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Abstract. In this paper, we propose a hierarchical multi-class classification approach which is 

optimized for single yaw damper fault problems. This novel approach associates with an original 

process of fault detection and localization which is arranged into support vector machine (SVM) 

with binary tree architecture. In fault detection, the developed method based on concatenated 

One-Against-One SVMs can significantly reduce the miss rate. Then, the hierarchical structure 

is built via iteratively partitioning the car bogie structure during fault location. This algorithm is 

very appealing as it takes advantage of the decision tree architecture and of SVM. Furthermore, 

the selection of error penalty factor C  affects the precision of SVM due to its ability to avoid 

over fitting. In this paper, the Bayesian error estimator (BEE) which describes the error in a 

Bayesian framework is applied to obtain the optimal value of C . The effectiveness of this 

approach is illustrated experimentally on CRH3 EMU vehicle system. 

Keywords: Bayesian error estimator, fault diagnosis, hierarchical classifier, yaw damper  

1 Introduction 

When High-speed Electric Multiple Units (EMU) is running in high speed, the working state of yaw 

damper is closely related with the vehicle stability and safety [1-2]. Furthermore, the yaw damper fault 

may cause the train derailment accident. CRH3 EMU bogie yaw damper adopts redundant design, 

namely each bogie with four yaw dampers. The present studies for yaw damper mainly focus on 

performance optimization. However, the fault analysis for it is less concerned [3-4]. For yaw dampers, 

the oil spill and joints aging are the most common of failures [2, 4]. In the actual operation of High-speed 

train, the fault of single yaw damper frequently occurred which will lead to uneven distribution of the car 

body’s torque [2]. Thereby, fault diagnosis for yaw damper is an import process which can avoid serious 

damage and accident during practical operation. And a fault diagnosis of yaw damper should be 

researched. In a smart structure, the fault diagnosis is classically decomposed into four steps: detection, 

location, quantification and prognosis [5-7]. Therefore, a machine condition monitoring system can be 

effectively used as a part of decision support tool. In this paper, we address the detection and location of 

single yaw damper fault. 

For multi-class classification problem, lots of classifiers are available, namely, artificial neural 

network (ANN), Bayes Net (BN), decision tree, support vector machines (SVM), etc. [5]. Moreover, 

SVM is a state-of-the-art machine learning algorithm due to its high accuracy and good generalization 

ability [6, 8]. Several methods have been proposed to solve multi-class problems with SVMs, such as 

One-Against-One (OAO), One-Against-All (OAA) and Direct Acyclic Graph (DAG) SVMs. Ensemble 

empirical mode decomposition (EEMD) and SVM were applied in feature classification of high-speed 

train bogie [3]. Statistical features and SVM were applied in fault diagnosis of automobile hydraulic 

brake system [8]. The power quality classifier based on wavelet trans-form and SVM was researched [9]. 

However, for all above method, too many binary SVM need to train and test. Recently, the hierarchical 
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structure method has been researched [10-13]. It employs binary SVMs step by step according a 

hierarchical structure. The hierarchical classification performance can depend on the tree structure where 

the root node includes all classes, and each sub-node contains the partial classes’ information and 

classifier. As we all know, the selection of error penalty factor C  affects the precision of SVM. For each 

binary SVM model, the best value of penalty factor C  is selected by cross-validation (CV) [14]. 

However, in this paper, it’s selected by Bayesian error estimator (BEE) which describes the error in a 

Bayesian framework [14-16]. 

With the advantage of hierarchical multi-class classifier and considering the characteristics of 

vibration signal for yaw damper under fault condition, this paper proposes a fault diagnosis method based 

on the hierarchical structure which is arranged into SVM with binary tree architecture. There are two 

major scientific contribution of this paper. First, the developed method based on concatenated One-

Against-One SVMs is put forward to judge whether the system is fault or not during fault detection. 

Second, the hierarchical multi-class classifier based on decision tree architecture and SVM is built via 

iteratively partitioning the car bogie structure. 

To evaluate the effectiveness of this fault diagnosis approach applied in this special case, the 

manuscript is carried out as follows: Section 2 describes the related works including SVM, hierarchical 

structure, BEE and the key research problem. Section 3 introduces the vibration datasets and feature 

extraction methods. Section 4 are experiments and results analysis. Some useful conclusions and further 

work are drawn in the last sections. 

