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Abstract. In this research, an approach for increasing accuracy in speech to text application is 

done using Mel Frequency Cepstral Coefficient (MFCC) trained by Backpropagation Neural 

Network (BPNN). A set of Bahasa Indonesia homophones data speech is used for training and 

validation. The record is taken from 6 native adults comprising 3 males and 3 females. Working 

in 16 KHz sampling mode, the data is stored in WAV format. A confusion matrix is used to 

validate the system with and without homophone locking learning. A significant improvement is 

observed from the experiment. The percentage of accuracy is increased from 53.33 to 93.4 from 

male samples. From females’ records, the increment is even higher. The accuracy percentage 

has risen from 36.8 to 93.33. 
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1 Introduction 

Voice has an entity which gives a unique biometric to each individual in the world. Not only distinctive 

feature from each person, a wrong perception of voice (information) might occur from several factors. 

Dialect, articulation, noise, and even semantic dispute can contribute to misperception [1]. Lexical 

semantics (lexicosemantics) is a subfield of linguistic semantics that studies the relation of meaning from 

words. The relation is categorized into the context of synonym, antonym, homonym, homophone, 

homograph, polysemy, hypernyms, collocation, denotation and connotation [2]. 

Lexical semantics is a fascinating subject in speech to text recognition. Due to its differences in 

spelling, writing and meaning, it can lead to ambiguity in the resulted text. Additionally, each language 

has its own uniqueness. To avoid ambiguity, homophones as part of lexical semantics will be combined 

with other words called phrase in this paper. To recognize a word on lexical semantics, feature extraction 

is needed to mark its characteristic. Classification is conducted for processing the characteristic features 

which have been obtained. Some methods of classification require a process of learning. One or more test 

patterns associated with the speech of the same class are used to create a pattern representative of the 

class characteristics [3]. 

Related research about lexical semantics of the homonym in Japanese has been proposed by Murakami. 

The homonym is two or more words that have the same shape both in writing and pronunciation but have 

different meanings. Data evaluation consists of 11 pairs of homonyms recorded from 9 speakers at a 

sampling frequency of 16 kHz with a window length of 25ms. The method used is the comparative Mel 

Frequent Cepstral Coefficient (MFCC) and FBANK for feature extraction and Hidden Markov Model 
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(HMM) for classification. In the case of acoustic parameters, MFCC produces higher average recognition 

rates than FBANK. However, MFCC with 12 orders has better accuracy compared to FBANK with 24 

orders for male speakers, and this also applies for female speakers. The results show that the achieved 

accuracy level can be up to 89% [4]. Other research that uses speech recognition of MFCC has been done 

by Mishra et al, but is still limited to the recognition of vowels in Hindi. MFCC Feature Extraction 

method is compared with the proposed hybrid method MFCC-QCN (quantile-based Dynamic cepstral 

Normalization). The process of classification is using Hidden Markov Models (HMM) architecture with 

3 emitting states and four Gaussian Mixture Components. The results denote QCN-MFCC managed to 

improve system performance by 13% and 11% for context-dependent and context-independent 

classification of midvowels [5]. Classification of speech recognition using Neural Network has been 

accomplished by Vijayendra & Thakar by utilizing the results of MFCC features and RC (Real cepstral 

Coefficient). The data used is the ratio of speech data source from conventional microphone and in-ear 

microphone. The classification process finished by a configuration of 2 and 3 layer Neural Network. The 

results show that the extraction of MFCC feature is 8% higher compared to the RC based on the NN 

classification with an average accuracy rate of 95% [6]. 

