. Xu, Zhao, Hu and

Hu proposed a Job scheduling algorithm based on Berger model [8].

In this paper, a dynamic greedy algorithm is proposed to improve the data reading performance of

distributed storage system. It can make an optimized data reading schema which fully takes advantage of

faster data servers while still makes these data servers load balance. Experiments show that this algorithm

outperforms the greedy methods.

The rest of the paper is organized as follows. In the next section, we briefly introduced the related

research. Section 3 describes the dynamic greedy algorithm. Section 4 shows the experiments and results.

Then we make the conclusion in section 5.

2 Related Works

In the traditional distributed storage system, the resource access algorithm comes with some of their

existing challenges, especially in the load balancing aspect. The first step in accessing the data is to

obtain the list of blocks of data, the list of replicas of each block and the data node location using

management node. The second step is to select the data node which has the shortest access time, and then

read the data [9]. In other words, the reading algorithm of traditional distributed storage system is based

on the greedy algorithm. The use of greedy algorithms may cause load imbalance on the data server. In

order to solve the problem, the domain experts put forward various solutions.

Ma, Yang and Mi proposed two algorithms which are based on the Flow Table distributed memory

architecture [10]. They are the static threshold algorithm and the dynamic threshold algorithm. In the

distributed storage system based on master-slave model, static threshold algorithm is a way that

determines the load status by the number of flows in N switches and the critical load of the node. In

contrast, dynamic load algorithm is a way that determines the load state by the number of flows in the N

switches. The authors improve the hash algorithm by adding the two load states. In this way, the authors

can make the distributed storage system load balance.

Mallikarjuna and Venkata Krishna proposed an infiltration method to solve the load balancing problem

of virtual nodes in cloud storage [11]. This method is used to allocate storage tasks of virtual nodes

reasonably. This load balancing method is based on three agents. They are authentication agents,

infiltration agents and redistribution agents. The role of the authentication agent is to determine the load

status of each virtual node. To complete this work, the authors proposed an identification algorithm. The

role of the infiltration agent is to schedule tasks from high-load nodes to low-load nodes. In order to

complete this task, the authors proposed a penetration algorithm. The role of the redistribution agent is to

reallocate tasks to a suitable virtual node. Different from the infiltration agent, redistribution agent is

based on the routing algorithm. The cooperation of the three agents can achieve the load balancing of the

distributed storage system and improve the storage efficiency.

Liu, Xu and Chen proposed a load balancing algorithm based on the virtual machine migration

architecture [12]. This architecture includes the acquisition model, monitoring model, forecasting model

and selection model. The load balancing algorithm can be divided into three parts. The first part is to

determine whether the storage node is overloaded. The judgment is based on the CPU utilization,

memory usage and other data. These data are collected by the collection model. The second part is to

predict the possibility of overload node at the next time. This part is based on exponential smoothing

algorithm. The third part is the selection of the migrated data node and the target node. This part

calculates the appropriate data migration strategy by the results from the first two sections. This approach

makes the distributed storage systems load balancing.

Tao proposed a cloud load balancing algorithm which is based on copy factors [13]. The copy factor is

the selection criteria for the data server. The data access queues in the meta server are optimized by

computing the unique checksum and theoretical storage time. In this way, an automatic dynamic load

balancing strategy can be implemented and the storage efficiency of the distributed storage system can be

improved.

Shao, Jibiki, Teranishi and Nishinage proposed a load balancing strategy which is based on virtual

node. In the authors’ model, each physical node corresponds to a virtual node [14]. And these virtual

Journal of Computers Vol. 28, No. 4, 2017

191

nodes can be queried in P2P network. Load balancing is conducted in both overlay level (between

neighboring virtual nodes) without global knowledge and physical level (among physical nodes) with

limited global knowledge. In addition, the authors proposed a load balancing exchange algorithm which

can make each virtual machine in a reasonable load range.

In summary, improvements are made from both architecture level and load balancing algorithm. But

seldom is done on how to generate a better data reading schema while downloading files from distributed

storage systems. This paper focuses on how to improve the overall downloading speed of the distributed

storage system and proposes a novel algorithm to solve this problem. The algorithm is given below and

its performance is proved by experiments.

