
Journal of Computers Vol. 28, No. 5, 2017, pp. 51-61

doi:10.3966/199115992017102805005

51

D-GSPerturb: A Distributed Social Privacy Protection Algorithm

based on Graph Structure Perturbation

Xiao-lin Zhang1*, Wen-chao Zhang1, Chen Zhang1,

Li-Xin Liu1 and Xiao-Yu He1

1 School of Information Engineering, Inner Mongolia University of Science and Technology

Baotou, Inner Mongolia, 014010, China

zhangxl@imust.cn

Received 18 June 2016; Revised 19 February 2017; Accepted 19 February 2017

Abstract. The traditional privacy protection algorithm does not meet actual application

requirements of processing large-scale graph data in terms of efficiency or capability. D-

GSPerturb is a distributed social privacy protection algorithm based on graph structure

perturbation; it is proposed to solve link privacy issues in social networks. The present vertex-

centric algorithm can search large-scale social networks for reachable vertexes, transfer

reachable information, and randomly perturb edges through between-vertex messaging, vertex

value updating, and multi-iteration in programming. The experimental results show that D-

GSPerturb not only improves the processing speed of large-scale graph data but also ensures the

privacy protection effect and availability of data published.

Keywords: big data, D-GSPerturb, edge random perturbation, privacy protection, social network

1 Introduction

With the development of Internet technology, social networks are characterized by large-scale and

diverse data. However, traditional privacy protection algorithms with poor effectiveness and low

efficiency cannot satisfactorily process large data sets. Thus, parallel computing has become a trend for

social network privacy protection in the future [1].

In some cases, the information associated with the edges in the social network may be sensitive,

identifying whether the two nodes have a certain relationship or identifying the two endpoint of a link

can be considered as a privacy disclosure [2-4]. Therefore, it is necessary to protect link privacy in the

social network release.

Fard and Wang propose a neighborhood randomization method to address the problem of link privacy

[5]. The basic concept of neighborhood randomization (NR) is defined as follows. An edge is hidden by

concealing the target or source vertexes of the edge; the pseudo-target vertex w is selected from local

neighbors that are structurally nearer to the source vertex u. The initial boundary is kept in the published

graph and relies on the probability p; the target vertexes of the initial boundary are substituted in the

probability 1 p− , and the pseudo-target vertex w is randomly selected from local neighbors. However, this

method is a privacy protection method in a stand-alone environment, which needs to be processed by links one

by one, and the poor effectiveness and low efficiency cannot satisfactorily process large data sets.

This paper focuses on the efficient and rapid privacy protection of large-scale data in distributed

environment while maintaining the availability of data. This paper makes the following contributions.

(1) A distributed social network privacy protection algorithm (D-GSPerturb) based on Graph Structure

Perturbation is designed to improve the efficiency of processing large-scale graph data.

(2) D-GSPerturb based on Pregel-like model can search for reachable vertexes, transfer reachable

information, and randomly perturb edges in the distributed environment.

(3) The high efficiency of the D-GSPerturb method and the data availability of the published data are

* Corresponding Author

D-GSPerturb: A Distributed Social Privacy Protection Algorithm based on Graph Structure Perturbation

52

verified by a large number of experimental tests and analyzes on the real data set.

The rest of the paper is organized as follows. We review related work in Section 2, define

preliminaries in section 3, present the distributing algorithm in Section 4, and evaluate the processing

efficiency and utility of sanitized graphs in Section 5, we conclude the paper.

2 Related Work

Various algorithms have been presented for social network privacy protection [6-10]. Bhattacharya and

Mani propose an iterative algorithm to generate k-anonymize vertex degree sequence of a given social

network graph in order to protect the graph against passive attack [6]. Wang and Zheng propose two k-

anonymization algorithms to protect a social network against the CFP attacks [7]. One algorithm is based

on adding dummy vertices, the other algorithm is based on edge modification. Zhang, Liu and Lin design

a hierarchical authorization and capability delegation (HACD) model [8]. Based on this model, it propose

a novel utility-based popularity anonymization (UPA) scheme, which integrates proxy re-encryption with

keyword search techniques, to tackle authentic popularity disclosure in online social networks. Qian, Li

and Zhang introduce knowledge graphs to explicitly express arbitrary prior belief of the attacker for any

individual user [9]. The processes of de-anonymization and privacy inference are accordingly formulated

based on knowledge graphs.

