
Journal of Computers Vol. 28, No. 5, 2017, pp. 11-25 

doi:10.3966/199115992017102805002 

11 

An Efficient TDOA and GROA Localization Mechanism  

Based on GSO Algorithm with Flight Theory 

Dong-yao Zou1*, Bi-wei Liu1 and Wei Yang1 

1 College of Computer and Communication Engineering, Zhengzhou University of Light Industry,  

Zhengzhou 450001, China 

qxweiyi2015@126.com, 1574990296@qq.com, 609066328@qq.com 

Received 17 June 2016; Revised 7 February 2017; Accepted 8 February 2017 

Abstract. The positioning technology is of vital importance in Wireless Sensor Networks 

(WSNs), and its accuracy based on particle swarm optimization (PSO) is low. We propose an 

efficient time differences of arrival (TDOA) and gain ratios of arrival (GROA) localization 

algorithm with glowworm swarm optimization algorithm based on flight mechanism (Levy-

GSO) for WSN in this paper. First, an improved positioning equation is introduced based on 

TDOA and GROA positioning model. And solve the equation by using correction two-step 

weighted least squares source localization method (TSWLS). To solve the nonlinear relationship 

between positioning equation and the target location by introducing the auxiliary variable and 

doing pseudo linear operation of nonlinear equation. Second, develop the GSO algorithm with 

flight mechanism to find the optimal solution under the same convergence speed and precision. 

Finally, test the proposed algorithm performance of ranging error, the number of reference nodes, 

Gaussian random variable variance and the root mean square error(RMSE). The simulation 

results indicate that the proposed localization mechanism has relative higher and stable 

localization accuracy compared with TDOA algorithm. 

Keywords: flight mechanism, gain ratios of arrival (GROA), glowworm swarm optimization 

(GSO), least squares, particle swarm optimization (PSO), time differences of arrival 

(TDOA)  

1 Introduction 

1.1 Research Background 

Node localization occupies an important position in the whole WSN, especially in the event observation, 

target tracking and network reconfiguration [1-2]. First, it is meaningful that the data collected by sensor 

nodes with their location information. For example, when we get a temperature value, it would be 

practical value if we know where it from. Second, node self-positioning can be applied in external target 

localization, tracking and improve the efficiency of routing.  

The common passive location method is to use measurement parameters such as time of arrival (TOA), 

time difference of arrival (TDOA), concatenated), angle of arrival (AOA) and their combination [3]. If 

there is relative motion between target and receiving sensor, the frequency of arrival (FDOA) 

information can also be used for target localization. In recent years, with the development of technology, 

people gradually began to focus on the target localization using signal information from different 

receiving station in energy domain. The energy intensity from different receiving sensors is inversely 

proportional to the distance from the sensor to the signal [4]. It can achieve localization based on signal 

strength difference from different receiving sensors. The popular positioning methods are RSSI (the 

Receive Signal Strength Indicator) [4-7] and GROA (Gain the wire of Arrival). RSSI positioning 

technology has been widely applied in WSN due to the merits of low power and low cost. The theory of 
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RSSI is to realize the node location by signal strength from the known anchor nodes, which is not 

satisfied in the passive location. But the GROA positioning method develops the principle of inversely 

proportional relationship between signal amplitude and propagation distance. The GROA method is more 

suitable for the passive location compared with RSSI.  

1.2 The Related Work 

Over the past decades, some improved RSSI algorithms were proposed aiming at achieve accurate 

localization. Chen and Yuan analyzed the factors of weather and obstacles in indoor positioning and 

presented a fuzzy algorithm based on RSSI technology [8]. It provided a more accurate distance and 

improved the accuracy of path loss model. Kaya and Alkar developed an adaptive filtering RSSI 

technology, which solves the questions of uneven nodes distribution and packet loss ratio [9]. It reduces 

the positioning error obviously by the reliable RSSI values. Zhi and Hui used RSSI values obtained by 

median data pre-processing method and calculated the estimated distance of unknown node based on 

weighted centroid algorithm [10]. They found that their system has lower positioning error because the 

results are more reliable after pre-processing. Hua and Di focused on the triangle centroid localization 

algorithm and analyzed information of two reference beacon nodes [11]. The algorithm adopted the 

reasonable communication distance to effectively improve the node positioning accuracy. Qian, Guang 

and Jun process the statistical data to study the relationship between measured distance and predicated 

distance, and builds t he probabilistic annular intervals of anchor nodes [12]. 

