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Abstract. The traditional privacy protection algorithm does not meet actual application 

requirements of processing large-scale graph data in terms of efficiency or capability. D-

GSPerturb is a distributed social privacy protection algorithm based on graph structure 

perturbation; it is proposed to solve link privacy issues in social networks. The present vertex-

centric algorithm can search large-scale social networks for reachable vertexes, transfer 

reachable information, and randomly perturb edges through between-vertex messaging, vertex 

value updating, and multi-iteration in programming. The experimental results show that D-

GSPerturb not only improves the processing speed of large-scale graph data but also ensures the 

privacy protection effect and availability of data published. 
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1 Introduction 

With the development of Internet technology, social networks are characterized by large-scale and 

diverse data. However, traditional privacy protection algorithms with poor effectiveness and low 

efficiency cannot satisfactorily process large data sets. Thus, parallel computing has become a trend for 

social network privacy protection in the future [1]. 

In some cases, the information associated with the edges in the social network may be sensitive, 

identifying whether the two nodes have a certain relationship or identifying the two endpoint of a link 

can be considered as a privacy disclosure [2-4]. Therefore, it is necessary to protect link privacy in the 

social network release. 

Fard and Wang propose a neighborhood randomization method to address the problem of link privacy 

[5]. The basic concept of neighborhood randomization (NR) is defined as follows. An edge is hidden by 

concealing the target or source vertexes of the edge; the pseudo-target vertex w is selected from local 

neighbors that are structurally nearer to the source vertex u. The initial boundary is kept in the published 

graph and relies on the probability p; the target vertexes of the initial boundary are substituted in the 

probability 1 p− , and the pseudo-target vertex w is randomly selected from local neighbors. However, this 

method is a privacy protection method in a stand-alone environment, which needs to be processed by links one 

by one, and the poor effectiveness and low efficiency cannot satisfactorily process large data sets. 

This paper focuses on the efficient and rapid privacy protection of large-scale data in distributed 

environment while maintaining the availability of data. This paper makes the following contributions. 

(1) A distributed social network privacy protection algorithm (D-GSPerturb) based on Graph Structure 

Perturbation is designed to improve the efficiency of processing large-scale graph data. 

(2) D-GSPerturb based on Pregel-like model can search for reachable vertexes, transfer reachable 

information, and randomly perturb edges in the distributed environment.  

(3) The high efficiency of the D-GSPerturb method and the data availability of the published data are 
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verified by a large number of experimental tests and analyzes on the real data set. 

The rest of the paper is organized as follows. We review related work in Section 2, define 

preliminaries in section 3, present the distributing algorithm in Section 4, and evaluate the processing 

efficiency and utility of sanitized graphs in Section 5, we conclude the paper. 

2 Related Work 

Various algorithms have been presented for social network privacy protection [6-10]. Bhattacharya and 

Mani propose an iterative algorithm to generate k-anonymize vertex degree sequence of a given social 

network graph in order to protect the graph against passive attack [6]. Wang and Zheng propose two k-

anonymization algorithms to protect a social network against the CFP attacks [7]. One algorithm is based 

on adding dummy vertices, the other algorithm is based on edge modification. Zhang, Liu and Lin design 

a hierarchical authorization and capability delegation (HACD) model [8]. Based on this model, it propose 

a novel utility-based popularity anonymization (UPA) scheme, which integrates proxy re-encryption with 

keyword search techniques, to tackle authentic popularity disclosure in online social networks. Qian, Li 

and Zhang introduce knowledge graphs to explicitly express arbitrary prior belief of the attacker for any 

individual user [9]. The processes of de-anonymization and privacy inference are accordingly formulated 

based on knowledge graphs. 

The basic idea of graph structure perturbation is to protect the data privacy of a social network by 

perturbing and modifying the graph data randomly. Perturbing a graph is mainly based on randomly 

adding/deleting m edges, switching edge endpoints, and so on. In Reference [10-12], graph structure 

perturbation is presented. Ying and Wu propose relying on equiprobability; social privacy protection 

could be achieved by randomly adding, deleting, or switching edges [10]. Zhang and Zhang propose  an 

algorithm to compute the boundary recognition probability based on the connection density between two 

equivalent classes [11]. The greedy algorithm is applied to minimize the number of edges to be deleted or 

switched. Thus, this algorithm keeps the possibility of boundary recognition below the given threshold. 