2 Related work 

2.1 Support Vector Machines 

Classic support vector machine is a set of supervised learning methods which is an effective 

classification method. It is binary classification technique which constructs a hyper-plane or set of hyper-

planes in a high or infinite dimensional space. This hyper-plane has the largest distance to the nearest 

training data points of any class (so-called functional margin) [8-9]. 

Give a set of training samples ( , ), , { 1,1}, 1, ,n

i i i i
X y X y i m∈ℜ ∈ − = � . SVM requires to solve the 

following constrained optimization problem (1) on a set of training samples. 

 

1

1

1
max ( , )

2

: 0

0 , 1, ,

m m n

i i j i j i j

i i j

m

i i

i

i

y y X X

subject to y

C i m

α

α α α κ

α

α

=

=

−

=

≤ ≤ =

∑ ∑∑

∑

�

 (1) 

where C is the penalty factor. In SVM, kernel function ( , )
i j

X Xκ  can be used to map original datasets to 

kernel space where it might be easier to separate. It has both linear and nonlinear version according to the 

type of kernel function. A SVM classifier will label a new unknown point X utilizing the following 

decision function (2). 
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where the 
i

α  and 
0

w  are the optimal hyper-plane parameters. As stated before, the penalty factor C  is to 

admit some misclassified points in the training set to prevent the over fitting problem. C  can take values 

in the range 0 C< < ∞ . A small C  means a very flexible classifier. On the opposite, a high value C  

means a strict classifier. If C = ∞ , it becomes a hard classification. In this paper, factor C  is selected by 

BEE. 
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2.2 Hierarchical Structure Using Binary Decision Tree 

As described before, a new approach called hierarchical classification approach has been studied in 

recent years. According to literature [12-13], hierarchical classification approach differ in three principal 

criteria. The first criterion is the type of hierarchical structure: DAG or Binary Decision Tree (BDT). The 

second criterion is how deep the classification in the hierarchy is performed: mandatory leaf-node 

prediction, non-mandatory leaf-node prediction. The last criterion is how the hierarchical structure is 

explored: top-down, Big-Bang, or only predicts the leaf nodes.  

In this paper, we proposed a hierarchical multi-class classifier using binary SVMs. This method is 

arranged into a BDT structure [10]. In the tree structure, the tree is created such that the classes at each 

parent node are divided into two clusters, one for each child node. This process continues until the leaf 

nodes contain only single class. The top-down approach is applied to explore tree structure. In order to 

build the tree, at each node the remaining classer are separated in two subgroups. A SVM classifier 

decides to which subgroup the new point belong to. 

The hierarchical multi-class classier components are:  

Node. A root node contains all k  classes’ information. Leaf nodes represent only one class, and it is 

located at the end level. Internal nodes are not only the sub-node of upper layer, but also the parent node 

of next layer. 

Level. This BDT structure has layers. A layer is represented by a level ( 0,1, , ( 1) 2)n n n k= = −� . There 

is only a root node at the top-level ( 0)n = . There are k  leaf nodes at the bottom level ( ( 1) 2)n k= − .  

Arc. Tree building for learning and tree exploration for classification are performed in top-down 

direction. All nodes in BDT are connected by arcs. 

2.3 Bayesian Minimum Mean-square Error Estimator 

The optimal value of C  is traditionally selected by cross-validation (CV). A more recent approach, the 

Bayesian minimum mean-square error estimator for classification error describes the error. In literature 

[14-15], the Bayesian error estimator (BEE) can be more accurate than CV. In this paper, we will apply 

the BEE method to select the parameter C of SVM model. The classification errors are estimated directly 

from the training data, and splitting operations are not required. The BEE will be briefly introduced in 

this section.  