The GROA algorithm is firstly proposed by Ho and Ming [13]. They put forward passive location by 

using two step weighted least squares (TSWLS) with the GROA and TDOA measurement information at 

the same time. And Benjian, Zan and Yunmei point out that GROA plays a key role on the improvement 

of positioning accuracy in the hybrid system with the decrease of signal bandwidth [14]. On the basis of 

Benjian et al. [14], Benjian, Zan and Pengwu gives TDOA and GROA two step weighted least square 

passive location under the condition of sensor location error [15]. And they point out that GROA 

positioning information require the accurate environmental coefficient. Therefore, Benjian et al. gives the 

BiasRed and BiasSub two deviation reduction algorithms to promote TDOA and GROA joint positioning 

accuracy [15]. 

The firefly optimization algorithm (GSO) is a kind of evolutionary swarm intelligence computation 

method and is also a kind of algorithm which is based on the iterative algorithm from the random 

solution [16-19]. The firefly algorithm is based on the observation of the activities of the firefly cluster. 

The individual information is shared in groups, so that the whole group’s activities rely on the strength of 

the group to solve the problem. When one of the individual has to find the target, the individual will emit 

light to attract nearby firefly to close. Then the most individual will be selected from its close, after 

reaching the target point. The GSO algorithm is similar with other evolutionary algorithms, which can be 

used to solve the equation optimization problem. For example, the multivariate function optimization 

problem. A lot of theoretical and experimental research results show that the GSO algorithm in solving 

the problems of the practical optimization, which achieves the better results. Nowadays, GSO algorithm 

was successfully applied to multi-objective optimization, automatic target detection, decision-making 

scheduling and other fields. 

Based on the above analysis, this paper proposes the joint GROA time TDOA location algorithm 

based on GSO algorithm with the flight mechanism (Levy-GSO) to reduce the sensor localization errors 

based on RSSI and solve the problem of robustness. This paper mainly considers the existed position 

error of receiver senor and the problem of positioning results are susceptible to interference, which 

develops TDOA and GROA field positioning information to co-location signal source. Firstly, the 

algebraic closed solution of correction two-step weighted least squares algorithm based on the typical 

positioning model is proposed. Then the method of the nonlinear equation of pseudo linear is used to 

solve the pseudo linear equations to obtain the location of the object information, which is a good way to 

solve the problem of nonlinear relationship between target position and location equation. Secondly, 

aiming to optimize the positioning equation in first step, this paper proposes an improved glowworm 

algorithm introducing the flight mechanism. The improved Levy-GSO not only helps to jump out of the 

office of the optimal, but also can get better convergence when particles are near the global optimal value. 

Finally, the feasibility and effectiveness of the mechanism proposed in this paper are verified by the 

numerical simulation and experiment of MATLAB. The results show that the proposed algorithm has 
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good robustness and high positioning accuracy compared with TDOA algorithm under the condition of 

different parameters.  

2 The Localization Model of TDOA and GROA 

2.1 The Definition of TDOA 

The received signal of receiving sensor by is defined as: 

 

1 1

1

1

( ) ( ) ( )

1
( ) ( ) ( )

i i i

i

x t s t t

x t s t t
g

ξ

τ ξ

= +

′= − +
 (1) 

Where 2,3,i M= � . ( )s t  is target emission signal, ( )
i
tξ is the signal noise of i  receiving sensor. ( )

i
x t  is 

the receiving signal of i sensor. In this paper, we put the first sensor be reference node. 

1i
τ
′  is defined as arrival time difference (TDOA) of i  sensor signal, the measuring time difference 

value of M sensor is 
21 31 1

[ , , , ]
T

M
τ τ τ τ′ ′ ′′ = � . 

We get the distance difference arrival (RDOA) of the i  sensor and the 1 sensor from the time 

difference value multiplies to signal propagation speed c . The distance between i  sensor and the target 

can be represented as: 

 

i i
r u s′ ′′= −  (2) 

Where “ * ” means euclidean distance, 2,3,i M= � . 