Fard and Wang propose an algorithm based on perturbing the subgraph edge, particularly after the initial 

graph is split into several subgraphs, to add/delete m edges to/from the subgraph randomly [12]. The 

aforementioned algorithms for perturbing graph structures obtained randomized and even useless initial 

graphs. Considering problems of this kind, Fard and Wang introduce an algorithm to randomly perturb 

the edges in a local neighborhood [5]. 

In Reference [13-14], big graph privacy is presented. Zakerzadeh, Aggarwal and Barker [13] leveraged 

the MapReduce framework to create a scalable algorithm that focuses on the sensitive content at the 

vertexes rather than on the structure. However, MapReduce framework has the potential disadvantages 

(e.g. large scheduling and disk access overhead) to process the large-scale graph data. Zhang, Guo and 

Wang [14] proposed a personalized social network privacy protection method based on the Pregel-like 

system. The method provides different types of privacy protection for different vertex, and adopts the 

“Think Like a Vertex” concept in the Pregel-like system. But the method solves vertex privacy issues in 

social networks. Many distribute privacy models [15-16] have recently been proposed for private release 

of network data. Yuan and Chen [16] followed the SMC approach and designed a secure protocol SP to 

generate a S-Clustering graph to achieve k-anonymization of bipartite graph. Jurcayk and Li [16] 

proposed a protocol, namely Distributed Anonymization that is built on top of the k-anonymity and l-

diversity principles and the greedy topdown Mondrian multidimensional k-anonymization algorithm. 

However, the two methods are both completed in the distributed environment rather than leverage 

distributed compute. 

BSP (Bulk Synchronous Parallel model) is a typical computing model to process large-scale graph 

data in a cloud computing environment [17]. In Reference [17], the BSP model is a message-based 

parallel execution designed for iterative synchronization in large-scale graph computing. Google Pregel 

system [18] is the most sophisticated graph processing system based on the BSP model; this system 

drives the development of a series of Pregel-like systems [19], such as Apache Hama, Yahoo! Giraph, 

Spark Graphx, and so on. 

The existing social network privacy protection method is mainly based on the stand-alone environment, 

is not suitable for dealing with massive social network data. Considering the limitations of those 

traditional algorithms in processing large-scale graph data, D-GSPerturb is proposed for social network 

privacy protection.  
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3 Preliminaries 

3.1 Definition 1: Digraph of Social Network.  

It is defined as G = {V, E}. V denotes a set of user vertexes; each vertex corresponds to a real user in a 

social network. E denotes a set of social connections. Every edge <u, v> is mapped to a directed social 

connection between users; these connections indicate the direction from user u to user v; and u is called 

the source vertex, v is called the target vertex. A simple digraph of a social network G1 is shown in Fig. 1 

as an example. 
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Fig.1. A directed social network graph 
1

G  

3.2 Definition 2: Link Steal  

In the directed graph G, it is assumed that the vertexes{u, v}∈V, <u, v>∈E，<u, w>∉E. The operation 

removes edge <u, v> and adds edge <u, w> to E, where w is called false target vertex of vertex u. 

For example, in the digraph of social network G1, edge <1, 4>∈E, <1, 5>∉E, removes edge <1, 4> 

and add edge <1, 5> to G1 are called link steal, where vertex 5 is called false destination vertex. 

3.3 Definition 3: Neighbor-r 

Given that integer r ≥ 0, and the source vertexes of the graph are indicated by u, the set of all reachable 

target vertexes in digraph G corresponds to the source vertexes u within r JumpSteps as indicated by 

Nr(u). 

For example, in the digraph of social network G1, when u = 1, N1(1) = {1, 4}, N2(1) = {1, 4, 2, 5}, N3(1) 

= {1, 4, 2, 5, 6, 3, 7}. 

In digraph G, the set of target vertexes reachable from the source vertexes u via any arbitrary vertex is 

indicated by N*(u). The set of neighbors reachable from the source vertexes u within one JumpStep is 

indicated by Dst(u). 

For example, in the digraph of social network G1, N
*(1) = N3(1) = {1, 4, 2, 5, 6, 3, 7}, Dst(1) = {4}. 