Consider a binary classification problem with labels {0,1}y∈ , where from each class has 
y

n  samples 

points, , 1, ,
y

i y
X i n= � . We assume a parametric model assigning class y  an unknown parameter

y
θ , 

which defines a class conditional distribution ( | )
y

f X y
θ

. Given a prior probability ( )
y

π θ , the posterior 

distributions *( )
y

π θ  for the parameters are given by (3)  
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where the constant of proportionality is found by normalizing the integral of *( )
y

π θ  to 1. When the prior 

probability is proper, this follows from Bayes’ rule; If ( )
y

π θ  is improper, this is taken a definition. Let c  

(differ from the penalty factor C ) be the a priori probability for class 0, and let y

n
ε be the error 

contributed by class y  on some classifier [16]. Assuming c , 
0

θ  and 
1

θ  are independent, the BEE is given 

by (4)  
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and 
*
[ ]E c

π

 is found according to our prior model for c  when the prior probabilities are improper, this is 

called the generalized BEE.  

In order to evaluate the integral (5), we assume Gaussian class-conditional densities ( | )
y

f X y
θ

 for the 

data. The parameters of the Gaussian model describe the feature label distribution and denoted by 

{ , }
y y y

θ μ= ∑ , where 
y

µ  is the mean with a parameter space, and 
y

∑  is the covariance matrix. 

Considering one class at a time, we assume 
y

∑  is nonsingular. In literature [16], the priors of the form 

(6):  
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where κ  is a real number, S  is a non-negative definite D D×  matrix, 0ν ≥ is a real number, and m  is a 

length D  real vector. 

In this paper, we assume that 1

y

−

∑  are general covariance matrices. In this case, *( )
y

π ∑  is an inverse-

Wishart distribution (7): 
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where 
D

Γ  is the multivariate game function. The BEE can be obtained as formula (8):  
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where 

 

*

*

*

( 1) (( ) )
1

y
A g m

ν

ν

= −

+

 (9) 

where ( ; , )I x a b  is the regularized incomplete beta function (10): 
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2.4 Classification Using Hierarchical Multi-class Classifier 

In this section, the key research problem of this paper will been described. In section 2.2, the hierarchical 

structure has been described in detail. The hierarchical structure can be built by many different criteria 

which is one of key study. Genetic algorithm [11, 13] and Euclidean distance [12] have been applied to 

build structure. Considering the bogie has strict geometric structure, therefore, the hierarchical structure 

will be built by partitioning the car bogie structure. Let us consider a whole vehicle model which is 

divided into 8 sub-parts according to 3 forms of axes in Fig. 1. In this special case, 9 classes are 

considered: the 8 different positions single yaw damper fault (class 1-8) and the normal working 

condition (class 0). The first step of the tree is the detection step, where the classifier is to judge whether 

the system is fault. Then decisions are taken recursively to localize it, if a fault is detected. 

In this part, we will pay attention to multi-class classification problems, i.e., classification using 

hierarchical structure. In the Fig. 1, the whole vehicle model is divided into 8 zones which represent 8 

working conditions by 3 forms of axes. So, the hierarchical structure of BDT is illustrated in Fig. 2. The 

structure of BDT is mainly composed of two parts: fault detection and fault location which will be 

introduced in next section. 
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Fig. 1. The position of yaw damper in the bogie 

 

Fig. 2. Hierarchical structure 

Fault detection. In practical application, we should first carry out fault detection to judge whether the 

system is fault or not. In the first step, we present a novel approach, aiming to identify the normal 

condition. Fig. 3 shows the developed classifier. The eight OAO binary SVM models are concatenated. 

And each one is that normal compared with one kind of fault working condition. Each node of this novel 

approach is parallel to each other. And they are also independent. This structure mainly includes two 

steps: 

SVM 1

+1: normal

-1:Bg1L1

SVM 2 SVM 7……

Feature Vector

+1: normal

-1:Bg1L2

+1: normal

-1:Bg2R1

+1: normal

-1:Bg2R2

SVM 8

 

Fig. 3. Fault detection with OAO binary SVM 

(1) Step 1: Training step, each OAO SVM model will be trained by normal and each fault condition’s 

data in turn. 

(2) Step 2: Decision step, a new unknown vector X  will be predicted 8 times by each SVM model. 

Then all predicted labels will be summed. At last, if 8sum = , the new vector is normal or fault (we don’t 
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need to know what kind of fault). 