The basic idea of graph structure perturbation is to protect the data privacy of a social network by

perturbing and modifying the graph data randomly. Perturbing a graph is mainly based on randomly

adding/deleting m edges, switching edge endpoints, and so on. In Reference [10-12], graph structure

perturbation is presented. Ying and Wu propose relying on equiprobability; social privacy protection

could be achieved by randomly adding, deleting, or switching edges [10]. Zhang and Zhang propose an

algorithm to compute the boundary recognition probability based on the connection density between two

equivalent classes [11]. The greedy algorithm is applied to minimize the number of edges to be deleted or

switched. Thus, this algorithm keeps the possibility of boundary recognition below the given threshold.

Fard and Wang propose an algorithm based on perturbing the subgraph edge, particularly after the initial

graph is split into several subgraphs, to add/delete m edges to/from the subgraph randomly [12]. The

aforementioned algorithms for perturbing graph structures obtained randomized and even useless initial

graphs. Considering problems of this kind, Fard and Wang introduce an algorithm to randomly perturb

the edges in a local neighborhood [5].

In Reference [13-14], big graph privacy is presented. Zakerzadeh, Aggarwal and Barker [13] leveraged

the MapReduce framework to create a scalable algorithm that focuses on the sensitive content at the

vertexes rather than on the structure. However, MapReduce framework has the potential disadvantages

(e.g. large scheduling and disk access overhead) to process the large-scale graph data. Zhang, Guo and

Wang [14] proposed a personalized social network privacy protection method based on the Pregel-like

system. The method provides different types of privacy protection for different vertex, and adopts the

“Think Like a Vertex” concept in the Pregel-like system. But the method solves vertex privacy issues in

social networks. Many distribute privacy models [15-16] have recently been proposed for private release

of network data. Yuan and Chen [16] followed the SMC approach and designed a secure protocol SP to

generate a S-Clustering graph to achieve k-anonymization of bipartite graph. Jurcayk and Li [16]

proposed a protocol, namely Distributed Anonymization that is built on top of the k-anonymity and l-

diversity principles and the greedy topdown Mondrian multidimensional k-anonymization algorithm.

However, the two methods are both completed in the distributed environment rather than leverage

distributed compute.

BSP (Bulk Synchronous Parallel model) is a typical computing model to process large-scale graph

data in a cloud computing environment [17]. In Reference [17], the BSP model is a message-based

parallel execution designed for iterative synchronization in large-scale graph computing. Google Pregel

system [18] is the most sophisticated graph processing system based on the BSP model; this system

drives the development of a series of Pregel-like systems [19], such as Apache Hama, Yahoo! Giraph,

Spark Graphx, and so on.

The existing social network privacy protection method is mainly based on the stand-alone environment,

is not suitable for dealing with massive social network data. Considering the limitations of those

traditional algorithms in processing large-scale graph data, D-GSPerturb is proposed for social network

privacy protection.

Journal of Computers Vol. 28, No. 5, 2017

53

3 Preliminaries

3.1 Definition 1: Digraph of Social Network.

It is defined as G = {V, E}. V denotes a set of user vertexes; each vertex corresponds to a real user in a

social network. E denotes a set of social connections. Every edge <u, v> is mapped to a directed social

connection between users; these connections indicate the direction from user u to user v; and u is called

the source vertex, v is called the target vertex. A simple digraph of a social network G1 is shown in Fig. 1

as an example.

