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Abstract. Many statistical analyses were implicitly based on the normal distribution, and as a 

consequence, researchers would need to adopt the central limit theorem to perform the 

subsequent data analysis. When applying the central limit theorem, the sample size should be 30 

or above in order to have the sampling distribution of sample means to be approximated to the 

normal distribution. Chang et al. (2006 and 2008) showed that when applying the central limit 

theorem, the sample size should vary depending on the probability distribution type. As a result, 

the present study examined if the sample size suggested by many textbooks for using the central 

limit theorem is appropriate. This study uses computer simulation on approximation of the 

binomial distribution to the normal distribution. It is to explore the minimum sample size 

required for a binomial distribution to approximate the normal distribution and be replaced by 

the normal distribution.  

Keywords: binomial distribution, computer simulation, data analyzing, normal distribution  

1 Introduction 

The normal distribution has a symmetrical bell shape, and it can be used to describe most social, science, 

industrial, and research phenomena. For example, many physical, biological, social, and psychological 

characteristics display a normal distribution. The normal distribution is important because it makes the 

analysis less complicated [24] and moreover, the bell-shaped curve and the symmetrical nature of the 

distribution can be used for the probability model of many types of populations. According to the central 

limit theorem, when the sample size, n > 30, the sampling distribution of sample mean x  will be 

approximated to the normal distribution. In other words, the normal distribution can be used as the 

approximate distribution of many types of samples under the central limit theorem [9]. In real life, there 

are assorted types of probability distribution, such as the unimodal vs. multimodal distributions, the 

symmetrical vs. asymmetrical distributions, the high vs. low skewness distributions, as well as the non-

modal, non-skewed and tailless uniform distribution. While some of probability distributions have a 

normal distribution-like pattern, others may have a pattern that differs greatly from the normal 

distribution pattern. 

In the social science and natural science research domain, there are random experiments that regardless 

of the sample size, there are only two possible outcomes, such as good vs. bad products, effective vs. 

non-effective drugs, head vs. tail of coin tossing, customers’ like vs. dislike of a company’s products, and 

students’ presence vs. absence in a field trip. These random experiments all contain n independent and 

identical trials, and each trial has only two outcomes: success or failure. If the outcome probability of 

each trial is the same, this type of experiment is called a binomial random experiment. An excellent 

example of binomial random experiments from our everyday life is food safety inspection and testing, 

which have caught great attention because of serious food safety concerns in recent years. For this type of 

inspection and testing, there are only two outcomes: pass or fail, and therefore, they can be viewed as a 
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type of the binomial random experiment.  

How large should the sample size n be so that the central limit theorem can be applied appropriately? 

Most of the statistical textbooks or applied researched papers commonly assert that when the sample size 

is larger than 30, the sampling distribution of the sample means x  may be assumed to be approximately 

normally distributed, even if the distribution of the population is unknown [1, 7, 19, 21-23, 25-27, 29-32]. 

Some statistical literature also believes that when the population distribution is continuous, unimodal and 

symmetric, and no matter how small the sample size is, the approximate normality can still be assumed 

[2-4, 28]. Nevertheless, other academic studies have found that in many realistic or in the skewed and 

asymmetric population cases [11-12], a sample size of 30 is not sufficient to implement the central limit 

theorem, and certain misleading conclusions can be produced [5-6, 8]. Therefore, it is quite significant 

for us to investigate the accurate sample size to support the central limit theorem. Namely, is the sample 

size of 30 too large or too small? 

A query search in the Scopus e-database using central limit theorem and sample size as keywords 

returned a total of 327 related articles on the discussion of central limit theorem and sample size in recent 

years. However, most of the articles were discussions of the Kernel Estimator, Entropy, Convergence, 

Markov Chain, Monte Carlo, Covariance Matrix, Martingale, and statistics class teaching and instruction; 

journal articles that truly explored the central limit theorem and sample size are not that many [5-6, 10, 

14]. After further studying these papers, we found that only two articles related to the probability 

distribution. They especially explored the application of the central limit theorem on the sample size of 

Weibull and Gamma distributions, respectively [5-6]. In the present study, therefore, the investigators 

examined the appropriateness of using the sample size suggested by general textbooks for determining 

whether the central limit theorem can be used or not. It was done using the modern computer technology 

to test the minimum simple size and properties required for the means of the binomial distribution to be 

approximated to the normal distribution. The objective of the study was to explore, at 5%, 10%, and 20% 

error levels, the minimum sample size n required for the normal approximation to the binomial 

distribution and to have the binomial distribution replaced by the normal distribution. Figures were also 

produced to provide other fields as reference material when applying the central limit theorem.  