Multiple OAO SVM combination method can effectively avoid the phenomenon of deviation of hyper-

plane. The purpose is to reduce the missing sample in the first step. It is difficult to find the optimal 

hyper-plane when all fault conditions are taken as negative samples and the normal as positive samples. 

On the contrary, it is easier that 8 decision functions will be achieved than the optimal one. 

Fault location. The fault location is a BDT structure which takes advantage of both the tree architecture 

and SVM. Utilizing this architecture, ( 1)N − SVMs needed to be trained for a N  class problem, but only 

2
log N  SVMs are required to be consulted to decide a unknown sample. At each node of tree, a decision 

is made about the multi-class information by transferring the sample to the left or to the right sub-node. 

According to the whole vehicle model shown in Fig.1, the fault location experiments include three 

steps. The first step is fault location between first and second bogie. All fault working conditions of first 

bogie will be as positive samples (class 1-4). On the contrary, the second bogie’s conditions as negative 

samples (class 5-8). In next, fault location between right and left are conducted on the first bogie (class 1, 

2 vs. class 3, 4) or the second one (class 5, 6 vs. class 7, 8). Finally, we will location which yaw damper 

has fault, .i.e., leaf nodes represent only one class which represents the 8 different positions single yaw 

damper fault. 

3 Data Source and Features Extraction 

3.1 Data Source 

The simulation data is achieved using the nonlinear dynamic model of EMU vehicle system which is 

established with multi-body dynamics analysis software (SIMPACK). LMA wheel tread and CN60 rail 

are applied in dynamic model, and inner moment of wheel chooses China standard. Nonlinearity of 

wheel/rail contact, wheel/rail creep and suspension are taken into consideration. The vehicle model is 

constituted with one carbody, two bogie frames, four wheelsets, eight tumblers and two traction rods. 

The track excitation spectrum which was measured in Wuhan-Guangzhou passenger line is adopted 

during simulation experiment. 

From the Fig. 1, there are eight yaw dampers of the whole vehicle. In this paper, 9 working conditions 

are researched for eight yaw dampers including normal, first left yaw damper of first bogie fault, second 

left one of first bogie fault, etc. The running speed of vehicle is 200 1
km h

−

⋅  under each working 

condition. The vehicle is run for almost 10.0 min,  and the frequency of sampling is 243 .Hz  The 

vibration data of 58 channels can be gained from the whole vehicle model. 

3.2 Features Extraction 

Both ends of yaw dampers are respectively installed on the vehicle body and bogie frame. There are 18 

channels in total on the vehicle body and bogie frame. Therefore, these 18 channels data are employed 

during next experiments. The sensors data mainly include vibration displacement and acceleration. The 

original signal is processed with following settings: (1) Sample length: To strike a balance, the number of 

samples is taken as 1024. (2) Number of samples: Since the vehicle is run for almost 10.0 min,  142 

samples are taken for each working condition. Owing to limitations of space, Fig. 4 shows the part 

samples’ time domain signal got from section 3.1. 

In order to obtain the potential useful information, the 18 channels data are analyzed in the time 

domain, frequency domain and time-frequency domain. In the sequel, features are made up of three parts: 

dynamic performance indices, statistical parameters, and wavelet energy moments. 

Dynamic performance indices. Some typical dynamic performance indices are selected as the part of 

feature vector. They are mean square deviation and Sperling indices. Passenger car’s Sperling indices can 

be obtained by formula (11). 

 

3

0.10.986[ ( )]
A

W F f
f
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Fig. 4. Vibration signal of a single sample of various working conditions 

where f is vibration frequency, A is vibration acceleration, and F  is correction factor. Sperling indices 

of first two channels are computed in formula (13). 

Statistical parameters. The statistical parameters are widely adopted for pattern recognition. Mean 

value, standard deviation, peak-peak value, peak value, mean square amplitude, root mean square, 

average amplitude, skewness factor, kurtosis factor, shape factor, peak factor, impuls factor, clearance 

factor, gravity frequency and frequency variance are extracted from the vibration signals. 

Wavelet energy moments. In literature [3], the 3 layer wavelet packet transform and reconstruction were 

performed on the original signal ( )x t . Then, the energy moment of third layer mth  frequency band signal 

3
( 1, 8)

m
S m = �  can be computed through Eq. (12).  
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where tΔ  is sampling time interval, N  is total sampling points, and m  is order number of frequency 

band. 