1

4

5

7

6

2

3

Fig.1. A directed social network graph
1

G

3.2 Definition 2: Link Steal

In the directed graph G, it is assumed that the vertexes{u, v}∈V, <u, v>∈E，<u, w>∉E. The operation

removes edge <u, v> and adds edge <u, w> to E, where w is called false target vertex of vertex u.

For example, in the digraph of social network G1, edge <1, 4>∈E, <1, 5>∉E, removes edge <1, 4>

and add edge <1, 5> to G1 are called link steal, where vertex 5 is called false destination vertex.

3.3 Definition 3: Neighbor-r

Given that integer r ≥ 0, and the source vertexes of the graph are indicated by u, the set of all reachable

target vertexes in digraph G corresponds to the source vertexes u within r JumpSteps as indicated by

Nr(u).

For example, in the digraph of social network G1, when u = 1, N1(1) = {1, 4}, N2(1) = {1, 4, 2, 5}, N3(1)

= {1, 4, 2, 5, 6, 3, 7}.

In digraph G, the set of target vertexes reachable from the source vertexes u via any arbitrary vertex is

indicated by N*(u). The set of neighbors reachable from the source vertexes u within one JumpStep is

indicated by Dst(u).

For example, in the digraph of social network G1, N
*(1) = N3(1) = {1, 4, 2, 5, 6, 3, 7}, Dst(1) = {4}.

The candidate set of pseudo-target vertex w of the source vertexes u is indicated by PTS(u, r, s). r

denotes the radius of Neighbor r of the source vertexes u (r > 1). s denotes the number of vertexes

contained in PTS(u, r, s); s ≥ |Dst(u)|. Based on the assumption that s1 = |Nr(u)| - |N1(u)|, s2 = |N*(u)| - |N1(u)|.

s2 ≥ s1 ≥ s. The selected set PTS(u, r, s) meets any of the following three conditions:

(1) s1 > s, indicating that s vertexes are available in Nr(u) - N1(u), as well as s vertexes in PTS(u, r, s)

which are randomly selected from Nr(u) - N1(u).

(2) s1 < s ≤ s2, indicating that the number of vertexes in Nr(u) - N1(u) is less than s, all vertexes of Nr(u)

- N1(u) are included in PTS(u, r, s), and s-s1 vertexes are randomly selected from N*(u) - Nr(u).

(3) s2 < s, indicating that the number of vertexes in N*(u)- N1(u) is less than s, all vertexes of N*(u) -

N1(u) are included in PTS(u, r, s), and s - s2 vertexes are randomly selected from V- N*(u).

For example, in the digraph of social network G1, V = {1, 2, 3, 4, 5, 6, 7}. Assuming that r = 2, s = 2,

for the source vertexe u = 1, s1 = 2 ≥ s, and PTS(1, 2, 2) = {2, 5}.

D-GSPerturb: A Distributed Social Privacy Protection Algorithm based on Graph Structure Perturbation

54

3.4 Definition 4: Reachable Information and Reachable Information List

The assemblage of the target vertexes and the distance from the source vertexes are the reachable

information. The assemblage of all the reachable information of the source vertexes is called the reachable

information list. This list is saved in the data form of the map; the key indicates the target vertex identifier, and

the value indicates the distance between the source vertexes and the target vertexes in this list.

For example, in the digraph of social network G1,for the source vertex u = 2, the reachable information

list of vertex 2 is {(4, 2),(6,2),(5,3),(7,4)}, and every element is the reachable information of vertex 2.

4 D-GSPerturb for Privacy Protection

4.1 Principle

The Pregel system is vertex-centric; it requires every vertex to conduct parallel computing in the “comp-

comm-sync” model. Before the computing process, all graph vertexes are set as either active or inactive.

A pregel job consists of supersteps executed in several sequences. In every superstep, each graph vertex

receives messages from neighboring vertexes of the preceding superstep. Once the messages are received,

the vertex checks whether to update values, send messages, and change the current status. In the present

study, D-GSPerturb is proposed for privacy protection based on the Pregel-like system. Its system

architecture is shown in Fig. 2.