3 The Dynamic Greedy Algorithm

The algorithm we propose to improve the efficiency of data reading operations in distributed storage

system is named dynamic greedy algorithm (DGA). It is implemented in a model that employs the

dynamic hashing table (DHT).

3.1 DHT Storage Architecture

In distributed storage system, large files are divided into smaller data blocks with equal size. These

blocks are duplicated to multiple copies and stored in different data servers. In the DHT storage model,

multiple copies are distributed to date servers by a consistent hashing algorithm. As shown in Fig. 1,

suppose there is a ring of address space, each point on the ring is an integer value between 0 and 2^23-1

which corresponding to 2^23 virtual nodes. If there are m physical data servers in the cluster, we map

these data servers to m virtual nodes named management nodes. When data is to be stored, a data block is

firstly mapped to a virtual node by the consistent hashing algorithm. Then the virtual node is linked to the

nearest management node clockwise around the ring. Thus, a mapping from the data block to the data

server is created. We use a mapping table to keep the relationships between data blocks and data servers.

By querying the mapping table, we can get the locations of every replica of a data block in the cluster.

Fig. 1. DHT storage model

For example, data X is split into n data blocks, X =
1 2 n

{X ,X ,...,X } , each of
i

X is duplicated to k

replicas
i 1 i 2 i k

(X ,X ,...,X)
− − −

. According to the mapping table, the distribution of data replicas in the data

servers can be represented as a matrix P.

1 1 1,m

2 2 2,m

n,1 n,2 n,m

P ,1 P ,2 P

P ,1 P ,1 P
P

P P P

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

�

�

� � � �

�

 (1)

The row vector
i,1 i,2 i,m

(P ,P ,...,P)
i
P = represents the distribution of replica of the ith data block in m

A Distributed Resource Access Algorithm Based on DHT

192

data servers. If there is a copy of the ith data block stored in the jth data server, then i, jP is 1. Otherwise

i, jP is 0. The summation of the ith row
m

i, jj 1
P

=

∑ represents the number of copies that data block
i

X is

duplicated, which is k, the copy factor. The summation of the jth column
n

i, ji 1
P

=

∑ indicates the total

number of data blocks that are stored in the jth data server.

3.2 Description of DGA

When a client requests a data X from the distributed storage system, the master server should generate a

reading schema by some algorithm with the mapping table. This schema tells the client the addresses of

data servers where to read every data blocks. If this algorithm makes the workloads of data servers well

balanced, then the high efficiency of data reading operation can be achieved. In fact, since the response

time of each data server is different, the time cost to read the whole data depends on the time it takes for

the slowest node returning its data blocks, as shown in formula 2.

n

j i, j
jj

i=1

T max{ min(T P)}.= ⋅∑ (2)

Where jT is the response time for the jth data server to return a requested data block. This information

can be collected periodically from the data servers.

Normally the load balancing strategy for data reading is different from writing. While writing data, the

distributing algorithm puts emphasis on balancing and spreading, without considering the response times

of data servers. But when reading data, the algorithm should focus on I/O efficiency. So a commonly

used strategy is the greedy algorithm. That means we always read data blocks from the faster data servers

if there is a requested data block replica available in this node. This method will obviously cause

overloading of the faster data servers. In fact, it may even worse than we just randomly chose a data

server containing the required replica. Random choosing strategy may also balance the burden of data

servers when reading data. But it does not take full advantage of the faster data servers to improve the I/O

efficiency. So we propose a new algorithm named dynamic greedy algorithm to generate the reading

schema. It is an improved version of greedy algorithm. It maintains a dynamic priority queue of data

servers based on both the response time and current work load of data servers.

Suppose there exists an optimization reading schema J=(j1, j2, j3,…, jn), where ji is a number meaning

that data block Xi should be read from data server ji. And this solution should satisfy the following two

limitations.

 j jj
minimize K T .⋅∑ (3)

m (n)

mi=1
subjecct to K .n=∑ (4)

(n) (n) (n)

1 1 2 2 m mK T K T K T .⋅ = ⋅ = = ⋅… (5)

Where (n) (n) (n) (n)

1 2 mK (K ,K , ,K)=

�����

… represents the number of data blocks read from each data server.
(n)

j jK T⋅ is the total time for the jth data server to return all the requested data blocks.