As for the introduction of the homophones, Nemoto et al. have studied the Automatic Speech 

Recognition (ASR) in French. The study aims to improve the accuracy of ASR in the terms of the 

Acoustic Model and Language Model. There are two problems in this research. Firstly, the recognition of 

homophones in ASR system relies on language modeling n-gram weights. Secondly, the acoustic 

separability of the two homophones uses appropriate acoustic and prosodic attributes. The automatic 

classification of the two words using data mining techniques highlights the role duration in voicing and 

contextual information to distinguish the target words. The classification results are obtained at 78% with 

an algorithm Logistic Model Trees (LMT) [7]. Chen et al conducted the speech recognition system to 

text on the Keyword Search (KWS) for Tamil and Vietnam languages. This study highlights the three 

part-interests in optimizing voice processing submodular acoustic diverse selection of data through 

gaussian components, as well as the modeling language for modeling sub morpheme keywords and 

homophones. Speech recognition for homophones in KWS uses two conditions, i.e. FLP (Full Language 

Pack) and LLP (Limited Language Pack) with two homophones segmentation method SH regardless 

morpheme and sub homophones (SHsub) that is compared with the following morpheme. The results 

suggest that the increase in system performance occurs at 49.4% when in segmentation using sub 

homophones (SHsub) in LLP condition, whereas with the segmentation of homophones (SH), the 

performance is obtained only at 4.5% in FLP condition [8]. 

Lee discusses the Language Model on a speech recognition post-processing using Neural Network 

(NN) with Adaptive Learning approach to handle disambiguation in homophones in Chinese [9]. It 

controls the distance of preferred and unpreferred pairs and gives improved performance. Contextual 

language processing has an important role in post-processing speech to text recognition in order to find 

the candidate of the most commonly used in syllables based on the maximum probability. The 

performance of the probabilistic model is affected by two major errors, i.e. modeling and estimation 

errors in training corpus. The adaptive learning algorithm has good performance in this experiment. 

However, the speed of convergence is the major problem. The results show that the improved accuracy of 

the sentence reaches 58.13% (from 28.46% to 86.59%) and the accuracy of the character increases by 

18.64% (from 79.20% to 97.84%). Neural Network algorithm is used in handling the case of prediction 

and pattern recognition such as image processing, video processing and speech processing [10]. Speech 

recognition system for Indonesian has been conducted by Hoesen et al based on sound data which is 

spontaneous and dictated by a combination of Gaussian Mixture and Hidden Markov Model (HMM). 

Data recording is obtained from 244 Indonesian speakers during 73 hours for dictated speech and 43.5 

hours for spontaneous speech. The success rate of the system is measured by Word Accuracy Rate 

(WAR). In order to improve the recognition accuracy, the adaptation process is applied to the acoustic 

model. In this study, acoustic modeling adaptation techniques consist of Maximum A-posteriori 

Probability (MAP), Maximum Mutual Information (MMI) and Feature-space Maximum Likelihood 

Linear Regression (fMLLR). The results indicate that the adaptation of MAP improves the accuracy by 

2.60% and 1.36% for the spontaneous and dictated speech, respectively. Adaptation of WAR MMI only 

increases by 1.48%. On the other hand, fMLLR actually reduces system performance for both 

spontaneuous and dictated speeches [11].  

Previous research has described that the success of speech recognition systems is limited to the words 
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and vowels and also the presence of homophones words in several languages. However in this study, the 

authors explain it in different approaches from other research. The use of homophones in everyday life, 

especially in Indonesian can provide insight and ambiguity in communication. Therefore, this research 

will involve the use of the homophone phrases in speech recognition as a solution. 

Based on the previous research, the authors propose a speech to text recognition system based on 

Indonesian homophone phrases by using MFCC and BPNN for feature extraction and classification, 

respectively. The rest of the paper is organized as follows. Section 2 describes the research method which 

consists of a dataset, preprocessing and a combination of feature extraction and classification methods 

proposed. Section 3 presents the results of a research experiment. The conclusions of this paper are 

pointed out in Section 4. 