Original

graph data

Data

preprocess

Quickly search

reachable

vertexs

Quicklytransfer

reachable

information

Data users

分布式处理Quickly and

randomly

perturb edges
Distributed

processing

Cloud platform

Fig. 2. System architecture

Almost importantly, the initial graph data is processed into data types supported by the Pregel-like

system. Then, all vertexes reachable from those sources are searched in the graph of the social network.

Based on the found vertexes, pseudo edges are created from the target vertexes to the source vertexes;

these created pseudo edges enable the sending of reachable information to the source vertexes. Lastly,

PTS(u, r, s) is computed at every source vertex according to the list of reachable information. Based on

the obtained result of PTS(u, r, s), every edge of the source vertexes is perturbed randomly. The Pregel-

like model is used to search for reachable vertexes, transfer reachable information, and randomly perturb

edges; supersteps are executed in several sequences for large-scale social privacy protection, where in

secure data are available for users or cloud platforms.

4.2 Description

Quick Search for Reachable vertexes. In a distributed environment, graph vertexes are assigned to

different computing vertexes; each of the vertexes is initialized. In every superstep, active vertexes

receive messages and check whether every vertex identifier given in messages exists in the vertexes

value. This vertexes value is saved in the data form of a Map with a key indicating the identifier of

source vertexes and a value indicating the number of supersteps. If the vertex identifier does not exist,

then the vertex value is updated with messaging. If this value fails to update, then the corresponding

vertexes are set to inactive. Every vertex is searched for reachable vertexes with the specific procedures

of Algorithm 1.

Searching for vertexes reachable from the source vertexes mainly involves the following two cases:

Journal of Computers Vol. 28, No. 5, 2017

55

① When superstep=0, vertexes with out-degree neighbors are active, whereas the remaining vertexes

are set to inactive; the active vertexes send their identifiers to all their respective neighbors (1-10).

② When superstep≠0 the vertex statuses are checked according to the received message. Going

through message list of active vertexes, the vertexes identifier not given in the vertexes value are

searched using the updated the vertexes value and then sent to the neighboring vertexes. If all vertex

identifiers are found, then the vertexes are inactive (11-25). Case ② is repeated until all vertexes are

inactive; then, the program stops.

Algorithm.1 search reachable vertexes.

Input：Message transfer between supersteps messages
Output: The list of reachable vertexs reachMapList
1 reachMapList ;←←
2 long step = getSuperstep();
3 if step == 0 then
4 setValue(reachMapList.put(VertexId,0));
5 if getEdges == null then
6 voteToHalt(); return;
7 else
8 msgList.add(VertexId);
9 sendMessToNeighbors (msgList);
10 end if
11 else
12 if messages == null then
13 voteToHalt(); return;
14 else
15 reachMapList = getValue();
16 for each messList in messages do
17 for each VertexId in messList do
18 if isNotExistInReachMapList (VertexId) then
19 setValue(reachMapList.put(VertexId, step);
20 msgList.add(VertexId);
21 end if
22 if msgList.size == 0 then
23 voteToHalt(); return;
24 sendMessToNeighbors (msgList);
25 end if
26 return reachMapList;

For example, in the simple graph of a social network in Fig. 1, when superstep=0, the first algorithm

prevails; vertex 5 sends identifier to vertexes 4 and 7, as shown in Fig. 3(a). When superstep=1, the

second algorithm prevails, as shown in Fig.3(b); the vertexes value after being updated consists of the

contents in brackets in Fig. 3(b), e.g., the list of vertexes reachable to vertex 4 are shown as {(4,0), (1,1),

(5,1)}. The case of superstep=1 occurs repeatedly until all vertexes are inactive; then, the program stops.

As shown in Fig. 1, the program stops after six supersteps. The results of Algorithm 1 are shown in Table

1. For example, in vertex 1, source vertexes 1, 2, 4, and 5 can reach vertex 1 and have distances of 0, 1, 2,

and 3, respectively.