The distance difference between i  sensor and the first sensor is: 

 

1 1 1 1 1i i i i i
r r r c r rτ′ ′ ′ ′= − = = + Δ  (3) 

Where c  is the signal propagation speed, 
1i

τ
′ is the actual time difference between i  sensor and the first 

sensor, 
1i
r  is calculated distance value, 

1i
rΔ  is the measuring error of distance difference. 

In simple, 
21 31 1

[ , , , ]
T

M
r r r r

′ ′ ′′ = � , 
21 31 1

[ , , , ]
T

M
r r r r= � , 

21 31 1
[ , , , ]

T

M
r r r rΔ = Δ Δ Δ� . The equation of 

measuring distance difference is: 

 r r r′= + Δ   (4) 

Suppose time difference error requires the Gaussian distribution of zero mean, the covariance matrix is 

[ ]
T

r
E r r QΔ Δ = . 

2.2 The Definition of GROA 

1i
g  is the gain ratio of receiving signal from i  sensor relative to the first sensor in formula (1). 

According to the acoustics and microwave theory, the signal transmission loss factor is in proportion to 

n  power of distance between the i  sensor and 1 sensor. We suppose n  is the constant value of 1. The 

measuring gain ratio of M  sensor is 
21 31 1

[ , , , ]
T

M
g g g g′ ′ ′ ′= � . The GROA between i  sensor and the first 

sensor is: 

 

1 1
/

i i
g r r′ ′ ′=  (5) 

Where c  is the light speed, 
i
r
′  is the real distance between the target and i  sensor. And GROA 

parameters can be written as a vector form: 
21 31 1

[ , , , ]
T

M
g g g g= � , 

21 31 1
[ , , , ]

T

M
g g g gΔ = Δ Δ Δ� . 

Furthermore, the measuring equation of arrival gain ratio is: 
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 g g g′= + Δ  (6) 

Where 
1i

g  is the real GROA value, 
1i

gΔ  is the GROA measuring error. Assuming 
1i

g  and 
1i

gΔ  obey the 

zero mean Gaussian distribution, and independent of the time difference error. The covariance matrix is 

[ ]
T

g
E g g QΔ Δ = . 

3 The TDOA and GROA Localization based on Levy-GSO 

This paper mainly studies the problem of time difference (TDOA) and gain ratio (GROA) joint 

localization. Due to the nonlinear relationship between positioning equation and the target location, it is 

difficult to solve the actual target location directly. There are two categories for the solution of nonlinear 

equation: (1) The Taylor series expansion method. It gives up the second order and higher term to obtain 

the linear equation, which expands the nonlinear equation near the actual target location. Finally, we 

approach the true location of target after multiple iterations [20]. (2) We solve the nonlinear equation to 

obtain the target location by introducing the auxiliary variables [21]. The first method often requires a 

precise iterative initial value, and the typical algorithms are Newton iteration method [2], quasi-Newton 

iteration method [22] and so on. However, the second method has closed solution under certain 

conditions and there is no divergence problem. The typical algorithms are two-step weighted least-

squares algorithm (TSWLS) [23], the constrained weighted least squares algorithm (CWLS) [24], 

constrained total least squares algorithm (CTLS) [25]. Among them, the TSWLS algorithm has low 

computational complexity, which is widely used. This paper puts forward TDOA and GROA joint 

localization algorithm based on the above ideas, and develops the glowworm optimization algorithm 

based on flight mechanism. Last, we verify the performance of proposed algorithm compared with 

traditional TDOA algorithm by using the simulation tool.  

3.1 Positioning Distribution 

Fig. 1 is the joint location map of TDOA value from receiving sensor and GROA value of received signal. 

We assume that the object positioning vector is [ , , ]
T

u x y z′ ′ ′ ′= , the number of receiving sensors is M . 

The actual position of i  sensor is [ , , ]
T

i i i i
s x y z′ ′ ′ ′= , 1,2,i M= � , “[*]T ” means transpose, and the actual 

position of i  sensor is [ , , ]
T

i i i i
s x y z= .  