2 Statistical Tests and Simulation Steps 

Under the central limit theorem, if one assumes that the sample mean 
n

X  is the mean of a random 

sample 
1 2
, , ......,

n
X X X  of size n of a population that has a mean of u and a variance of 2

σ  (both greater 

than 0), then when n is close to infinite positive, the random distribution of 
n

X  will become 

approximated to either a normal distribution where the mean is u and the standard deviation is nσ  or to 

the distribution of the standard normal N(0,1). 
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Assume X as a discrete random variable with a probability mass function:  

 ( ) xnxn

x
qpCxf −

= , x > 0, 0 < p < 1. (2.2) 

In this case, it can be referred to as a binomial distribution with two parameters n and p [20], denoted by 

X ～B(n,p). In Equation !/ !( )!n

x
C n x m x= − , where n is the number of trials, x is the number of success , p 

is the probability of success, and q is the probability of failure (=1−p). If parameters n and p of the 

binomial probability distribution are known, then the probability of each variable in the binomial 

probability distribution can be obtained. 

The Shapiro–Wilk W-test proposed by Shapiro and Wilk [16] was used for normality testing, and the 

definition of the W-test is presented below: 



Applying Computer Simulation to Analyze the Normal Approximation of Binomial Distribution 

118 

 ( )( ) ( ) ( ) ( )

2 2

1 1

1 1

/ , .... .
h n

in n i ii n

i i

W a x x x x x x
− +

= =

⎧ ⎫
= − − ≤ ≤⎨ ⎬
⎩ ⎭
∑ ∑  (2.3) 

When n is an even number, h=n/2, and if n is an odd number, h=(n−1)/2. Shapiro and Wilk also provided 

a cross-reference table for parameters 
in

α . Compared with other normality tests, the Shapiro–Wilk W-test 

is more sensitive. That is, it is applicable even for a small sample size (n < 20) or if there are outliers [17, 

18]. Through computer implementation, Royston [15] extended the Shapiro–Wilk W statistic from small 

sample to large sample applications, Pearson et al. [13] also mentioned that compared with other 

normality testing methods, the W-test not only remains highly sensitive but also has the highest normality 

test power even when biased. Therefore, the study used the W-test statistics for the normality testing of 

the random distribution of the sample mean. 

The study used the built-in binomial distribution random function of the Excel statistic program to 

carry out the random sampling simulation. With parameter p∈{0.05, 0.1, 0.2, 0.3, ……, 0.9, 0.95} and a 

sample size of , n∈{2, 3, ……, 300}, a random number function was used to randomly sample 200 

sample sets, which provided a set of sample means 
,1 ,2 ,200
, , ......,

n n n
X X X . Next, the Shapiro–Wilk W-test 

was employed to test if the 200 sample means meet the normality condition (at a significance level of 

α=0.05). A test result, i.e., accepting or rejecting the normality assumption, was generated for each 

sample size n, and if the normality assumption is rejected, it would be viewed as successful. If the above 

test is performed for 300 times for each sample size n, then 300 Bernoulli trial results will be generated, 

which can be viewed as a new binomial sample set of a sample size of 300. In the study, the test result m 

(number of rejection) was used as a normality indicator, and the data were plotted to explore the 

relationship as well as the evaluation function. A total of 29,798,340,000 random numbers 

[=200×(2+3+4+……+300)×11×300] were generated in this study, and the normality test was performed 

repeatedly for 986,700 times (=299×11×300). 

3 Simulation Results 

Using the above simulation method and statistical test, the investigators did a computer simulation using 

p∈ {0.05, 0.1, 0.2,…,0.9, 0.95} and n = 2, 3, 4,…300 The results are presented in Table 1 at the 

Appendix. It can be found from Table 1 that under the binomial distribution and with p = 0.05, the 

normality assumption cannot be accepted when the sample size was smaller than 162. Even with a 

sample size of 300, there were still 187 out of 300 times when the normality assumption was rejected. 

For p = 0.1, the normality assumption cannot be accepted when the sample size was smaller than 86, but 

when the sample size was 300, the number of times rejecting the normality assumption was reduced to 74. 

