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Abstract. FEC adopts an agent-based heuristic that makes the algorithm efficient and is 

presented with two phases that are Finding Community (FC) and Extraction Community (EC). 

Although designed with linear running time, original FEC can not obtain ideal results on the 

graph whose community structure is not well defined. This paper extend FEC as E_FEC to seek 

a good trade-off between effectiveness and efficiency. In FC phase, we calculate the 

accumulative transition probability to find the existence of communities, and propose an 

automatic selection algorithm for the sink node. In EC phase, we present another simpler cut 

criterion based on Average cut (Acut) which costs less running-time in EC phase. The 

performance of E_FEC is rigorously validated through comparisons with other representative 

methods against both synthetic and real-world networks with different scales. 
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1 Introduction 

1.1 Research Background 

Community detection is the task of clustering the vertices of the network into groups taking into 

consideration the structure of the graph. As the result of community detection, there should be many 

edges within each group and relatively few between the groups. Therefore, community detection is an 

effective method that measures vertex closeness based on structural similarity (e.g., the number of 

common neighbors between two vertices), which can help people to understand the structure of complex 

networks, discover the latent information and predict user behaviors in social networks [1]. Andrea and 

Santo carried out a comparative analysis of the performance of various community detection algorithms, 

and concluded that the random walk methods performed rather better compared with others [2]. 

Unfortunately, most of the methods based on random walk are computationally expensive, and the 

performance on the network whose community structure is not well defined are unsatisfactory. The 

objective of seeking a good trade-off between effectiveness and efficiency remains challenging.  

1.2 Related Works 

In the literature, community detection algorithms can generally be divided into the following categories:  
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The methods based on modularity optimization. Mei, He, Shi, Wang and Li proposed a contraction-

dilation algorithm for modularity optimization [3]. Newman adopted greedy strategy to search the 

maximal Q [4]. The time complexity of this algorithm is ( )O mn , wherem is the number of edges, and n is 

the number of nodes. Jin et al. proposed a fast algorithm based on the optimization of the local index to 

replace the optimization of Q, which obtained a better trade-off between efficiency and clustering quality 

[5]. Fortunato and Barthelemy showed that modularity-based methods failed to identify modules smaller 

than a scale [6], so it was not a robust method for group detection of some social networks that may not 

contain large amount of nodes. In 2016, Newman demonstrated an equivalence between the method of 

modularity maximization and the method of maximum likelihood applied to the degree-corrected 

stochastic block model [7]. This equivalence provides a mathematically principled derivation of the 

modularity function.  

The methods based on division. The idea of this method is removing the edges in the network according 

to some certain rules, such as the number of shortest paths between pairs of vertices that run along it. The 

most popular algorithm is GN (Girvan-Newman) algorithm proposed by Girvan and Newman [8].The 

disadvantage of this method is the high running time. Some researchers have attempted to solve this 

problem at the expense of low clustering accuracy [9]. 

The methods based on label propagation. The idea of this method is that each node in a network with 

community structure should be located in a same community with most of its neighbors. Ugander and 

Backstrom proposed a balanced label propagation by combining the computational efficiency of label 

propagation with the guarantees of constrained optimization [10]. Lin, Zheng, Xin and Chen proposed a 

novel label propagation-based model with community kernel, which achieved better performance than 

related algorithms [11]. This kind of methods can obtain fast running speed, especially for the 

community detection problem in large scale networks. However, clustering performance should be 

further improved since it causes unstable quality in the detection results. To improve the accuracy, Li, 

Huang, Wang and Chen divided networks using a stepping framework and propagated labels based on 

the similarity among nodes or subnetworks [21].  

The methods based on random walk. Recently, lots of random walk based methods were proposed in 

networks of different structures [12]. Dongen [13] described a random walk based algorithm named 

Markov Cluster Algorithm(MCL), which simulates a peculiar process of flow diffusion in a graph. As of 

now, the MCL is one of the most used community detection algorithms. However, the algorithm should 

scale as 3( )O n ( n  is the node number in the graph). Pons and Latapy [14] used random walk to define a 

distance measure between vertices. The algorithm runs to completion in a time 2( )O n d on a sparse graph, 

where d is the depth of the dendrogram. Hu, Li, Zhang and Fan [15] designed a graph clustering 

technique based on signaling process with random walk scheme between vertices. The complexity of the 

algorithm is 2[( 1) ]O k n〈 〉 + , where k〈 〉 is the average degree of the graph. Wang, Liu, Liu and Pan 

proposed a novel overlapping community detection algorithm based on local random walk and 

multidimensional scaling [16]. The time complexity of the algorithm is 2( )O n . Xin, Xie and Yang 

proposed ANRW (Adaptive Non-Homogeneous Random Walk) to resolve the issue of instability caused 

by fixing the random walking step, but the method is adequate to the parallel computing and large data 

analysis [19]. 