12

4

2

3 5 5

54

1{ (1,0) }

4{ (4,0) }

5{ (5,0) }

7{ (7,0) }6{ (6,0) }

2{ (2,0) }

3{ (3,0) }

(a)

 1 { (1,0),(2,1) }

2 { (2,0),(4,1) }

3 { (3,0),(2,1)}

6 { (6,0),(3,1),(5,1) }

4 { (4,0),(1,1),(5,1) }

5 { (5,0),(4,1) }

24

1,5

4

2
4

4

41,5

7 { (7,0),(5,1) }

(b)

Fig. 3. Search for reachable vertexes

D-GSPerturb: A Distributed Social Privacy Protection Algorithm based on Graph Structure Perturbation

56

Table 1. Search results of reachable vertexes

Vertex Id Vertex Value

1 (1,0)(2,1)(4,2)(5,3)

2 (2,0)(4,1)(1,2)(5,2)

3 (3,0)(2,1)(4,2)(1,3)(5,3)

4 (4,0)(1,1)(5,1)(2,2)

5 (5,0)(4,1)(1,2)(2,3)

6 (6,0)(3,1)(5,1)(4,2)(2,2)(1,3)

7 (7,0)(5,1)(4,2)(1,3)(2,4)

Quick random edge perturbation. The vertexes value is ergodic to every vertex. First, the source vertex

identifiers are searched within the range of jumpstep greater than or equal to two; pseudo edges (such as

those in Figs. 4a and 4b) are obtained from the target vertexes to the source vertexes. Then, the target

vertexes are sent in the Pregel-like system reachable information to the source vertexes via the pseudo

edges. Finally, the source vertexes compute the set of (, ,)PTS u r s according to the reachable information

list and complete the edge random perturbation.

For Algorithm 2, transferring reachable information mainly involves the following cases:

① When superstep=0, all source vertexes are active, whereas the remaining vertexes are inactive. The

source vertexes send reachable information to the target vertexes (3–11) through the pseudo edges.

② When superstep=1, vertexes without received messages are inactive, whereas those with received

messages are active. The target vertexes receive messages and save all reachable information in the

vertex value; then, the program stops (12–20).

Algorithm.2 transfer reachable information.

Input：Message transfer between SuperSteps messages
Output: The list of reachable information ReachInforList
1 ReachInforList←φ;
2 long step = getSuperstep();
3 if step = 0 then
4 if getEdges == null then
5 voteToHalt(); return;
6 reachMapList = getValue();
7 for each value in reachMapList do
8 // Reachable information is sent via pseudo edges to the

source vertexes
9 msgMap.put(vertexId,distance);
10 sendMess(targetId, msgMap);
11 end for
12 else if step =1 then
13 if messages == null then
14 voteToHalt(); return;
15 for each mess in messages do
16 ReachInforList.put(destId,distance);
17 setValue(ReachInforList);
18 voteToHalt();
19 end if
20 end if
21 return ReachInforList;

As shown in Fig. 4(a), Algorithm 2 only requires two supersteps to send all reachable information. For

example, in vertex7, when superstep=0, the reachable information (7,3) is sent to vertex 1, the reachable

information (7,4) is sent to vertex 2, and the reachable information (7,2) is sent to vertex 4, as shown in

Figs. 4(a) and 4(b). When superstep=1, vertexes 1, 2, and 4 receive reachable information that is saved in

the list of reachable information. The list of reachable information of every vertex consists of the

contents in brackets, as shown in Fig. 4(b).

Journal of Computers Vol. 28, No. 5, 2017

57

{1(1,0)(2,1)(4,2)(5,3) }

{2 (2,0)(4,1)

(1,2)(5,2) }

{3 (3,0)(2,1)

(4,2)(1,3)

(5,3) }

{6 (6,0)(3,1)(5,1)(4,2)(2,2)(1,3) }

{7(7,0) (5,1)(4,2)(1,3)(2,4) }

{ 5(5,0)(4,1)(1,2)(2,3) }

{4(4,0) (1,1)(5,1)(2,2) }

(7,3)

(a)

(7,2)
(7,4)

 (b)

{5 (1,3)(2,2)(3,3) }

{ 4(1,2)(3,2)

(6,2)(7,2) }

{ 1(2,2)(5,2)(3,3)(6,3)(7,3) }

{ 2(4,2)(6,2)

(5,3)(7,4) }

Fig. 4. Transmission of reachable information

The random perturbation algorithm first obtains a reachable information list for each source vertex.