For p = 0.2, the normality assumption cannot be accepted when the sample size was smaller than 43. For 

p = 0.3, the normality assumption cannot be accepted when the sample size was smaller than 30. For p = 

0.5, the number of normality assumption rejection was reduced to 11 (out of the 300 tests) when the 

sample size was smaller than 25. For p = 0.6, the normality assumption cannot be accepted when the 

sample size was smaller than 25, and out of the 300 tests, the number of times rejecting the normality 

assumption began to increase. For p = 0.8, the normality assumption cannot be accepted when the sample 

size was smaller than 44. For p = 0.95, the normality assumption cannot be accepted when the sample 

size was smaller than 77. For p = 0.95, the normality assumption cannot be accepted when the sample 

size was smaller than 167, and out of the 300 tests, the number of times that the normality assumption 

was rejected was increased to 187. Therefore, when p got further away from 0.5, the sample size had to 

be substantially increased to meet the normality requirement for employing the central limit theorem. 

The investigators also observed the simulation outcomes when the sample size was fixed to 30. It was 

found that when p was 0.05, 0.1, 0.2, and 0.3, the normality assumption was rejected 300 out of the 300 

tests. When p = 0.4, the number of rejection m was dropped to 288; when p = 0.5, the number of rejection 

m was dropped to 286; when p = 0.6 , the number of rejection m  was increased to 294; when p = 0.7, the 

number of rejection m was further increased to 298; and when p = 0.8, the number of rejection m was 

back to 300. It can be found from the 300 test outcomes that even if p = 0.5, the number of rejection 

would start to drop from 300 when the sample size was greater than 25. 

At this stage, according to the simulation outcomes presented above, a greater sample size would 
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imply that the sampling distribution of sample means would be more approximated to the normal 

distribution. The closer the binomial distribution parameter p is to 5.0 , the higher the normal 

approximation speed is. Therefore, the single condition, i.e., with a sample size greater than 30 for using 

the central limit theorem, is apparently not appropriate for the binomial distribution. 

4 Discussions 

In Fig. 1, the W-test outcomes of different sample size n of different parameters p∈{0.05, 0.1, 0.2,0.3,…,0.9,  

0.95} under the binomial distribution were plotted into a line graph. The x-axis represented the sample size n,  

while the y-axis represented the number of normality assumption rejection m. It can be found from Fig. 1 

that all the curves had a negative slope, meaning that a larger the sample size was associated with better 

normal approximation to the random sampling distribution of sample means. When treating p=0.5 as the 

center and with the two ends p = 0.05 and p = 0.95, and the number of times rejecting the normality 

assumption m would start to decrease only when the sample size was greater than 160. For p = 0.1 and p 

= 0.9, m would begin to decrease when the sample size was greater than 85. Moreover, when the 

binomial distribution parameter p got closer to 0.5 (e.g., when p = 0.3, 0.4, 0.6, 0.7), the curve would 

become closer to the two axes, and when p was 5.0 , the curve was much closer to the two axes, meaning 

the highest speed of normal approximation. 

  

Fig. 1. The relationship between n, the sample size, and m, the number of  

times rejecting the normality assumption under the binomial distribution. 

Meanwhile, it can be found from Fig. 1 that the number of times rejecting the normality assumption m 

only started to drop from 300 when the sample size n was increased to a certain level. In other words, 

with the various values of the binomial distribution parameter p, there was a tendency between m, the 

number of times of rejection, and n, the sample size. The study used a regression model to display the 

tendency. It was the inverse regression model (
0 1

/m b b n ε= + + ) that was used to find out the 

approximate curve. Make m̂  the number of rejection to find out the estimated value using the 

approximate curve of the inverse regression model. It was found that the sample size and the number of 

rejection had the following relationship: (
0 1

ˆ /m b b n= + ) and n≥2. Make k the number of times repeating 

the W-test for normality (k = 300 in the study), and ˆmin{ , }m m k=  was used to estimate the number of 

rejection, m. The estimated regression coefficients were shown in Table 2, and the approximate 

regression curve was plotted used the values (See Fig. 2). 
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Table 2. Inverse regression model of the binomial distribution 

P 2
R  F P 0

b  
1
b  

0.05 0.896 1181.355 0.000 56.654 42495.315 

0.1 0.935 3077.868 0.000 -29.932 30839.066 

0.2 0.966 7324.573 0.000 -27.837 15665.724 

0.3 0.951 5218.513 0.000 -20.399 10508.851 

0.4 0.948 4987.122 0.000 -18.829 8637.910 

0.5 0.943 4545.461 0.000 -19.172 8189.774 

0.6 0.945 4703.603 0.000 -18.860 8556.751 

0.7 0.948 4891.549 0.000 -23.928 10738.014 

0.8 0.972 8966.035 0.000 -24.715 15329.531 

0.9 0.952 4431.786 0.000 -15.584 28424.354 

0.95 0.897 1152.809 0.000 46.952 45125.497 

 