From the above researches, we can see that random walk has been successfully used in community 

detection. Yang, Cheung and Liu presented a random walk method named FEC that is demonstrated to be 

fast and accurate to identify groups for both positive and signed network [17]. FEC is presented with two 

phases, Finding Community (FC) and Extraction Community (EC). The former transforms the adjacency 

matrix to compute their transition probability vector and sorts them for each row. The latter applies a 

cutoff criterion to the transformed adjacency matrix and divides it into two block matrices, which 

correspond to two subgraphs. One of these subgraphs is the identified community, and another is the 

matrix to be processed, recursively. However, original FEC algorithm makes the detection result 

sensitive to the selection of sink node, and the experimental results on networks do not define good 

community structure remains unsatisfactory.  

In this paper, to overcome the shortcomings of the original FEC algorithm, we extend it as E_FEC 

with several improvements. E_FEC can achieve a good trade-off between effectiveness and efficiency. 

The contributions of E_FEC mainly focus on four aspects:  



A Novel Community Detection Algorithm Based on E_FEC 

72 

(1) In FC phase, we propose to calculate accumulative transition probability, which is a more reasonable 

way to find the existence of communities.  

(2) In FC phase, we present a mathematical conclusion for determining the value of random walk steps.  

(3) Original FEC method does not provide the sink node sensitivity analysis, which will result in 

unreasonable clustering results. So, an automatic sink node selection algorithm is proposed to solve this 

problem. 

(4) Original EC phase has the time complexity of ( )O m n+ . We present an apparently simpler cut 

criterion based on Average cut [17] which costs less running-time. 

2 E_FEC Algorithm 

2.1 Improved FC Phase 

The FC phase adopts an agent-based approach to model the problem of finding the group that contains a 

specific node for graph. An imaginary random walker walks freely from one node to another, following 

the links of a given graph. The walker’s route can be viewed as a stochastic process defined based on the 

links’ attributes. In particular, when the walker arrives at a node, it will select one of its neighbors at 

random and then go there. Let { , 0}
l

X X l= ≥ denotes a random walk series. Let { ,1 }
l l l

P X N N n= ≤ ≤ be 

the probability that the walker will arrive node
l

N after going exactly l  steps. X is a discrete Markov chain 

if we have: 

 
0 0 1 1 1 1 1 1

{ | , ,..., } { | }
l l l l l l l l

P X N X N X N X N P X N X N
− − − −

= = = = = = = . (1) 

Let Pi→j be the probability of the agent walking from node i to its neighbor node j . In a weighted social 

network, this probability can be computed as follow: 

 
ij

i j

ijj

W
P

W
→

=

∑
,   (2) 

where
ij

W represents the weight of link <i,j>, ∑jWij is the weighted degree of node i . According to the 

homogeneous Markov chain, we have:  

 
1

{ | }l l i jP X j X i P
− →

= = = .  (3) 

Then, let ( )l

t
P i be the probability that agent starting from node i can eventually arrive at a specific sink 

node t after exactly l steps. The value of ( )l

t
P i can be estimated iteratively by 

 1

,

( ) ( )l l

t i j t

i j

P i P P j
−

→

< >

= ⋅∑ . (4) 

If i t= , then ( ) 1l

t
P i = . The main idea of FC phase is that the random walker starting from nodes within 

the community of the sink node should reach the sink node more easily within l steps since more paths 

can be chosen. Therefore, the random walk will hit the sink at a high probability if it is within the sink 

community. Otherwise, the probability will be very low. However, ( )l

t
P i can not indicate whether there 

exist more paths between two nodes when the length of paths are smaller than l . To solve this problem, 

we calculate
,

l

i t
T to denote the accumulative transition probability between the sink node and node i , which 

is defined as: 

 '

, ' 1
( )

ll l

i t tl
T P i

=

=∑ . (5) 

Based on the above analysis, given a sink node t and its corresponding community
t

C , we have: 

 
, ,

l l

i t k t
T T> , for ,

t t
i C k C∈ ∉ . (6) 

Correspondingly, the steps for improved FC phase can be designed as follows: 



Journal of Computers Vol. 28, No. 5, 2017 

73 

Step 1  Specify a node t as the sink node;  

Step 2  Calculate
,

l

i t
T for each node i in terms of the sink node t ; 

Step 3  Rank all nodes according to their associated value
,

l

i t
T . 