2 Research Method 

2.1 Homophones 

There are four terms in lexical semantics that are often used to show the relationship between words in a 

language, namely homophones, homonyms, homograph, and polysemy. Homophones, homonyms, and 

homograph can also be classified as homonymy, ie two or more words that have different meanings but 

have the same shape. If two or more words are spelled differently in writing and have the same phrase, 

the words are called homophones, for example bang-bank, massa-masa, and sanksi-sangsi [12]. 

2.2 Dataset 

In this research, the data used is in the form of speech data record of Indonesian homophones that 

consists of two scenarios of data retrieval. Table 1 shows the result of homophones data test for single 

homophone and homophone phrase. Recording is done in mono channel for 5 seconds by 6 respondents, 

representing each of the proportional three male and female voices in which the sound recording is 

performed 5 times for each word. Hence, the amount of speech data is 300, which is training data of 240 

and test data of 60. Recorded files are stored in .wav format at a sampling frequency of 16 kHz. 

Table 1. Evaluation data (Pairs of homphones and homphones phrase) 

Single homophone Homophone phrase 

Balik balig akil balig balik belakang 

Bang bank Bang Saleh Bank Mandiri 

dakwa dakwah dakwa hakim dakwah ustadz 

dara darah dara cantik darah merah 

rock rok lagu rock rok mini 

 

2.3 Preprocessing 

Preprocessing stage is a data preparation before entering into the process of feature extraction. In the 

recording process, respite is sometimes found in order to obtain a state of silence. Therefore, the signal 

separation must be done to distinguish between silence and deemed valid signal. In this research, the 

identification of silence is set at 0.03 on a scale of amplitude which is the default threshold as described 

in [13-14]. Thus, the system will identify the silence by looking at frame with a maximal amplitude of 

less than 0.03. Removal of silence greatly influences the size of cepstrum coefficient matrix generated 

from the MFCC. Fig. 1 shows an example of the speech signal before and after removing silence. 
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(a) before silence removal (b) after silence removal 

Fig. 1. Speech signal “akil balig”  

2.4 MFCC for Feature Extraction 

MFCC maps frequency components using Mel scale and is modeled based on voice perception of the 

human ear [15]. In this study, the MFCC coefficients method uses a variation of the number and type of 

window. MFCC stages of the process are shown in Fig. 2. 

 

Fig. 2. MFCC Block Diagram 

Signals of recorded sound through preprocessing will be divided into several frames to obtain a stable 

characteristic of the speech signal. In Fig. 3, the speech signals in segmenting into multiple frames 

overlap so that no signal is deleted when framing is conducted. The length of overlap area that is 

commonly used is 30% to 50% of the size of the frame. The segmented speech signal has the frame 

duration of 20 ms [16]. If a sample rate is16 kHz, the sample size in one frame is 320 points (= 16000 Hz 

x 0.02 sec) with 160 sample points overlapping. 

 

Fig. 3. Frame blocking process for “akil balig” 
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Windowing will be conducted after frame blocking to minimize aliasing which causes discontinuity in 

processing the speech signals [14]. Hamming window is used in this paper and described as follows [17]. 

 

2
( ) 0.54 0.46 cos , 0 1

1

n
w n x n N

N

π⎛ ⎞
= − ≤ ≤ −⎜ ⎟−⎝ ⎠  

(1) 

where N is the amount of the speech signal. 

The speech signal after windowing is an input of the Fast Fourier Transform (FFT) which converts the 

signal frame from the time domain to the frequency domain. The next process is Mel Frequency 

Wrapping for filtering the spectrum of each frame. Each tone with the actual frequency f is measured in 

Hz and subjective pitch is measured on a scale called “mel” at MFCC. Mel frequency scale is linear 

frequency under 1000 Hz and logarithmic for frequencies above 1000 Hz. At this stage, the 

multiplication process will be carried out between Mel-Spaced Filterbank and spectral power of the 

periodogram, wherein the multiplication results are summed. The final stage of feature extraction is the 

mel log spectrum transform to obtain the MFCC features. 