Then, according to the local neighbor radius r, PTS (u) size s, calculate the PTS (u, r, s). Finally, for each

edge of the source vertex, the edge random perturbation is performed according to the random probability

p. The random perturbation of each vertex is shown in Algorithm 3.

Algorithm.3 random perturbation.

Input ： A directed graph G,neighborhood radius r,the size s of PTS

(u),link retention probability p.
Output: The sanitized G*.
1 G*←φ;
2 if getEdges == null then
3 voteToHalt(); return;
4 else
5 ReachInforList = getValue();
6 PTSuList = ComputePTSuList(ReachInforList，r，s);
7 for each edge in edgeList do
8 EdgeRandom Perturb(p， PTSuList);
9 voteToHalt();
10 end if
11 return G*；

4.3 Analysis of Present Algorithm

Analysis of data availability. The D-GSPerturb privacy protection algorithm aims to randomly perturb

edges based on local neighborhood; it greatly reduces the information loss of the graph structure. In this

study, the data availability is explored by analyzing changes in the graph structure before and after

perturbation. The analysis mainly has the following measures: the average shortest path length applied in

messaging, search, computing, and so on; the maximum eigenvector that indicates the thresholds for the

maximum degree, chromatic number, and viral transmission closely related to the maximum eigenvalue;

the degree centrality, which indicates that any vertex with a higher popularity is more popular in the

social network; and the closeness centrality, which indicates that the higher the closeness centrality, the

quicker the messaging. Changes in these four parameters are enough to explain changes in the graph

structure data.

The graph of a social network before and after perturbation is evaluated using RelativeError
*

/u u u= − , where u and u* are the measures for the graph before and after perturbation, respectively.

The following two aspects are used to evaluate the graph:the average shortest path length and the

maximum eigenvalue, which indicates that the smaller the value, the higher the data availability. The

variations in the degree and closeness centrality before and after perturbation are measured by analyzing

Spearman’s correlation similarity between the ranking list L of vertexes of the initial graph and the ranking list

L* of vertexes of the graph after perturbation. The greater the values of these two measures, the higher the data

availability.

D-GSPerturb: A Distributed Social Privacy Protection Algorithm based on Graph Structure Perturbation

58

5 Results and Analysis

The present experiment was conducted on a Hadoop cluster consisting of 5 servers with hardware

configuration requirements of CPU 1.80 GHz and RAM 16 GB. Apart from using the Pregel-like system

model Giraph-1.1.0 and Spark-1.2.1, the experiment also adopted a real life directed social network data

that we called LiveJournal, a comprehensive SNS online dating website with a total of 4,847,571

subscribers and 68,993,773 social connections. In the experiment, the probability of substituting target

vertexes is expressed as δ; 1 pδ = − .

5.1 Analysis of Processing Time

The D-GSPerturb privacy protection algorithm is designed to enhance the efficiency of processing large-

scale data sets of a social network and ensuring the privacy protection of traditional edge random

perturbation algorithms (NR). To meet the experimental design, the initial data set was segmented into

eight equal parts; the data were reengineered into four different datasets by 1:2:4:8. Based on those four

datasets, Giraph and GraphX were used; the digraph data of the social network was processed as the D-

GSPerturb algorithm.

As shown in Fig. 5(r = 2, s = 2|Dst(u)|, δ = 0.5), insignificant differences exist between the NR

algorithm and the D-GSPerturb algorithm in the runtime. However, as the data size (split_3 and split_4)

exponentially increased, the processing efficiency of the NR algorithm was significantly lower than that

of the D-GSPerturb algorithm.