Now we give the procedure to generate an approximately optimized reading schema. Initially, J 0=

� �

,
(0)

K 0=

�����
�

. Vector
1 2 m

T (T ,T , ,T)=

��

… represents the response time of m data servers. We scan each row of

matrix P from the first row down to the last row. For the ith row, from vector
i i,1 i,2 i,m
P (P ,P ,...,P)= we can

find the currently fastest data server holding data block
i

X . It has the property of (i)

j j jmin {T (K +1)},⋅

i, jP 1= . We find the j and save it to
i
j and add 1 to (i)

jK . Then continue to the next row. This procedure

repeats until the last row is processed.

After the iteration completed, we get the vector J=(j1, j2, j3, …, jn) that tells the client for each data

block Xi we can get it from data server ji. And the total time cost for reading data X is

Journal of Computers Vol. 28, No. 4, 2017

193

()

jmax imize .
n

j j
K T⋅ (6)

1 2 m
subjecct to T (T ,T , ,T).=

��

… (7)

(n) (n) (n) (n)

1 2 mK (K ,K , ,K).=

�����

… (8)

The pseudo code of dynamic greedy algorithm is described as follows.

Algorithm 1. DGA

Input:
 T[m], the up-to-date response time of m data servers.
 P[n][m], the replicas vs. data servers mapping matrix.
Output:
 J[n], the data reading schema.
 J[n]={0};
 K[m]={0};
 i=0;
 while i < n do
 min_time=0;
 min_pos=-1;
 for j=1 to m
 if P[i][j] then
 if !min_time then
 min_time=T[j]*(K[j]+1);
 min_pos=j;
 elseif min_time > T[j]*(K[j]+1) then
 min_time= T[j]*(K[j]+1);
 min_pos=j;
 end if
 end if
 end for
 J[i]=min_pos; K[min_pos]++;
 i++;
 end while

4 Experiments and Analysis of Results

In order to evaluate the performance of our proposed algorithm we set up a small cloud environment with

8 servers. The configuration of servers is shown in Table 1.

Table 1. The configuration of servers

 Master server Sub server

Number 2 6

CPU Intel Xeon E5-2670×4 Intel Xeon E5-2620×2

Memory 64.00GB RAM 32.00GB RAM

Hard disk 256GB SSD 256GB SSD

Operating system Linux Ubuntu v14.10 Linux Ubuntu v14.10

We also develop a webpage interface to access the distributed storage system of our small cluster.

With this interface, clients can upload and download data through a local area network. And the

bandwidth of the network is set to 4M/s. At first, we upload a bunch of data files to the DSS. Then we

download them and test the data transfer rate. The files are of different size and type, including PPT,

JPEG, BMP, PNG, AVI, WMV, MKV and RAR zip files. The upper limitation of one download request

is 3GB.

To compare the performance of proposed dynamic greedy algorithm with greedy algorithm, we upload

1GB data to the cluster with the copy factor k=3. And then download them. This test is repeated for ten

A Distributed Resource Access Algorithm Based on DHT

194

times and the downloading speeds are shown as Fig. 2.

Fig. 2. The downloading speeds

As shown in Fig. 2, each time the DGA outperforms the greedy algorithm. The data transfer rate of

DGA is averagely 10% better than the greedy method. The reason is that DGA can distribute data reading

tasks evenly to the related data servers. While the greedy algorithm may cause the high-performance

servers overload and reduce the overall system performance.

Then we double the data size to 2GB to test the performance of these two algorithms under higher load

burden. The experimental results are shown in Fig. 3.

Fig. 3. The downloading speed under higher workload

The results show that under high workload environment, the DGA exhibits even better performance in

downloading speed than the greedy algorithm. The data transfer rates are improved almost 40% in

average. The reason is that the advantage of high-performance servers will be more prominent under the

high workload environment. The use of greedy algorithm will aggravate the overload phenomenon of

these servers and cause the reduction of system performance. But the DGA can reduce the load of high-

performance servers and allocate the load to the lower burden servers, thereby make the data servers load

balancing.