2.5 Classification with Neural Network 

Computational methods of NN are inspired by the workings of the human brain cells. In order to think, 

human brains get stimulation of neurons found in human senses, then the results of these stimuli are 

processed so as to produce the information. On the computer, the stimulus given to the input will be 

multiplied by a value and then treated with a particular function to produce an output. Characteristics of 

NN are marked on network architecture, the learning method for weighting the connection, and activation 

of function selection [18]. 

Backpropagation is a supervised learning training method in NN. This method can handle the case in a 

complex pattern recognition. Backpropagation Neural Network (BPNN) works by starting with 

initialization that is weighted and biased. In the BPNN, each unit that is in the input layer is associated 

with another that is in the hidden layer. MFCC feature extraction results in a speech signal of 

Homophones as data input on BPNN. Recognized words of 10 homophones (see Fig. 4) are most 

commonly used in everyday life, such as “balig”, “balik”, “bang”, “bank”, “darah”, “dara”, “dakwah”, 

“dakwa”, “rok” dan “rock”. Units in the hidden layer are connected to each unit in the output layer. The 

weight values are possessed by each unit. Wij is the weight of the input layer to the hidden layer and Wjk 

is the weight of the hidden layer to the output layer. This network consists of a multilayer network. When 

the network is given input pattern as a training pattern, the pattern of the lead units is a hidden layer to be 

subsequently forwarded to the layer of output units. Then, the output layer units will provide a response 

as the output of the neural network. When the output is not as expected, the output will be propagated 

backward in the hidden layer and then from the hidden layer to the input layer as shown in Fig. 4. 

 

Fig. 4. BPNN architecture 
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Table 2 shows the structure of the NN with backpropagation training functions that will be applied in 

this study. Data input used is the end result of the form of a matrix cepstrum of MFCC coefficient with 

the output neuron representing the target of the input data as a reference to the BPNN training output. 

Table 2. BPNN structure 

Parameter Spesification 

Architecture 2 hidden layer 

Number of input neuron cepstrum coefficient matrix MFCC 

Number of hidden neuron [100 50] 

Number of output neuron 10 (target definition) 

Learning function Backpropagation 

Activity function Log-sigmoid 

Maximum epoch 100 

Error tolerance 10-5 

 

In Backpropagation, there are many parameters that can be set, but most of these parameters can be 

used with the value set by default. This is due to variations in the value of these parameters that influence 

the time required for training [19]. 

Networks that have trained and achieved the desired results need to be tested to determine the ability 

when studying the training data given. Testing is conducted to observe the performance of the system 

that has been created by looking at the value of the minimum error. Training and testing results can be 

analyzed by observing the accuracy of target network output. After the system is trained, the next step is 

the validation of the system. In the validation process, the system is tested with other data; it is intended 

to determine the extent to which the system can alert text output with text input. Output will be compared 

with the target test data. The training and testing process of speech to text recognition is shown in Fig. 5. 

 

Fig. 5. Flowchart stages of identification 

2.6 Validation 

After finishing the system design, the next process is to evaluate the performance of the system by 

calculating the degree of accuracy. In this study, the validation method used is confusion matrix which 

gives a decision based on the results of the training and testing. Confusion matrix provides performance 
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ratings based on the classification of objects correctly or incorrectly. If the dataset consists of only two 

classes, one class is regarded as positive and the other is negative as shown in Table 3. 

Table 3. Confusion matrix model 

Classified as 
Correct Classification 

+ - 

+ True positives (TP) False negatives (FN) 
actual 

- False positives (FP) True negatives (TN) 

 

The result on the diagonal from top left to bottom right is the result of correct classification, and all 

values outside the diagonal are incorrect, classified as incorrects. This level of accuracy on a model 

confusion matrix is calculated based on the Equation (2) below: 

 (%)
TP TN

accuiracy rate
TP TN FP FN

+
=

+ + +

 (2) 

Where: 

True positives (TP): the proportion of positive cases that are correctly classified. 

False positives (FP): the proportion of negatives cases that are incorrectly classified as positive. 