The candidate set of pseudo-target vertex w of the source vertexes u is indicated by PTS(u, r, s). r 

denotes the radius of Neighbor r of the source vertexes u (r > 1). s denotes the number of vertexes 

contained in PTS(u, r, s); s ≥ |Dst(u)|. Based on the assumption that s1 = |Nr(u)| - |N1(u)|, s2 = |N*(u)| - |N1(u)|. 

s2 ≥ s1 ≥ s. The selected set PTS(u, r, s) meets any of the following three conditions:  

(1) s1 > s, indicating that s vertexes are available in Nr(u) - N1(u), as well as s vertexes in PTS(u, r, s) 

which are randomly selected from Nr(u) - N1(u). 

(2) s1 < s ≤ s2, indicating that the number of vertexes in Nr(u) - N1(u) is less than s, all vertexes of Nr(u) 

- N1(u) are included in PTS(u, r, s), and s-s1 vertexes are randomly selected from N*(u) - Nr(u). 

(3) s2 < s, indicating that the number of vertexes in N*(u)- N1(u) is less than s, all vertexes of N*(u) - 

N1(u) are included in PTS(u, r, s), and s - s2 vertexes are randomly selected from V- N*(u). 

For example, in the digraph of social network G1, V = {1, 2, 3, 4, 5, 6, 7}. Assuming that r = 2, s = 2, 

for the source vertexe u = 1, s1 = 2 ≥ s, and PTS(1, 2, 2) = {2, 5}.  
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3.4 Definition 4: Reachable Information and Reachable Information List 

The assemblage of the target vertexes and the distance from the source vertexes are the reachable 

information. The assemblage of all the reachable information of the source vertexes is called the reachable 

information list. This list is saved in the data form of the map; the key indicates the target vertex identifier, and 

the value indicates the distance between the source vertexes and the target vertexes in this list. 

For example, in the digraph of social network G1,for the source vertex u = 2, the reachable information 

list of vertex 2 is {(4, 2),(6,2),(5,3),(7,4)}, and every element is the reachable information of vertex 2. 

4 D-GSPerturb for Privacy Protection 

4.1 Principle 

The Pregel system is vertex-centric; it requires every vertex to conduct parallel computing in the “comp-

comm-sync” model. Before the computing process, all graph vertexes are set as either active or inactive. 

A pregel job consists of supersteps executed in several sequences. In every superstep, each graph vertex 

receives messages from neighboring vertexes of the preceding superstep. Once the messages are received, 

the vertex checks whether to update values, send messages, and change the current status. In the present 

study, D-GSPerturb is proposed for privacy protection based on the Pregel-like system. Its system 

architecture is shown in Fig. 2. 
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Fig. 2. System architecture 

Almost importantly, the initial graph data is processed into data types supported by the Pregel-like 

system. Then, all vertexes reachable from those sources are searched in the graph of the social network. 

Based on the found vertexes, pseudo edges are created from the target vertexes to the source vertexes; 

these created pseudo edges enable the sending of reachable information to the source vertexes. Lastly, 

PTS(u, r, s) is computed at every source vertex according to the list of reachable information. Based on 

the obtained result of PTS(u, r, s), every edge of the source vertexes is perturbed randomly. The Pregel-

like model is used to search for reachable vertexes, transfer reachable information, and randomly perturb 

edges; supersteps are executed in several sequences for large-scale social privacy protection, where in 

secure data are available for users or cloud platforms. 

4.2 Description 

Quick Search for Reachable vertexes. In a distributed environment, graph vertexes are assigned to 

different computing vertexes; each of the vertexes is initialized. In every superstep, active vertexes 

receive messages and check whether every vertex identifier given in messages exists in the vertexes 

value. This vertexes value is saved in the data form of a Map with a key indicating the identifier of 

source vertexes and a value indicating the number of supersteps. If the vertex identifier does not exist, 

then the vertex value is updated with messaging. If this value fails to update, then the corresponding 

vertexes are set to inactive. Every vertex is searched for reachable vertexes with the specific procedures 

of Algorithm 1. 

Searching for vertexes reachable from the source vertexes mainly involves the following two cases: 
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① When superstep=0, vertexes with out-degree neighbors are active, whereas the remaining vertexes 

are set to inactive; the active vertexes send their identifiers to all their respective neighbors (1-10).  

② When superstep≠0 the vertex statuses are checked according to the received message. Going 

through message list of active vertexes, the vertexes identifier not given in the vertexes value are 

searched using the updated the vertexes value and then sent to the neighboring vertexes. If all vertex 

identifiers are found, then the vertexes are inactive (11-25). Case ② is repeated until all vertexes are 

inactive; then, the program stops. 

Algorithm.1 search reachable vertexes. 