Fig. 2. Curve of the inverse regression model of the binomial distribution 
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It can be found from Table 2 that for each parameter p in the binomial distribution, there was a 

significant association between the number of rejection and the sample size. When p = 0.05, the relation 

can be expressed as m̂  = 56.654+42495315/n and. 2
R  = 0.896. Thereafter, the speed of normal 

approximation accelerated, but the fast increase of 2
R  did not slow down until p = 0.2. When p = 0.5, the 

lowest speed was reached ( 2
R = 0.943), and then 2

R  increased gradually again until p = 0.8, resulting a 

long and flat tails of the regression curve (See Fig. 2). Overall, the degree of fit of the regression model 

was optimal and good. 

It is mentioned in Chapter 2 that m was the number of times that the normality assumption was 

rejected, i.e., the number of success out of the 300 times of Bernoulli trial. In Fig. 3, each small square 

denotes the result of the 300 times of Bernoulli trial, and the shadow part denotes that the number of 

rejection of the normality assumption out of the 300 times of Bernoulli trial was greater than the required 

rejection rate 'm  set by the investigators of the study (the required rejection rate can be viewed as an 

equivalence of the significance level of normality testing). As for the black part, it denotes that the 

number of rejection was smaller than the required rejection rate of the study. Take Fig. 3(a) as an 

example, the required rejection rate 'm  was set to be 5 (i.e., m ≤ 15), and in Fig. 3(b), the rejection rate 

'm  was 10 (i.e., m ≤ 30). In Fig. 3(c), the rejection rate 'm  was 20 (i.e., m ≤ 60). 

   

(a) 'm =5 (b) 'm =10 (c) 'm =20 

Fig. 3. Bernoulli trial results of different required rejection rate 'm  under the binomial distribution, 

where the x axis was parameter p, and the y axis was the sample size n. 

After altering the required rejection rate, a significant trend appeared, as shown in Fig. 3, and the trend 

was especially apparent in Fig. 3(c). The histogram displayed a normal distribution with p = 0.5 as the 

axis of symmetry. As a result, the investigators became interested in capturing the relation between the 

parameter p and the sample size n under the binomial distribution. It can be found from the computer 

simulation result that when the binomial distribution parameter p was close to 0.5, the speed of normal 

approximation increased. In other words, the sample size would decrease when p gets closer to 0.5 and 

would increase when p gets further away from 0.5.Therefore, the investigators used the linear regression 

model (
0 1

0.5n b b p= + × − ) to find out the approximate regression curve of parameter p and sample size 

n. It can be found in Fig. 3(a) that because the number of rejection smaller than the required rejection rate 

(the black part) set by the investigators and decreased, the data were discrete, and data from the first 
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rejection was used to find out the approximate curve. It can be found in Fig. 3(b) and 3(c) that because 

the number of rejection smaller than the required rejection rate (the black part) set by the investigators 

and increased, the data were continuous, and all data from rejection were used to find out the 

approximate curve. As shown in Table 3 and Fig. 4 that when ' 5m = , the relation can be expressed as 

119.892 24.942 0.5 .n p= + × −  When ' 10m = , the relation can be expressed as 76.695 34.522 0.5 .n p= + × −  

When ' 10m =  can be expressed as 35.032 23.930 0.5 .n p= + × −  

Table 3. The regression model of different required rejection rates in binomial distribution 

m′  2
R  F P 0

b  
1
b  

5 

 

10 

 

20 

0.769 

 

0.801 

 

0.858 

26.585 

 

1194.229 

 

1791.953 

0.001 

 

0.000 

 

0.000 

119.892 

 

76.695 

 

35.032 

24.942 

 

34.552 

 

23.930 

 

Fig. 4. The regression curve of binomial distribution parameter p and sample size n 

According to the regression model presented in Table 3, the value of each p in the binomial 

distribution can be estimated, and when the required rejection rate 'm  varied, the minimum sample size 

required for adopting the central limit theorem can be obtained. See Table 4 for the result. It can be found 

in Table 4 that a binomial distribution parameter p closer to 0.5 indicates a better eligibility for using the 

central limit theory because the required sample size for the normal distribution decreases as the 

parameter p gets closer to 0.5. Take ' 5m ≤  as an example, when p = 0.5, the minimum sample size 

required for using the central limited theorem was 120. When ' 10m ≤  and p = 0.5, the minimum sample 

size required for using the central limited theorem was reduced to 77. When ' 20m =  and p = 0.5, the 

minimum sample size required for using the central limit theorem was further reduced to 35. 