The whole vehicle is a unique system, we should analysis as a whole no matter what working 

condition. Given that each channel contains different parts of information, the signals are concatenated 

come from each channel. In this way, a 434-dimensional feature vector is obtained.  

 

1 1 1 2 1 1 24 1 1 18 24 18
[ ( ), ( ), ( ), ( ), , ( ), ( )] {1, }
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where first two features are Sperling indices. 
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4 Experiments and Results Analysis 

The fault diagnosis of the single yaw damper fault is taken up. The hierarchical approach is used with the 

features vector and C-SVMs. The 5-fold CV is adopted during the experiments and the number of 

training samples and test samples is listed in Table 1. In our work, we use the Python and sklearn to 

implement the hierarchical structure and C-SVM.  

The C-SVM is trained using linear, RBF, Sigmoid and polynomial kernel functions. Kernels are 

compared with the accuracy while they are used for multi-class classification. For different kernel 

functions, the average classification accuracy of C-SVM is shown in Table 1. The penalty factor C is the 

default value (0.001). 

Table 1. Average classification accuracy of hierarchical approach 

 Type of kernel function Training samples Test samples Average accuracy (%) 

1 Linear 1026 252 91.18 

2 RBF 1026 252 72.22 

3 Sigmoid 1026 252 34.87 

4 Polynomial degree 1 1026 252 65.08 

5 Polynomial degree 2 1026 252 55.95 

6 Polynomial degree 3 1026 252 41.80 

 

Among all other kernel functions, the linear kernel for C-SVM obtains the best classification accuracy 

(91.18%). We can get the same conclusion as literature [16]. Due to a small number of training samples 

(compared to the data dimensionality), linear classifiers may outperform in such cases. Owing to that the 

highest average accuracy (91.18%) is gained with the linear C-SVM, the linear C-SVM model is mainly 

adopted in the following section. 

4.1 Fault Detection Experiment 

From section 2.4, fault detection is binary classification problem. Normal working condition’s samples 

are positive sample, and fault samples as negative. In this section, some typical algorithms are chosen to 

compare with the proposed algorithm. The linear kernel function is selected during experiments and the 

penalty factor C is the default value. The experimental results are the average value of repeat 20 times. 

The 5-fold CV is adopted during the experiments 

From Table 2, the other algorithms have emerged the phenomenon of deviation of hyper-plane. On the 

contrary, proposed algorithm in this paper have get much better results. Two fault sample is incorrectly 

identified as normal. The result in Table 2 proves that the miss rate of the hierarchical structure is fairly 

low. 

Table 2. The result of fault detection 

 Type of classifier True positive rate (%) True negative rate (%) Accuracy (%) 

1 KNN 53.57 89.73 85.71 

2 BP neural network 50.00 93.30 88.49 

3 Binary SVM 53.57 98.21 93.25 

4 Proposed algorithm 92.86 98.66 98.01 

4.2 Fault Location Experiment 

The 8 different positions single yaw damper fault means that 8 different kinds of samples need to be 

processed. In other word, fault location experiment is a classical multi-class classification problem. In 

this section, some methods that have been proposed for solving multiclass problems with SVMs 

compared with hierarchical multi-class classifier which been put forward in this paper. The results that 

are the average value of repeat 20 times is shown in Table 3. 
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Table 3. The result of fault location 

 Type of classifier Train samples Test samples Accuracy (%) 

1 OAO SVM 912 224 89.74 

2 OAA SVM 912 224 87.49 

3 Proposed algorithm 912 224 91.51 

 

From Table 3, the hierarchical multi-class classifier achieves the better results than other classical two 

multi-class classification. However, the results that get by proposed algorithm are not the ideal. May be 

due to the parameters of the C-SVM model are chosen wrong.  

4.3 Penalty Factor Selection Using BEE 

As all known, the selection of penalty factor C affect the precision of C-SVM. In section 4.1 and 4.2, the 

value of C  is only default. Therefore, some results are not ideal. Next, we will focus on the selection of 

penalty factor C  with BEE approach which is recently introduced in section 2.3. According to the prior 

knowledge, C can take values in the range 5 5
10 10C

−

≤ ≤ . The change step of C  is 0.001. 