Based on the above steps, we should extract the community of the sink node by dividing the sequences 

of nodes during the EC phase to be introduced in Section 2.4. The algorithm for calculating accumulative 

transition matrixT is given as follows: 

 

Algorithm1  Computing accumulative transition matrixT  

Input:   W, the adjacency matrix of a network;  

t, sink node;   

l , number of steps; 

Output: 
,

l

i t
T , accumulative transition probability; 

1 for i=1:n 

2   
0 ( ) 0 1
t i t i t
P i I I

≠ =
= ⋅ + ⋅  ; 

3 end; 

4 for 'l =1: l  

5    for i=1:n                    

6     
' ' 1

,

( ) ( )
ijl l

t t

i j ijj

W
P i P j

W

−

< >

= ⋅∑
∑

; 

7    end; 

8 end; 

9 calculate
,

l

i t
T for each node i according to Eq. (5); 

10 return
,

l

i t
T ; 

2.2 Determining the Sink Node 

The network constituted by community C1 and C2 is shown in Fig. 1, where node 5 and node 6 are the 

border nodes of C1 and C2. Yang et al. did not provide the theory demonstration for the selection of sink 

node, which was randomly chosen in the literature [17]. Fig. 1 gives an example to show that whether the 

selection of sink node will influence ( )l

t
P i . As shown in Fig. 1, the simple network contains two 

communities. When we set node 5 as the sink node, node 6 would have higher probability of eventually 

arriving at the sink within l ( 3l = ) steps than node 1 (mathematically speaking,
6,5 1,5

l l
T T> ). This means 

that node 6 has higher probability to be clustered in the group that node 5 belongs to. However, when 

node 3 is set as the sink node, node 1 would have higher probability of eventually arriving node 3 

(mathematically speaking,
6,3 1,3

l l
T T< ), which conforms to the real community structure. 

 

Fig.1. A simple network 

Table 1 shows the detecting results on two social networks by selecting different nodes as sink node. 

The definition of Ncut can be seen in Section 3.2. This result indicates that different sink node would 

influence the effectiveness of community detection. Selecting nodes with lower degree obtains better 

performance than selecting nodes with higher degree. It is obvious that the node with minimum degree 

has low probability to be border nodes of one community. If we select the node located at the boundary 
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between communities as sink node, the agent that starts from nodes outside the community will have a 

much higher probability of eventually arriving at the sink. Thus, it would be better to select sink node by 

avoiding these nodes. Radicchi [18] concluded that the edges connecting nodes in different communities 

are included in few or no triangles. On the other hand, many triangles exist within clusters. Based on this, 

we propose a method of automatic sink node selection, which is listed as follows: 

Step 1 Compute the degree of all nodes
i

d in network G. 

Step 2 Let argmax
i i

r d= , argmin
i i

k d= . If
r

d =2, then set the node r as the sink node; If 
k

d =1, then 

set node k as the sink node; else go to Step 3. 

Step 3 For each pair of nodes ( ,m n ), compute the number of triangles or rectangles ( , )m nN containing 

m and n . 

Step 4 Let ( , ) ( , )( , ) argmax m n m nu v N= , then randomly select the destination node t from{ , }u v .  

In Step 2, it is easy to prove that the network G is presented as lines or circles when
r

d =2. Thus, it is 

reasonable to set node r as the destination node. When the degree of node k is 1, it will certainly not 

connect the nodes in other communities. 