The next experiment is designed to evaluate the performance of the two algorithms when the copy

factor is different.

Fig. 4 and Fig. 5 show the data transfer rates on greedy algorithm and dynamic greedy algorithm when

the copy factor k is set to 3, 4 and 5. Compared with k=3 and k=4, the DGA has better performance when

the copy factor k=5. But it is not true for the greedy method. This is because the dynamic greedy

Journal of Computers Vol. 28, No. 4, 2017

195

algorithm can make full use of replicas. When there are more available replicas to choose, it can select

the suitable candidate data servers and distribute the workload as evenly as possible, thus generate a more

reasonable reading schema.

Fig. 4. The downloading speed of the greedy method

Fig. 5. The downloading speed of DGA

5 Conclusion

In this paper, we propose a dynamic greedy algorithm to improve the performance of data access in

distributed storage systems. It increases the data transfer efficiency by generating a load balanced data

reading schema. This schema takes into account not only the response time of data servers but also the

current loads of data servers. We describe the algorithm in detail and implement it in a DHT storage

model. The experimental results show that the DGA has better performance than greedy algorithm in file

downloading transfer rate, and it can also take full advantage of multiple replicas to generate better data

access strategies.

A Distributed Resource Access Algorithm Based on DHT

196

References

[1] A.P. Florence, V.A. Shanthi, A load balancing model using firefly algorithm in cloud computing, Journal of Computer

Science 10 (7)(2014) 1156-1165.

[2] R. Nikita, Load balancing model in cloud computing environment, International Journal of Applied Evolutionary

Computation 3(3)(2015) 1182-1185.

[3] M. Belkhouraf, A. Kartit, H. Ouahmane, H.K. Idrissi, Z. Kartit, M. El Marraki, A secured load balancing architecture for

cloud computing based on multiple clusters, in: Proc. International Conference on Cloud Technologies and Applications,

2015.

[4] M. Alam, A.K. Varshney, A new approach of dynamic load balancing scheduling algorithm for homogeneous

multiprocessor System, International Journal of Applied Evolutionary Computation 7(2)(2016) 61-75.

[5] Y. Wu, X. Song, G. Gong, Real-time load balancing scheduling algorithm for periodic simulation models, Simulation

Modelling Practice & Theory 52(1)(2015) 123-134.

[6] T. Wang, Z. Liu, Y. Chen, Y. Xu, X. Dai, Load balancing task scheduling based on genetic algorithm in cloud computing, 

IEEE, International Conference on Dependable, Autonomic and Secure Computing. IEEE, 2014.

[7] N.H. Shahapure, P. Jayarekha, Load balancing with optimal cost scheduling algorithm, in: Proc. International Conference on

Computation of Power, Energy, Information and Communication, 2014.

[8] B. Xu, C. Zhao, E. Hu and B. Hu, Job scheduling algorithm based on Berger model in cloud environment, Advances in

Engineering Software 42(7)(2011) 419-425.

[9] Y.J. Wang, W.D. Sun, S. Zhouet, X.Q. Pei, X.Y. Li, Key technologies of distributed storage for cloud computing, Journal of

Software 23(4)(2012) 962-986.

[10] H.Ma, Y. Yang, Z. Mi, A distributed storage framework of FlowTable in software defined network, Computers & Electrical

Engineering 43(2015) 155-168.

[11] B. Mallikarjuna, P. Venkata Krishna, OLB: a nature Inspired approach for load balancing in cloud computing, Cybernetics

& Information Technologies 15(4)(2015) 138-148.

[12] K. Liu, G. Xu, J. Chen, Research on cloud computing load balancing based on virtual machine Migration, Open

Cybernetics & Systemics Journal 9 (1) (2015) 1334-1340.

[13] R.D. Tao, C. E. Department, Replication factor based cloud storage load balancing technology, in: Proc. Information

Technology, 2015.

[14] X. Shao, M. Jibiki, Y. Teranishi, N. Nishinage, effective load balancing mechanism for heterogeneous range Queriable

cloud storage, in: Proc. International Conference on Cloud Computing Technology and Science, 2016.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