Fig. 5. Comparison chart of processing time

5.2 Analysis of Data Availability

Figs. 6 and Fig. 7 show the effects of different neighborhood radii on the average shortest path length and

the maximum eigenvector (Note that the x-axis coordinate denotes the local neighborhood radius; the y-

axis coordinate denotes the error rates of the graph structures before and after perturbation; δ = 0.5; and x

denotes |Dst(u)|.). As shown by the two charts, the average shortest path length and maximum

eigenvector increase as the neighborhood radius increases, whereas the data availability gradually

decreases.

10.00%

15.00%

20.00%

2 3 4 5

R
e

la
ti

v
e

 E
rr

o
r

r

s(u)=2x

s(u)=3x

s(u)=4x

0.00%

10.00%

20.00%

30.00%

2 3 4 5

R
e

la
ti

v
e

 E
rr

o
r

r

s(u)=2x

s(u)=3x

s(u)=4x

Fig. 6. Error rate in average shortest path length Fig. 7. Maximum eigenvector error rate

Figs. 8 and Fig. 9 show the effects of different neighborhood radii on the degree centrality and the

closeness centrality, respectively. (Note that the x-axis coordinate denotes the neighborhood radius; the

y-axis coordinate denotes the structural similarity between the graphs before and after perturbation; δ =

0.5, and x denotes |Dst(u)|). As shown by these two charts, the similarity between the graphs before and

Journal of Computers Vol. 28, No. 5, 2017

59

after perturbation in terms of degree centrality and closeness centrality gradually decreases with the

neighborhood radius; the data availability shows a downward trend.

50.00%

60.00%

70.00%

80.00%

90.00%

2 3 4 5

S
im

il
a
ri
ty

r

s(u)=2x

s(u)=3x

s(u)=4x

60.00%

70.00%

80.00%

90.00%

2 3 4 5

S
im

il
a
ri
ty

r

s(u)=2x

s(u)=3x

s(u)=4x

Fig. 8. Similarity in degree centrality Fig. 9. Similarity in closeness centrality

Figs. 10(a) and Fig. 10(b) show the effects of different edge probabilities δ on the graph structure

(Note that the x-axis coordinate denotes the edge probabilities; the y-axis coordinate denotes the

structural change between the graphs before and after perturbation; r = 2, s = 2|Dst(u)|). As δ increases,

the similarity in the degree centrality and closeness centrality gradually decreases. However, the relative

error rates of the average shortest path length and maximum eigenvector gradually increase; this result

indicates that the data availability is low. In Fig. 6 to Fig. 10, the smaller the values of s, r, and δ, the

better the protection of the graph structure. Therefore, the thresholds for these values can be set

appropriately under conditions that meet privacy protection demands to ensure the availability of the

published graph data.

(a) Similarity in degree centrality and

closeness centrality

(b) Error rates in ASPL length and ME

Fig. 10. Comparison chart of graph structures with different δ

6 Conclusions

Traditional privacy protection algorithms with poor effect and low efficiency unsatisfactorily process

large data sets. Accordingly, parallel computing has become a trend in social network privacy protection.

D-GSPerturb is a distributed social privacy protection algorithm based on graph structure perturbation,

which is proposed to address link privacy issues in social networks. The present Pregel-like model based

on a vertex-centric algorithm can search a large-scale social network for reachable vertexes, transfer

reachable information, and randomly perturb edges through between-vertex messaging, vertex value

updating, and multi-iteration in programming. The experimental results show that D-GSPerturb not only

improves the processing speed of large-scale graph data but also ensures the privacy protection effect and

the availability of data published. The parallel computing of large-scale graph data is in the initial stage,

there is a lot of room for improvement. Therefore, we should further study the Pregel-like model to

improve and merge processing steps of the algorithm, thereby speeding up the efficiency of the algorithm.