Table 1. The results of community detection by selecting different sink nodes 

Sink node Dolphin (Ncut) Football (Ncut) 

Sink = 1 1.4593 5.7039 

Maximum degree 1.9684 4.8796 

Minimum degree 1.4059 4.0781 

2.3 Determining the Number of Random Walk Steps 

Given a sink node t , how can we determine a reasonable l such that we have
, ,

l l

i t k t
T T> , for 

each
t

i C∈ and each
t

k C∉ . In our paper, we estimate the value of l by a preset error that can explicitly 

measure the distance between transition probabilities and their limitations. Mathematically speaking, 

given a preset error thresholdε , to obtain a reasonable l is to satisfy: 

 ( )lerror ε< . (7) 

We define: 

 

( ) ( ) lim ( )

( ) lim ( )

( ) lim ( )

l li

l t t
l

i t

l li i

t t
l

i t t

l l

i i
l

i

d
error P i P i

d

d d
P i P i

d d

P t P t

→∞

→∞

→∞

= −

= −

= −

∑

∑

∑

. (8) 

As indicated, { , 0}
r

X X r= ≥ denotes a random walk series, and lim ( )l

t t
l

P iϕ
→∞

= . Because X is ergodic, 

according to the limit theory of Markov chain, X will have a unique stationary 

distribution
1 2

( , ,... )
n

ϕ ϕ ϕΨ = (also known as limit distribution), which satisfies PΨ = Ψ , where P is one-

step transition probability matrix. It is easy to verify that:   

 lim ( )l t

t t
l

kk

d
P i

d
ϕ

→∞

= =

∑
. (9) 

Thus, we have: 

 ( ) ( )l i

l i

i kk

d
error P t

d
= −∑

∑
, (10) 
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where k kjj
d W=∑ is the weighted degree of node k . In our experiments, we iteratively calculate the error 

function given by Equation (10) until the value is below a preset error. 

2.4 Improved EC Phase  

The density of links is a very important criterion used for clustering networks. To take into account the 

link density, a number of criterion functions have been proposed for networks, such as average cut, 

normalized cut [17]. In graph theory, a cut corresponding to a bipartition of a network with the node 

setV is defined as:  

 

1 2
1 2 ,

( , )
iji V j V

cut V V W
∈ ∈

=∑ , (11) 

where
ij

W is the weight of the edge <i,j>. In this paper, we define the cut as follows: 

 
1 2 1 2

1 2 , ,
'( , )

ij

i ji V j V i V j V
ijj

W
cut V V P

W
→

∈ ∈ ∈ ∈

= =∑ ∑
∑

. (12) 

  The optimal bipartition of a network is the one that minimizes the cut value, which is also called the 

minimum cut. In some cases, minimum cuts will lead to unnatural biased clustering results, where some 

partitions are simply isolated nodes. To alleviate this problem, the average cut has been proposed, which 

computes the density of links, and is defined as: 

 

1 2 2 1

1 2

1 2

'( , ) '( , )
( , )

| | | |

cut V V cut V V
Acut V V

V V
= + . (13) 

As indicated, if 
1 2

( , )V V  is a “good” bipartition of communities, the Acut should be very small. Based 

on the sorted node list from FC phase, the main step of our EC subroutine is to calculate Acut for each 

possible cut through a top-down sorted node list, which is more simple than original EC phase. A 

smaller
1 2

( , )Acut V V indicates a better bipartition. Thus, the steps of our EC phase can be designed as 

follows: 

Step 1 Calculate
1 2

'( , )cut V V for each position by top-down; 

Step 2 Calculate the Acut for each position;  

Step 3 Find the best cut position x that produces the local minimum value of Acut;  

Step 4 
2

V V= , and return to Step 1. 

Then, we define
1 1

( , )Acut V V to denote the probability of a random walker being trapped in set
1

V or
2

V . 

 

1 1 2 2

1 2

1 2

'( , ) '( , )
( , )

| | | |

cut V V cut V V
Acut V V

V V
= + .  (14) 

It is obvious that
1 2

( , )Acut V V will be less than
1 2

( , )Acut V V when a network can be divided into two 

communities, otherwise, there is no community structure in the network and no further division is 

required. Based on this, a reasonable criteria to stop EC phase is: 

 
1 2 1 2

( , ) ( , )Acut V V Acut V V≥ . (15) 

We apply it to two real networks, Dolphin Network and American College football. The clustering 

result from this method is identical to the results from original EC phase. However, the method based on 

Acut has the advantage in time complexity. Original EC phase will take ( )O m n+ time, where n and m 

correspond to the numbers of nodes and the links of the network, respectively. The method based on Acut 

needs to calculate the
i j
P

→
on edges between different communities for each cut, which only 

takes ( )O n time. 
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3 Experiments 

3.1 Data Sets 

We apply our algorithm to the following real-world networks:  

(1) Dolphin network, an undirected social network of frequent associations between 62 dolphins in a 

community living off Doubtful Sound;  

(2) US college football network, which consists of 115 college teams represented as nodes and has 

edges between teams that played each other in the year 2000;  

(3) Polbooks network, which consists of 105 vertices and 441 edges, represents a network of U.S. 

political books; 

(4) Herbal network, which contains 642 edges and 332 vertices (herbs), represents the relationships 

among Chinese herbs. The network is created by ourselves based on combinational rule mining (see Fig. 