False negatives (FN): the proportion of positives cases that are incorrectly classified as negative 

True negatives (TN): the proportion of negative cases that are classified correctly. 

3 Result and Analysis 

Accuracy comparisons of speech to text recognition with three spelling of 10 words homophones is 

tested by confusion matrix as show in Table 4. An example for the spelling word of “balig” has 67% 

result of accuracy. Only 2 spelling is being recognized by dataset, 1 other word is recognized as “balik”. 

Table 4. Classification based on confusion matrix in single word homophones for male data 

Result (%) 
Male Data 

balig balik bang bank dakwa dakwah dara darah rock rok 

balig 67 33 0 0 0 0 0 0 0 0 

balik 33 33 0 0 0 0 0 0 0 0 

bang 0 0 33 33 0 33 0 0 0 0 

bank 0 0 33 33 0 0 0 0 0 0 

dakwa 0 0 0 33 33 0 0 0 0 0 

dakwah 0 0 0 0 67 67 0 0 0 0 

dara 0 0 0 0 0 0 67 0 0 0 

darah 0 0 0 0 0 0 33 67 0 0 

rock 0 0 0 0 0 0 0 0 33 0 

a
c
tu

a
l 

c
la

s
s
 

rok 0 0 0 0 0 0 0 0 67 100 

 

The results of Table 4 will be calculated by the equation confusion matrix based Equation (2) below: 

( )accuracy male data =

(67 33 33 33 33 67 67 67 67 33 100)
100

(100 67 67 67 67 67 67 33 33 33 33 33 33 33 33 33 33 33 33)

+ + + + + + + + + +
×

+ + + + + + + + + + + + + + + + + +

 

533
100

898
= ×  

59,354%=   

The accuracy rate of single homophone word for female data in Table 5 showed in calculation below: 
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(33 67 67 0 67 0 0 67 67 0)
( ) 100

(67 67 67 67 67 67 67 67 67 33 33 33 33 33 33)
accuracy femals data

+ + + + + + + + +
= ×

+ + + + + + + + + + + + + +

 

36.8
100

801
= ×  

45,9426%=   

Table 4 and Table 5 show that the levels of accuracy obtained for the speech of males and females are 

59.35% and 45.94% respectively. These results indicate that the speech to text recognition system of 

homophones by itself will not be maximized because the noise generated between homophone words is 

very precise. To increase the accuracy of homophones speech to text recognition, a homophone is 

combined with other words to form a phrase which makes the meaning of the homophone is increasingly 

clear. Table 6 and Table 7 describe a comparison of the results of the introduction of homophones with 

phrases that have been done with the confusion matrix system. The calculation of total accuracy is shown 

in the formula below: 

(100 67 100 100 100 100 67 100 100 100)
( ) 100

(100 100 100 100 100 100 100 100 67 67 33 33)
accuracy mals data

+ + + + + + + + +
= ×

+ + + + + + + + + + +

 

934
100

100
= ×  

93,4%=   

Table 5. Classification based on confusion matrix in single word homophones for female data 

Result (%) 
Female Data 

balig balik bang bank dakwa dakwah dara darah rock rok 

balig 33 0 0 33 0 0 0 0 0 0 

balik 67 67 0 33 0 0 0 0 0 0 

bang 0 33 67 0 0 0 0 0 0 0 

bank 0 0 0 0 33 0 67 0 0 0 

dakwa 0 0 0 0 67 67 0 0 0 0 

dakwah 0 0 0 0 0 0 0 0 0 0 

dara 0 0 0 0 0 0 0 0 0 0 

darah 0 0 0 0 0 0 0 67 0 0 

rock 0 0 0 0 0 33 0 0 67 67 

a
c
tu

a
l 

c
la

s
s
 

rok 0 0 0 0 0 0 0 0 0 0 

Table 6. Classification based on confusion matrix in homophones phrase for male data 

Result (%) 