 

Input：Message transfer between supersteps messages 
Output: The list of reachable vertexs reachMapList 
1  reachMapList ;←←  
2  long step = getSuperstep();  
3  if step == 0 then 
4     setValue(reachMapList.put(VertexId,0)); 
5    if getEdges == null then    
6     voteToHalt();  return; 
7     else 
8       msgList.add(VertexId); 
9        sendMessToNeighbors (msgList);   
10    end if 
11 else   
12    if messages == null then  
13    voteToHalt();  return; 
14    else 
15        reachMapList = getValue(); 
16       for each messList in messages do 
17        for each VertexId in messList do 
18         if isNotExistInReachMapList (VertexId) then 
19          setValue(reachMapList.put(VertexId, step); 
20          msgList.add(VertexId); 
21                end if 
22       if msgList.size == 0 then      
23           voteToHalt();  return; 
24       sendMessToNeighbors (msgList); 
25 end if 
26 return reachMapList; 
 
For example, in the simple graph of a social network in Fig. 1, when superstep=0, the first algorithm 

prevails; vertex 5 sends identifier to vertexes 4 and 7, as shown in Fig. 3(a). When superstep=1, the 

second algorithm prevails, as shown in Fig.3(b); the vertexes value after being updated consists of the 

contents in brackets in Fig. 3(b), e.g., the list of vertexes reachable to vertex 4 are shown as {(4,0), (1,1), 

(5,1)}. The case of superstep=1 occurs repeatedly until all vertexes are inactive; then, the program stops. 

As shown in Fig. 1, the program stops after six supersteps. The results of Algorithm 1 are shown in Table 

1. For example, in vertex 1, source vertexes 1, 2, 4, and 5 can reach vertex 1 and have distances of 0, 1, 2, 

and 3, respectively. 
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1{ (1,0) }

4{ (4,0) }

5{ (5,0) }

7{ (7,0) }6{ (6,0) }

2{ (2,0) }

3{ (3,0) }

(a)  

 1 { (1,0),(2,1) }

2 { (2,0),(4,1) }

3 { (3,0),(2,1)}

6 { (6,0),(3,1),(5,1) }

4 { (4,0),(1,1),(5,1) }

5 { (5,0),(4,1) }

24

1,5

4

2
4

4

41,5

7 { (7,0),(5,1) }

(b)  

Fig. 3. Search for reachable vertexes 
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Table 1. Search results of reachable vertexes 

Vertex Id Vertex Value 

1 (1,0)(2,1)(4,2)(5,3) 

2 (2,0)(4,1)(1,2)(5,2) 

3 (3,0)(2,1)(4,2)(1,3)(5,3) 

4 (4,0)(1,1)(5,1)(2,2) 

5 (5,0)(4,1)(1,2)(2,3) 

6 (6,0)(3,1)(5,1)(4,2)(2,2)(1,3) 

7 (7,0)(5,1)(4,2)(1,3)(2,4) 

 

Quick random edge perturbation. The vertexes value is ergodic to every vertex. First, the source vertex 

identifiers are searched within the range of jumpstep greater than or equal to two; pseudo edges (such as 

those in Figs. 4a and 4b) are obtained from the target vertexes to the source vertexes. Then, the target 

vertexes are sent in the Pregel-like system reachable information to the source vertexes via the pseudo 

edges. Finally, the source vertexes compute the set of ( , , )PTS u r s  according to the reachable information 

list and complete the edge random perturbation. 

For Algorithm 2, transferring reachable information mainly involves the following cases: 

① When superstep=0, all source vertexes are active, whereas the remaining vertexes are inactive. The 

source vertexes send reachable information to the target vertexes (3–11) through the pseudo edges.  

② When superstep=1, vertexes without received messages are inactive, whereas those with received 

messages are active. The target vertexes receive messages and save all reachable information in the 

vertex value; then, the program stops (12–20). 

 

Algorithm.2 transfer reachable information. 