2). All of these herbs are classified manually into 49 categories according to TCM (Traditional Chinese 

Medicine) expert.                  

 

Fig.2. Herbal network 

Most previous algorithms perform well on networks with good community structure, but perform poor 

on the network whose community structure is not well defined. Thus, we use the herbal graph, a not well 

defined network in community structure, to demonstrate whether our method is sensitive to the structure 

of networks. 

3.2 Evaluation Measures 

Two evaluations are considered, that are NMI (Normalized Mutual Information) and Ncut. NMI is used 

to evaluate the effectiveness of our proposed algorithm on randomly created network, and the Ncut are 

applied to the evaluation of group detection quality over real-world graphs. 

NMI is currently very often used in tests of community detection algorithms based on information 

theory. Let M and N be two partitions, given a community i in M and a community j in N , 

let M

i
n , N

j
n , MN

ij
n be the sizes of community i , community j and their intersection, respectively, M

k , N
k be 

the numbers of communities inM and N . The closerM is to N , the larger NMI to be obtained. NMI is 

defined as: 

 

1 1

1 1

2 log( )

log( ) log( )

M N

M N

MN
k k ijMN

ij M Ni j
i j

NM
k k jM Ni

i ji j

n n
n

n n
NMI

nn
n n

n n

= =

= =

−

=

+

∑ ∑

∑ ∑

. (16) 
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NCut is objective of the normalized cut algorithm. Given a group partition
1 2

{ , ,..., }
k

C C C C= , the 

normalized cut is defined as： 

 

1

1

( , )
( ,..., ) (9)

i

K
i i

k

i pqp C q

Cut C C
NCut C C

W
=

∈

=∑
∑ ∑

, (17) 

where 
i

C denotes the set of nodes that are not in
i

C and 

 

,

( , )
i i

i i pqp C q C
Cut C C W

∈ ∈

=∑ .  (18) 

Obviously, the smaller the value of NCut is, the better the partitioning quality becomes. 

3.3 Overall Performance 

To demonstrate the effectiveness of our method, we conduct two kinds of clustering methods. The first 

kind is based on Kmeans, and the second kind is based on different graph detection algorithms, such as 

original FEC, E_FEC, GN, CNM (Clauset-Newman-Moore) and MCL. Original FEC algorithm 

randomly select the sink node to calculate transition probability.  

Clustering performance on randomly created networks. LFR benchmark was proposed by 

Lancichinetti et al. [20] to synthesize random networks with predefined community structures and power-

law distributions. The model is defined as: 

 
1 2

( _ , _ ,max_ deg , , , )LFR Num nodes average k ree e e µ
. (19) 

where _Num nodes denotes the total number of nodes, _average k andmax_deg ree are average degree, 

maximum degree, respectively.
1
e and

2
e are the exponent of the degree distribution and community size 

distribution, respectively. Mixing parameters µ is defined as the fraction of all edges going from a node 

that connect it to other communities. Communities are well defined when µ gets small. In our experiment, 

parameters for the model are set as follows: (500,20,40,1,1, )LFR µ .  

Fig. 3 shows the results of our analysis. Each point of every curve corresponds to an average over 10 

realizations of the network. The variable on x-axis is the mixing parameter µ , the value on y-axis denotes 

NMI. As shown in Fig. 3, the difference among the performance of the algorithms is remarkable. Most 

methods start to fail when µ is close to 0.5. Compared with FEC, modularity-based methods (GN, CNM) 

perform poor, due to the well- known resolution limit problem. Among the random walk based methods 

(MCL, FEC and E_FEC), FEC and E_FEC obviously perform better than MCL. E_FEC performs best 

when 0.3µ > . The performance shows that E_FEC is a stable and robust algorithm even the network 

does not define good community structure. 

 

Fig. 3. Tests of algorithms on LFR benchmark 
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Clustering performance on real-world network. Firstly, we present the group detection analysis on 

three networks by E_FEC, FEC, MCL, GN and CNM. As shown in Fig. 4, the performance shows that 

compared with GN and CNM, the FEC algorithm slightly improves the performance of group detection 

for most of networks. Moreover, E_FEC obtains better performance compared with other random walk-

based algorithms. 