 

Fig. 1. Positioning distribution 

Where
1 2

[ , , , ]
T T T T

M
s s s s′ ′ ′ ′= � ,

1 2
[ , , , ]

T T T T

M
s s s s= �  and sβ ′ ′= , sβ = . Let receiving sensor 

positioning error be
1 2

[ , , , ]
T T T T

M
s s s sΔ = Δ Δ Δ� , where 

i i i
s s s ′Δ = − . Assuming that βΔ  meet the 

Gaussian distribution of zero mean, and the covariance matrix is [ ]
T

E Qββ βΔ Δ = . In this paper, the 
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symbol of “ ′ ” is the actual value. 

In this article, we assume that: the position of target remain unchanged; The TDOA value are 

independent of GROA value, and the error are independent of each other; the positioning signal are 

independent of noise, the receiving noise are independent of each other from different perceptual nodes, 

and the positioning signal and noise are both zero mean Gaussian random process; the transmission 

decay coefficient of additive Gaussian noise channel is n , and there are no multipath effect and 

interference in the same signal transmission process. 

3.2 The Construction of Positioning Equation 

According to the relationship of TDOA equation 
1 1i i
r r r
′ ′ ′= − , we can get: 

 
1 1i i

r r r
′ ′ ′= +  (7) 

Put into formula (7) and do square operation: 

 

2 2

1 1 1 1
2 2

T T T

i i i i i
r r r r s s s u u u′ ′ ′ ′ ′ ′′ ′ ′ ′+ + = − +  (8) 

Considering that
i i i
s s s′ = − Δ , where

1i
r  is the measuring value of distance difference, 

i
s  is sensor 

location with the error. According to the Taylor series expansion relationship, we can get:  

 

1
1 1 1 , 1
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Where
1

, 1 1
( )

u s
u s u sρ

′

′ ′= − − , '

1 1
r̂ u s′= − . 

In the same way, considering that 
1 1 1
s s s′ = − Δ , it can be derived according to the relationship of 

Taylor series expansion: 

 

1

2
22

1 1 1 1 , 1
2

T

u s
r u s u s u s sρ

′

′′ ′ ′ ′= − ≈ − + − Δ  (10) 

Use the error relationship 
1 1 1i i i
r r n′ = −  and ignore the second order error term. 

 

1
, 1 , 1
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1 1 1 1
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i M

ε ρ
′
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=

�

…

 (11) 

We arrange the GROA equation 
1 1i i

g r r′ ′ ′= and put into the time difference equation 
1 1i i
r r r
′ ′ ′= − : 

 
1 1 1 1i i

g r r r r′ ′ ′ ′ ′− = −  (12) 

 ( )1 1 1
1

i i
g r r′ ′ ′− =   (13) 

According to formula (9), we can get: 

 

( )
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, 1 1 1 1 , 1

1 1 1

ˆ 1
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  (14) 

Furthermore, do square operation by using 
1 1
r u s′ ′′= − . 

 

2

1 1 1 1
2

T T T
r s s s u u u′ ′ ′′ ′ ′ ′= − +   (15) 
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Suppose that 
22

1 1
r̂ u s′ ′= − , combine formula (15) with (10), we can get the solution as follows: 

 

1
1 1 1 , 1

2
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First, we use 2( )T
u u a h′ ′ = +  instead of ( )

2T
u Pu N h′ ′ = +  for constraint solving. Further, introduce 

the intermediate variable 2

1 1 1
ˆ ˆ

T

T
u r rϕ ⎡ ⎤′ ′′ ′=
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, where 
,2 ,3 ,
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T
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According to the error relationship, there can be derived: 
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Where 0 is the zero vector of 3 1×  dimensions. 

In the same way, 
,2 ,3 ,

[ , , , ]
T

g g g g M
ε ε ε ε= … . 
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Where: 
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We can get the following equation according to the error relationship. 
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Where ( 1) ( 1)M M
I

− × −
 is the 1M −  unit matrix and 0  is the 3 1×  dimensions zero vector. 