Due to the BDT structure is composed with 15 independent C-SVM, the specific value of C vary from 

one model to another. So, the selection of penalty factor will repeat 15 times for each C-SVM. For 

reasons of space, two typical error curves for different factor C  are shown in Fig. 5. 

 

Fig. 5. Error curves for differentC : (a) SVM 3; (b) SVM 10 

Each C-SVM has its own optimal value which is listed in Table 4. From the table, the value of C is 

relatively small which means very flexible classifiers. After the optimal penalty factors are obtained, the 

next job is to retrain the hierarchical structure which composes with linear C-SVMs. And the 5-fold CV 

is also repeated for 20 times. All the other steps are the same as in section 4.1 and 4.2. The average 

classification accuracies for different optimal values’ C-SVM are shown in Table 5. The confusion 

matrix for optimal values’ C-SVM is also presented in Table 6. The hierarchical multi-class classifier of 

optimal values improves by 5% compared with default values. From the Table 6, we can also find that 

only 8 samples are misclassified. And there are no fault sample incorrectly identified as normal. 

Table 4. Optimal penalty factors for different models 

 SVM 1 SVM 2 SVM 3 SVM 4 SVM 5 SVM 6 SVM 7 SVM 8 

Optimal C  0.0012 0.0012 0.0012 0.0005 0.0009 0.0006 0.0012 0.0008 

 SVM 9 SVM 10 SVM 11 SVM 12 SVM 13 SVM 14 SVM 15  

Optimal C  0.0014 0.001 0.001 0.0006 0.001 0.0007 0.0015  
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Table 5. Average classification accuracy for different optimal values’ C-SVM 

 Training samples Test samples Average accuracy (%) 

Default values 1024 252 91.18 

Optimal values 1026 252 96.83 

Table 6. Confusion matrix for optimal values’ C-SVM 

 normal Bg1L1 Bg1L2 Bg1R1 Bg1R2 Bg2L1 Bg2L2 Bg2R1 Bg2R2 

normal 26 0 0 0 0 0 2 0 0 

Bg1L1 0 27 0 0 0 0 0 1 0 

Bg1L2 0 0 28 0 0 0 0 0 0 

Bg1R1 0 1 0 26 0 0 0 1 0 

Bg1R2 0 0 0 0 27 0 0 0 1 

Bg2L1 0 0 0 0 0 26 0 2 0 

Bg2L2 0 0 0 0 0 0 28 0 0 

Bg2R1 0 0 0 0 0 0 0 28 0 

Bg2R2 0 0 0 0 0 0 0 0 28 

5 Conclusion 

In this paper, an original process of fault detection and location experiments on single yaw damper has 

been presented. In order to obtain the potential useful information, dynamic performance indices, 

statistical parameters and wavelet energy moments have been extracted from different working 

conditions. Then, set of 434-dimensional feature vectors were obtained. Moreover, a hierarchical multi-

class classification approach which was arranged into a BDT structure was applied in this special case. 

The structure of BDT was mainly composed of two parts: fault detection and fault localization. This 

algorithm takes advantage of the decision tree architecture and of the C-SVM. From the results presented 

above, this method outperformed other traditional methods. Last of all, we applied the BEE method to 

select the penalty factor C for linear C-SVM. Each C-SVM has its own optimal values which were listed 

in Table 4. 

There are two representative conclusions which are as follows: 

‧The hierarchical multi-class classification approach is a meaningful method as it is consistent with 

basic two steps of fault diagnosis. With each nodes are parallel and independent, it is easier to 

further optimize. Especially in fault detection, the developed classifier based on OAO binary SVM 

can reduce the influence of deviation of hyper-plane. 

‧The BEE method for parameter selection is useful as it uses the prior knowledge and splitting 

operations are not required. From the results in section 4.3, the hierarchical multi-class classifier of 

optimal values improves by 5% compared with default values. 

However, gradual faults occur frequently under practical operation. The slight fault of yaw damper 

will cause fatal accident directly. Fault diagnosis system should also detect the gradual fault of yaw 

damper. In the future, the fault quantification of yaw damper fault will be researched. 
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