  

(a) Ncut (b) NMI 

Fig. 4. Ncut and NMI obtained by five algorithms on three networks 

Secondly, we discuss on the situation that whether our proposed clustering method performs better 

than traditional data clustering algorithm on the herbal network that does not have good community 

structure.  

Note that GN and CNM should transform the weighted herbal graph to the unweighted one. As for the 

herbal clustering based on Kmeans, we construct an attribute vector for each herb. Let
1 2

{ , ,..., }
n

X X X=X be 

a set of attribute vectors of nherbs. Then, the K-means algorithm partitionsX into k clusters. 

As shown in Table 2, it is obvious that the clustering performance of community detection algorithms 

(GN, CNM, FEC, MCL and E_FEC) is better than Kmeans. With respect to NMI measure, E_FEC 

performs best and achieves an increase of 0.118 compared with FEC. As shown in Fig. 5, the algorithm 

partitions the network into two clusters, which is consistent with the original group number. Other 

algorithms all partition the network into more than 2 clusters. As shown in Fig. 6, a total of 35 groups are 

detected by our E_FEC algorithm, and each detected group is located in a block with the nodes given the 

same color and shape. We can learn from the result that there are many edges within each group and 

relatively few between the groups. The method can effectively cluster some herbs with intensive 

connection.  

Table 2. Herbal clustering results from different algorithms 

Methods NMI Ncut Cluster Number 

Kmeans 0.472 7.139 38 

GN 0.492 4.876 39 

CNM 0.494 4.915 35 

MCL 0.464 4.429 34 

FEC 0.417 3.807 35 

E_FEC 0.535 3.641 35 
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Fig. 5. Groups detected by E_FEC on dolphin network    

 

Fig. 6. Groups detected by E_FEC on herbal network 

In general, the proposed E_FEC in our paper can definitely improve the performance compared with 

original FEC algorithm and several traditional algorithm. E_EFC is not sensitive to the structure of 

networks and needs no prior knowledge on the community structure (for instance, the number of 

communities or a good initial partition). Only one parameter (the step length l ) is required in the 

improved FC phase. 

Actual-time performance. We recorded the actual computational time needed for analyzing the 

networks. We ran the experiments on a computer with a CPU of 2.4 GHz, and the memory size is 8 

Gbytes. The operating system was Windows 7, and the simulation was implemented and tested using 

Matlab 2012a. We repeated FEC and E_FEC 10 times for each network, and the averaged computational 

time taken was shown in Table 3. 
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Table 3. Actual running time of two algorithms on different networks 

Running time(seconds) 
Networks 

FEC E_FEC 

Football 0.1136 0.1153 

Dolphin 0.0311 0.0313 

Herbal network 0.3373 0.3242 

Random network( 3(10 )O nodes) 2.3431 2.1894 

Random network(O(104) nodes) 32.785 26.512 

 

Based on Table 3, we note that when two methods are applied to real network with no more 

than 2(10 )O nodes, the running time is almost the same. Compared with FEC, it is clear that E_FEC uses 

less running time when applied to random network with more than 3(10 )O nodes. 

4 Conclusions 

This paper explores the defect of FEC algorithm and then extends it to E_FEC with several 

improvements on both FC phase and EC phase. Its performance with respect to effectiveness and 

efficiency has been validated by comparing it with other traditional methods against both synthetic and 

real-world networks. Experimental results show that E_FEC is able to achieve a good trade-off between 

effectiveness and efficiency, typically on herbal network that do not have good community structure. The 

method effectively produces a list of groups of functionally related herbs. The identification of herbal 

groups allows researchers find some similar herbs for their further study. However, E_FEC has its own 

disadvantages. Our method can not solve problems that identify communities of dynamic network which 

consists of a series of network snapshots. Also, during FC phase, the number of random walk steps has to 

be determined by iteratively calculation, which is inconvenient to conduct large-scale network analysis. 

In our future work, we will focus on how to use E_FEC approach to further address, besides 

identifying communities from social networks, problems in other related domains such as big data 

mining on social network, group behavior mining. Additionally, with respect to the result of E_FEC, 

there may have several detected groups with large scale. For future work, we will focus on exploring 

adaptive algorithms to further subdivide large groups. Furthermore, the random walk scheme should be 

improved for detecting dynamic structures in some popular social networks.  
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