On the other hand, the algorithm does not consider the influence of random perturbation on the

accessibility of vertexes. To improve the data availability of the published graphs, future research work

should consider reducing the loss of information on the accessibility of vertexes.

D-GSPerturb: A Distributed Social Privacy Protection Algorithm based on Graph Structure Perturbation

60

Acknowledgements

This work is partially supported by Natural Science Foundation of China (No.61562065). The authors

also gratefully acknowledge the helpful comments and suggestions of the reviewers, which have

improved the presentation.

References

[1] XY. Liu, B. Wang, X.C. Yang, Survey on privacy preserving techniques for publishing social network data, Journal of

Software 25(3)(2014) 576-590.

[2] C. Sun, P.S. Yu, X. Kong, Y. Fu, Privacy preserving social network publication against mutual friend attacks, Transactions

on Data Privacy 7(2)(2015) 71-97.

[3] X. Ying, X. Wu, On link privacy in randomizing social networks, Knowledge and Information Systems 28(3)(2011) 645-663.

[4] A.A. Yarifard, S. Dehnvai, Link perturbation in social network analysis through neighborhood randomization, in: Proc.

Fuzzy and Intelligent Systems, 2015.

[5] A.M. Fard, K. Wang, Neighborhood randomization for link privacy in social network analysis, World Wide Web Journal 18

(1)(2015) 9-32.

[6] M. Bhattacharya, P. Mani, Preserving privacy in social network graph with K-anonymize degree sequence generation, in:

Proc. 2015 International Conference on Software, Knowledge, Information Management and Application, 2015.

[7] Y.Z. Wang, B.H. Zheng, Preserving privacy in social networks against connection fingerprint attacks, in: Proc. 2015

International Conference on Data Engineering, 2015.

[8] S. Zhang, Q. Liu, Y. Lin, Anonymizing popularity in online social networks with full utility, Future Generation Computer

Systems 45(4)(2016) 33-44.

[9] J. Qian, X.Y. Li, C. Zhang, L. Chen, De-anonymizing social networks and inferring private attributes using knowledge

graphs, in: Proc. IEEE INFOCOM, 2016.

[10] X.W. Ying, X.T. Wu, Randomizing social networks: a spectrum preserving approach, in: Proc. 2008 International

Conference on Data Mining, 2008.

[11] L. Zhang, W. Zhang, Edge anonymity in social graphs, in: Proc. 2009 International Conference on Social Computing, 2009.

[12] A.M. Fard, K.Y. Wang, Limiting link disclosure in social network analysis through subgraph-wise perturbation, in: Proc.

2012 International Conference on Extending DB Technology, 2012.

[13] H. Zakerzadeh, C.C. Aggarwal, K. Barker, Big graph privacy, in: Proc. 2015 International Conference on Extending DB

Technology, 2015.

[14] X.L. Zhang, Y.L. Guo, J.Y. Wang, W. Zhang, A personalized social network privacy protection method based on the

Pregel-like system, ICIC Express Letters, Part B: Applications 7(4)(2016) 839-845.

[15] M.X. Yuan, L. Chen, P.S. Yu, H. Mei, Privacy preserving graph publication in a distributed environment, Springer Berlin

Heidelberg 78(8)(2013) 75-87.

[16] P. Jurczyk, X. Li, Distributed anonymization: achieving privacy for both data subjects and data providers, in: Proc. the

2009 International Conference on Data and Applications Security, 2009.

[17] G. Yu, Y. Gu, Y.B. Bao, Large scale graph data processing on cloud computing environments, Chinese Journal of

Computters 34(10)(2011) 753-1767.

Journal of Computers Vol. 28, No. 5, 2017

61

[18] G. Malewicz, M.H. Austern, A.J.C. Bik, Pregel: a system for large-scale graph processing, in: Proc. 2011 International

Conference on Management of Data, 2011.

[19] S. Salihoglu, J. Widom, Optimizing Graph Algorithms on Pregel-like Systems, in: Proc. the 2014 International Conference

on Very Large Data Bases, 2014.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