As for formula (16): 
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Furthermore, 
1

[ , , ]
T T T

t g r
ε ε ε ε=  is the measuring vector. 
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1
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G G G G= . The formula (27) is the nonlinear equation. If u′  has 

nothing to do with 
1
r̂
′  and 2

1
r̂′ , we change formula (27) be the linear equation about 

1
ϕ ′ . By the weighted 

least squares principle, we can get: 
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Where 
1

W  is the weighted matrix. 
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We also know that: 
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So we can derive the solution: 
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The estimation error is: 

 ( )
1

1 1 1 1 1 1 1 1 1

T T
G WG G Wϕ ϕ ϕ ε

−
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The estimation error covariance matrix is: 

 ( ) ( )
1

1 1 1 1
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T
G WGϕ

−

=   (37) 
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3.3 Positioning Results Optimization 

To reduce the positioning error and ensure the accurate coordinate, we should select the suitable 

parameters with adopting the appropriate optimization algorithm. In the first step, this article proposes 

the glowworm optimization algorithm based on the flight mechanism to optimize formula (37). The 

theory is introducing the random Levy flight mechanism to adjust the particle trajectory based on the 

glowworm algorithm. It not only helps to get out of the local optimum, but also can get better 

convergence when the particles are in the global optimum. Its main function is that when the particles 

move in a small range near the local optimum, the jump of a large step can be given out.  

Flight Levy mechanism is proposed by French mathematician Paul Pierre Levy. It is a kind of Markov 

chain, which characterizes the step size that should meet the Levy condition. n is the dimension of the 

solution, and the gamma function is Γ , β is step size. 

 

(( (1/ )( (1 )* (3.14* / 2) /( ((1 ) / 2)* *2 1) / 2))) ;sin
βσ β β β β β= Γ + Γ + −

 

(38) 

 

1/

( ,1)* ;

( ,1);

* ( / ( ) );

u rand n

v rand n

a u abs v
β

σ

α

=

=

=

 (39) 

Many animals in the nature want to search for food in the uncertain environment. The ideal way is to 

use Levy flight search strategy, in this form of search, short distance carpet of cable and the occasional 

long distance raid. Short distance carpet cable can ensure that animals in the foraging process carefully 

search its surroundings in a small range. The distance to foraging are closer and easy to quickly find the 

target; and occasionally raid of long distance and ensure its to enter another region and in the wider range 

search, is far from the target distance can quickly reach the location of the target small area. In view of 

the advantages of Levy flight, many scholars have been inspired by it. In the evolutionary strategy, the 

Levy flight strategy is introduced, and the performance of the improved algorithm is improved. 

Based on Levy flight mechanism, in the space of d  dimension, the formula for the position of the 

particle at the time of the improved X  is updated at t : 

 ( 1) ( ) *( ( ) ( )) / ( ) ( ) * ( 0.5) ( )
i i j i j i
x t x t s x t x t x t x t sign rand levyα λ+ = + − − + − ⊕� �  (40) 

The GSO algorithm mainly includes the initialization of the glowworm, the update of the fluorescence, 

the update of the position and the function of decision making. For the initialization of the glowworm 

groups, to set each individual carried the same Lucifer in concentration
0

L  and sensing radius
0

R . The i  

glowworms in the T  iterations of the position for ( )
i

X T , which corresponds to the objective function 

value of ( )
i
L T , a Lucifer in update equations for ( ( ))

i
f X T  conversion for the individual carries the 

fluorescent values: 

 ( ) (1 ) ( 1) ( ( ))
i i i
L t L t r F x tρ= − ∗ − + ∗  (41) 

Each individual in its dynamic decision making domain radius ( )
id

R t , the individual with a higher 

value of { }( ) : ( ) ( ); ( ) ( )i ij id i jN t j d t R t L t L t= < < , where 0
id s

R R< < , 
s

R  is the individual’s perception 

radius. The probability ( )
ij
P t  of the individual ( )

i
N t  within the j  is selected, and the probability 

equation is: 

 

( )

( ) ( ( ) ( )) /( ( ) ( ))
i

ij j i k i

k N t

P t L t L t L t L t

∈

= − −∑   (42) 

Position updating equation: 

 ( 1) ( ) *( ( ) ( )) / ( ) ( )
i i j i j i
x t x t s x t x t x t x t+ = + − −� �  (43) 

Where s is a moving step, the general value of s=0.03. 