 

Input：Message transfer between SuperSteps messages 
Output: The list of reachable information ReachInforList 
1 ReachInforList←φ; 
2 long step = getSuperstep();  
3 if step = 0 then 
4   if getEdges == null then        
5     voteToHalt();  return;      
6     reachMapList = getValue(); 
7    for each value in reachMapList do 
8     // Reachable information is sent via pseudo edges to the 

source vertexes 
9    msgMap.put(vertexId,distance);    
10    sendMess(targetId, msgMap); 
11     end for 
12 else if step =1 then 
13     if messages == null then         
14    voteToHalt();  return; 
15    for each mess in messages do 
16    ReachInforList.put(destId,distance); 
17    setValue(ReachInforList);  
18     voteToHalt(); 
19     end if 
20 end if 
21 return ReachInforList; 
 
As shown in Fig. 4(a), Algorithm 2 only requires two supersteps to send all reachable information. For 

example, in vertex7, when superstep=0, the reachable information (7,3) is sent to vertex 1, the reachable 

information (7,4) is sent to vertex 2, and the reachable information (7,2) is sent to vertex 4, as shown in 

Figs. 4(a) and 4(b). When superstep=1, vertexes 1, 2, and 4 receive reachable information that is saved in 

the list of reachable information. The list of reachable information of every vertex consists of the 

contents in brackets, as shown in Fig. 4(b). 
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{1(1,0)(2,1)(4,2)(5,3) }

{2 (2,0)(4,1)

(1,2)(5,2) }

{3 (3,0)(2,1)

(4,2)(1,3)

(5,3) }

{6 (6,0)(3,1)(5,1)(4,2)(2,2)(1,3) }

{7(7,0) (5,1)(4,2)(1,3)(2,4) }

{ 5(5,0)(4,1)(1,2)(2,3) }

{4(4,0) (1,1)(5,1)(2,2) }

(7,3)

(a)

(7,2)
(7,4)

         (b)

{5 (1,3)(2,2)(3,3) }

{ 4(1,2)(3,2)

(6,2)(7,2) }

{ 1(2,2)(5,2)(3,3)(6,3)(7,3) }

{ 2(4,2)(6,2)

(5,3)(7,4) }

 

Fig. 4. Transmission of reachable information 

The random perturbation algorithm first obtains a reachable information list for each source vertex. 

Then, according to the local neighbor radius r, PTS (u) size s, calculate the PTS (u, r, s). Finally, for each 

edge of the source vertex, the edge random perturbation is performed according to the random probability 

p. The random perturbation of each vertex is shown in Algorithm 3. 

 

Algorithm.3 random perturbation. 

 

Input ： A directed graph G,neighborhood radius r,the size s of PTS 

(u),link retention probability p. 
Output: The sanitized G*. 
1 G*←φ; 
2 if getEdges == null then    
3     voteToHalt();  return; 
4 else 
5     ReachInforList = getValue(); 
6     PTSuList = ComputePTSuList(ReachInforList，r，s); 
7     for each edge in edgeList do 
8       EdgeRandom Perturb(p， PTSuList); 
9     voteToHalt(); 
10 end if 
11 return G*； 

4.3 Analysis of Present Algorithm 

Analysis of data availability. The D-GSPerturb privacy protection algorithm aims to randomly perturb 

edges based on local neighborhood; it greatly reduces the information loss of the graph structure. In this 

study, the data availability is explored by analyzing changes in the graph structure before and after 

perturbation. The analysis mainly has the following measures: the average shortest path length applied in 

messaging, search, computing, and so on; the maximum eigenvector that indicates the thresholds for the 

maximum degree, chromatic number, and viral transmission closely related to the maximum eigenvalue; 

the degree centrality, which indicates that any vertex with a higher popularity is more popular in the 

social network; and the closeness centrality, which indicates that the higher the closeness centrality, the 

quicker the messaging. Changes in these four parameters are enough to explain changes in the graph 

structure data. 

The graph of a social network before and after perturbation is evaluated using RelativeError  
*

/u u u= − , where u and u* are the measures for the graph before and after perturbation, respectively. 

The following two aspects are used to evaluate the graph:the average shortest path length and the 

maximum eigenvalue, which indicates that the smaller the value, the higher the data availability. The 

variations in the degree and closeness centrality before and after perturbation are measured by analyzing 

Spearman’s correlation similarity between the ranking list L of vertexes of the initial graph and the ranking list 

L* of vertexes of the graph after perturbation. The greater the values of these two measures, the higher the data 

availability. 
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5 Results and Analysis 

The present experiment was conducted on a Hadoop cluster consisting of 5 servers with hardware 

configuration requirements of CPU 1.80 GHz and RAM 16 GB. Apart from using the Pregel-like system 

model Giraph-1.1.0 and Spark-1.2.1, the experiment also adopted a real life directed social network data 

that we called LiveJournal, a comprehensive SNS online dating website with a total of 4,847,571 

subscribers and 68,993,773 social connections. In the experiment, the probability of substituting target 

vertexes is expressed as δ; 1 pδ = − . 