Male Data akil 

balig 

balik 

belakang 

Bang 

Saleh 

Bank 

Mandiri

dakwa 

hakim

dakwah 

ustadz 

dara 

cantik 

darah 

merah 

lagu 

 rock 

rok 

mini 

akil balig 100 0 0 0 0 0 0 0 0 0 

balik belakang 0 67 0 0 0 0 0 0 0 0 

bang Saleh 0 33 100 0 0 0 0 0 0 0 

Bank Mandiri 0 0 0 100 0 0 0 0 0 0 

dakwa hakim 0 0 0 0 100 0 0 0 0 0 

dakwah ustadz 0 0 0 0 0 100 33 0 0 0 

dara cantik 0 0 0 0 0 0 67 0 0 0 

darah merah 0 0 0 0 0 0 0 100 0 0 

lagu rock 0 0 0 0 0 0 0 0 100 0 

a
c
tu

a
l 

c
la

s
s
 

rok mini 0 0 0 0 0 0 0 0 0 100 
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Table 7. Classification based on confusion matrix in homophones phrase for female data 

Result (%) 

Female Data akil 

balig 

balik 

belakang

Bang 

Saleh 

Bank 

Mandiri 

dakwa 

hakim

dakwah 

ustadz 

dara 

cantik 

darah 

merah

lagu 

rock 

rok 

mini 

akil balig 100 0 0 0 0 0 0 0 0 0 

balik belakang 0 33 0 0 0 0 0 0 0 0 

bang Saleh 0 67 100 0 0 0 0 0 0 0 

Bank Mandiri 0 0 0 100 0 0 0 0 0 0 

dakwa hakim 0 0 0 0 100 0 0 0 0 0 

dakwah ustadz 0 0 0 0 0 100 0 0 0 0 

dara cantik 0 0 0 0 0 0 100 0 0 0 

darah merah 0 0 0 0 0 0 0 100 0 0 

lagu rock 0 0 0 0 0 0 0 0 100 0 

a
c
tu

a
l 

c
la

s
s
 

rok mini 0 0 0 0 0 0 0 0 0 100 

 

Based on the results of the classification in Table 6 and Table 7, from a total of 30 homophone phrases 

introduced to examine the system, 28 of them are classified correctly. Errors can occur due to recognition 

of the feature differences which are too large between the voice signal to be identified to the trained voice 

signals. This problem can be resolved by increasing the variation patterns of words during training so that 

the network system is more enhanced in knowledge. 

The results of the classification of homophone phrases based on Table 6 can improve speech to text 

recognition accuracy of 34.05% for male respondents data and Table 7 shows the increase of accuracy by 

47.39% in female respondent data. 

Table 8 shows the average accuracy rate obtained by the speech to text recognition system for 

homophones in Bahasa Indonesia. The introduction of homophones in a phrase provides the highest 

accuracy rate of 93.4%. 

Table 8. Average accuracy rate 

Average Accuracy Rate (%) 
Data 

Male Female 

Homphones 59,35 45,94 

Homphone Phrases 93.4 93.33 

4 Conclusion 

Speech recognition for lexical semantics of the homophones with MFCC-BPNN method has been 

conducted in this study. The speech data in .wav format consists of 120 training data and 30 test data for 

each male and female respondent. System testing is done by using a confusion matrix. Speech to text 

recognition with homophone phrases improves recognition accuracy by 40,07% (from 53.33% to 93.4%) 

for the data of male respondents and increases the accuracy by 56.53% (from 36.8% to 93.33%) in 

female respondents. This indicates that the speech to text recognition system for homophones is more 

effectively if it is in the form of a phrase. The time required for the multilayer on BPNN in completing 

the training process with multiple iterations is not very practical. In the future, this research can be 

developed by utilizing the modeling language which forms the corpus to enrich the homophones dataset. 

Also, feature extraction and classification methods still need to be involved to improve the performance 

of the system. 
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