Dynamic decision radius update domain is: 



Journal of Computers Vol. 28, No. 5, 2017 

19 

 ( 1) min{ ,max{0, ( ) *( ( ( )))}}i i

d s d t i
R t R R t n abs N tβ+ = + −  (44) 

The specific steps of the GSO algorithm with the flight theory (Levy-GSO) are as follows: 

(1) The size of the firefly population is n , the size of the 
0

L  is m , the radius of the firefly was 
0

R , the 

number of iterations is t , the number of iterations is 
s

R , the number of iterations is t , the volatile 

coefficient for fluorescein is µ , the update rate of fluorescein is κ ; 

(2) According to the formula (41) equation, the size of the fluorescein carried by each firefly is set; 

(3) In the ( )
id

R t  of its dynamic decision making range, each individual is composed of 

( )
i

N t = { }: ( ) ( ); ( ) ( )ij id i jj d t R t L t L t< < , where 0
id s

R R< ≤ ,
s

R is the individual perception radius; 

(4) According to formula (42) the probability ( )
ij
P t  for calculation of the i  of the firefly j  to its 

collection neighborhood; 

(5) Randomly selected individual j  from the best individual; 

(6) The position is updated according to formula (43); 

(7) In accordance with formula (44) a decision to update the scope of the role of the radius; 

(8) When the number of iterations is not reached the maximum number of iterations, the return (2) 

continues to execute until the end of the iteration till the output results are given. 

3.4 The Steps of the Algorithm 

To summarize, the steps of TDOA and GROA algorithm based on the Levy-GSO (LGSO - TDOA) as 

follows: 

The definition of weight matrix 
1

W as formula (35), 
1

ϕ ′ is the intermediate variable according to 

formula (30), so we can solve 
1

ϕ . In the actual, we get the initial solution 
0

u of target location. Finally, 

we get the initial convergence estimate u  of target position after repeat the first step.  

We solve the target location formula (39) by Levy-GSO algorithm steps until it reaches the maximum 

number of iterations, then we get the more accurate target location. 

4 Simulation Results 

In order to have the speed of optimization and quality of the settlement at the same time, we should select 

the appropriate population size and the number of iteration according to the actual size of environment. 

Meanwhile, we make the particles produced adaptive mutation at a certain probability to avoid the Levy-

GSO algorithm in the optimization process. The iterative curve is shown in Fig. 2, we use the maximum 

iterations number for 300 in this paper.  

 

Fig. 2. The iterative curve of Levy-GSO 



An Efficient TDOA and GROA Localization Mechanism Based on GSO Algorithm with Flight Theory 

20 

Under the conditions of existing error, RDOA, GROA and receiving sensor location are generated by 

adding the covariance matrix 2
Q Rσ=

r r
, 2

g g
Q Rσ=  and 2

s
Q Rβ σ= . R  is 2

r
σ  dimension matrix, which 

the diagonal elements are 1 and the rest elements are 0.5. And 2

r
σ , 2

g
σ , 2

s
σ  are error power of RDOA, 

GROA value and receiving sensor location respectively. 

In order to verify the feasibility, as well as the robustness when appears environmental fluctuation, this 

paper uses the MATLAB tool to do simulation experiments. We mainly test the impact of following 

parameters on the performance of this algorithm: (1) The ranging error; (2) The number of reference 

nodes and Gaussian random variable variance; (3) The root mean square error (RMSE). And compare the 

improved localization mechanism with the TDOA algorithm in aspects of experiment cost and energy 

consumption. 

4.1 The Ranging Error 

With the increase of ranging error, the proposed LGSO-TDOA algorithm in this paper and TDOA 

algorithm both have the increase trend. As shown in Fig. 3, the positioning error growth rate of LGSO-

TDOA algorithm is relative low.  

 

Fig. 3. The impact of ranging error on the average positioning error 

Table 1. Comparison of the two algorithms error 

Experimental data LGSO-TDOA algorithm TDOA algorithm  

The average 1.571 2.832 

The maximum error 2.211 3.911 

The minimum error 0.886 2.013 

 

From the above, the maximum and minimum error of LGSO-TDOA algorithm has decreased to 2.211 

and 0.886 respectively compared with TDOA algorithm. And the average decreases by 45%, which 

proves the LGSO-TDOA algorithm has the better robustness to the effect of the ranging error.  

4.2 The Number of Reference Nodes and Gaussian Random Variable Variance  

Fig. 2 to Fig. 4 shows the cumulative density functions of LGSO-TDOA algorithm. We deploy 2n =  and 

4n =  reference node respectively environment to test LGSO-TDOA performance under different 

number of nodes. Considering different Gaussian variance at the same time, we verify the positioning 

error distribution. Fig. 4 to Fig. 6 show Gaussian random variable variance 2
σ  = 2, 4, 8. 