5.1 Analysis of Processing Time 

The D-GSPerturb privacy protection algorithm is designed to enhance the efficiency of processing large-

scale data sets of a social network and ensuring the privacy protection of traditional edge random 

perturbation algorithms (NR). To meet the experimental design, the initial data set was segmented into 

eight equal parts; the data were reengineered into four different datasets by 1:2:4:8. Based on those four 

datasets, Giraph and GraphX were used; the digraph data of the social network was processed as the D-

GSPerturb algorithm. 

As shown in Fig. 5(r = 2, s = 2|Dst(u)|, δ = 0.5), insignificant differences exist between the NR 

algorithm and the D-GSPerturb algorithm in the runtime. However, as the data size (split_3 and split_4) 

exponentially increased, the processing efficiency of the NR algorithm was significantly lower than that 

of the D-GSPerturb algorithm. 

 

Fig. 5. Comparison chart of processing time 

5.2 Analysis of Data Availability 

Figs. 6 and Fig. 7 show the effects of different neighborhood radii on the average shortest path length and 

the maximum eigenvector (Note that the x-axis coordinate denotes the local neighborhood radius; the y-

axis coordinate denotes the error rates of the graph structures before and after perturbation; δ = 0.5; and x 

denotes |Dst(u)|.). As shown by the two charts, the average shortest path length and maximum 

eigenvector increase as the neighborhood radius increases, whereas the data availability gradually 

decreases. 
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Fig. 6. Error rate in average shortest path length Fig. 7. Maximum eigenvector error rate 

Figs. 8 and Fig. 9 show the effects of different neighborhood radii on the degree centrality and the 

closeness centrality, respectively. (Note that the x-axis coordinate denotes the neighborhood radius; the 

y-axis coordinate denotes the structural similarity between the graphs before and after perturbation; δ = 

0.5, and x denotes |Dst(u)|). As shown by these two charts, the similarity between the graphs before and 
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after perturbation in terms of degree centrality and closeness centrality gradually decreases with the 

neighborhood radius; the data availability shows a downward trend. 
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Fig. 8. Similarity in degree centrality Fig. 9. Similarity in closeness centrality 

Figs. 10(a) and Fig. 10(b) show the effects of different edge probabilities δ on the graph structure 

(Note that the x-axis coordinate denotes the edge probabilities; the y-axis coordinate denotes the 

structural change between the graphs before and after perturbation; r = 2, s = 2|Dst(u)|). As δ  increases, 

the similarity in the degree centrality and closeness centrality gradually decreases. However, the relative 

error rates of the average shortest path length and maximum eigenvector gradually increase; this result 

indicates that the data availability is low. In Fig. 6 to Fig. 10, the smaller the values of s, r, and δ, the 

better the protection of the graph structure. Therefore, the thresholds for these values can be set 

appropriately under conditions that meet privacy protection demands to ensure the availability of the 

published graph data. 

  

(a) Similarity in degree centrality and  

closeness centrality 

(b) Error rates in ASPL length and ME 

Fig. 10. Comparison chart of graph structures with different δ  

6 Conclusions 

Traditional privacy protection algorithms with poor effect and low efficiency unsatisfactorily process 

large data sets. Accordingly, parallel computing has become a trend in social network privacy protection. 

D-GSPerturb is a distributed social privacy protection algorithm based on graph structure perturbation, 

which is proposed to address link privacy issues in social networks. The present Pregel-like model based 

on a vertex-centric algorithm can search a large-scale social network for reachable vertexes, transfer 

reachable information, and randomly perturb edges through between-vertex messaging, vertex value 

updating, and multi-iteration in programming. The experimental results show that D-GSPerturb not only 

improves the processing speed of large-scale graph data but also ensures the privacy protection effect and 

the availability of data published. The parallel computing of large-scale graph data is in the initial stage, 

there is a lot of room for improvement. Therefore, we should further study the Pregel-like model to 

improve and merge processing steps of the algorithm, thereby speeding up the efficiency of the algorithm. 

On the other hand, the algorithm does not consider the influence of random perturbation on the 

accessibility of vertexes. To improve the data availability of the published graphs, future research work 

should consider reducing the loss of information on the accessibility of vertexes. 
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