We can find from the above tables, the two curves in the Fig. 4 to Fig. 6 is very close, which suggests 

that LGSO-TDOA algorithm could maintain higher performance under the less reference nodes condition. 

As for the problem of Gaussian random variables interference, we can know that LGSO-TDOA 

algorithm provides precise and stable positioning results from the Fig. 6. 
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Fig. 4. Localization error cumulative density functions achieved with LGSO-TDOA algorithm for 2
2σ =  

 

Fig. 5. Localization error cumulative density functions achieved with LGSO-TDOA algorithm for 2
4σ =  

 

Fig. 6. Localization error cumulative density functions achieved with LGSO-TDOA algorithm for 2
8σ =  



An Efficient TDOA and GROA Localization Mechanism Based on GSO Algorithm with Flight Theory 

22 

4.3 The Error of Root Mean Square 

( )
1/ 2

2
( )

1
MSE( )

L l

l
R u u u L

=

′= −∑ , where ( )l
u is the target location estimate value, u′ is the actual 

location, 
t

σ =5000 is the independent simulation running times. Supposing that 
t

σ  is the mean root of 

time difference measuring error and require
r t

cσ σ= i . In Fig. 7, 20
g

dBσ = − , 40
s

dBσ = − . In Fig. 8, 

60
t

dBσ = − , 20
s

dBσ = − . In Fig. 9, 60
t

dBσ = − , 20
g

dBσ = − . 

 

Fig. 7. Positioning error under different time measurement 

 

Fig. 8. Positioning error under different amplitude ratio 

 

Fig. 9. Positioning error under different receiving sensor location 
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In Fig. 7 to Fig. 9, we can find that: (1) Under the same condition of parameter error, the LGSO-

TDOA location model can be improved about 23dB compared with TDOA model. (2) The positioning 

accuracy is mainly decided by the smaller parameter of TDOA and GROA measurement error. The 

another parameter has the small influence on the localization result; (3) The root mean square error of 

LGSO-TDOA algorithm is near -7 dBm and the fluctuation keeps unchanged. 

4.4 Energy Consumption and Experiment Cost 

Fig. 10 is the experiment cost simulation of LGSO-TDOA and TDOA algorithm. As is shown, when 

under the situation of less nodes, two algorithms of experiment cost are similar. But LGSO-TDOA 

algorithm increase trend is very gentle and significantly lower than the TDOA algorithm with increasing 

number of nodes, namely LGSO-TDOA algorithm has the lower cost than TDOA algorithm. 

 

Fig. 10. The analysis of algorithm cost 

Fig. 11 shows the energy consumption of two algorithms under different number of nodes. The figure 

shows that the energy consumption of the two algorithms is on the rise with the increase of the number of 

nodes. The LGSO-TDOA energy consumption has the very big improvement compared to TDOA 

algorithm. When under the same positioning accuracy, LGSO-TDOA algorithm is better than TDOA 

algorithm to extend the service life of the node.  

 

Fig. 11. The analysis of algorithm energy consumption 
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5 Conclusions 

This paper presented an adaptive TDOA and GROA localization based on Levy-GSO algorithm. We 

develop the correction two-step weighted least-squares method to solve the problem of the nonlinear 

relationship between localization equation and the target location. And we propose the glowworm swarm 

optimization based on Levy mechanism to find the optimal localization quickly and accurately. The 

simulation results demonstrated that our proposed algorithm has a better performance in terms of 

localization accuracy than the original TDOA method, especially the limited reference nodes and poor 

capacity of resisting disturbance. Therefore, LGSO-TDOA algorithm is an efficient algorithm and it is 

more suitable for sensor networks of dense nodes and large scale compared with other improved TDOA 

algorithms. However, this paper is only compared with algorithm based on the TDOA under different 

number of reference nodes and ranging error, which does not consider the other parameters affection. 

And the experiments are under the ideal situation, ignoring interferences of external environmental 

factors. In the future, we plan to overcome the above disadvantages and explore the other improvements 

and incorporate them into the LGSO-TDOA algorithm. 
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