Nevertheless, the general condition, i.e., whether the sample size n is greater than 30, was not applicable 

when ' 5m =  (equivalent to a significance level of 0.05 in the normal distribution) and p = 0.5, when 

' 10m =  and p = 0.5, or when ' 20m =  and p = 0.5.  
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Table 4. Minimum sample size n required for using the central limit theorem in the binomial distribution 

n               m′  
p

 
5 10 20 

0.05 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.95 

131 

129 

127 

125 

123 

120 

123 

125 

127 

129 

131 

92 

91 

87 

84 

80 

77 

80 

84 

87 

91 

92 

46 

45  

42 

40 

37 

35 

37 

40 

42 

45 

46 

5 Conclusions 

Many statistical analyses were implicitly based on the normal distribution, and as a result, the subsequent 

data analysis often needs to rely on the central limit theorem. The general criterion for using the central 

limited theorem is to have a sample size greater than 30, so the random sampling distribution of sample 

means would be approximated to the normal distribution. It can be found in Table 4 that this sample size 

requirement was too small for the binomial distribution. For the approximate rate (1 ')m−  to reach 80%, 

the required sample size should be increased as p gets further away from 0.5 (i.e., a larger 0.5p− ). 

When p = 0.5, a sample size of 35 would be required, and when p was increased to p = 0.05 or p = 0.95, a 

sample size of 46 would be required. To obtain an approximate rate close to 90%, the required sample 

size has to be increased to 77 when p = 0.5 and 92 when p = 0.05 or p = 0.95. If the approximate rate is 

nearly 95%, then the required sample size for p = 0.5 would be 120, and then increased to 131 for p = 

0.05 or p = 0.95. Therefore, for ' 5m =  (equivalent to a significance level of 0.05 in the normal 

distribution), ' 10,m =  or ' 20m = , no p can have the condition, i.e., a sample size n greater than 30, 

satisfied. 

In addition, there is also the De Moivre Laplace theorem: When ∞→n , the binomial distribution will 

be approximated to the normal distribution. To apply the theory, the sample size n has to satisfy np >5 

and n(1-p) > 5. In other words, when p=0.5, np > 5, and n(1-p) > 5, n only needs to be greater than 10. 

Nonetheless, it was shown in the simulation presented in Table 4 that a sample size of 10 was not larger 

enough. When p=0.05 or p=0.95, n has to be greater than 100 in order to satisfy the conditions of np >5, 

and n(1-p) > 5. An n greater than 100 can satisfy the approximate rate of 0.90 and 0.80, as shown in 

Table 4, but if the approximate rate is 0.95, a sample size of 100 would still be too small. 

When applying the central limit theorem, most general statistics textbooks, applied papers, and 

researchers use the “whether sample size is greater than 30” criterion to assume the sampling distribution 

of the sample mean to be approximately a normally distributed, and thereby replaced by a normal 

distribution. Yet studies published by Chang et al. on the Weibull distribution in 2006 and the Gamma 

distribution in 2008, plus the present paper’s binomial distribution all indicate that, when using computer 

simulations to explore normal distribution approximations, the sample size required for the approximate 

normal distributions should vary depending on the distribution type. That is, when the central limit 

theorem is applied for the different probability distributions, the minimum required and reasonable 

sample size should also be different. 

Currently, commonly-used statistical software such as MINITAB, STATISTICA, JMP, SPSS, SAS, 

and EXCEL (which was used in the paper), all provide a variety of common statistical analysis, and their 

operation is easy. However, statistical software packages are limited in their number of individual data 

output, so it is not convenient or feasible to perform larger-scale simulations. If follow-up studies can use 

R, PYTHON, JULIA, JAVA, or other more functional software or programs, not only will the scale and 

efficiency of the simulations be increased, but they can also be used to compare with this study to see 

whether the results agree. 
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Appendix 

Table 1. W test results of Binomial distribution as p  and n varies.( p =0.05, 0.1, 0.2, …, 0.9, 0.95, n  =2, 

3, 4, …, 300; Numbers in the table are reject frequency of repeating 300 W tests) 

p  Sample 

Size ( )n  0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 

2 300 300 300 300 300 300 300 300 300 300 300 

3 300 300 300 300 300 300 300 300 300 300 300 

4 300 300 300 300 300 300 300 300 300 300 300 

5 300 300 300 300 300 300 300 300 300 300 300 

6 300 300 300 300 300 300 300 300 300 300 300 

7 300 300 300 300 300 300 300 300 300 300 300 

8 300 300 300 300 300 300 300 300 300 300 300 

9 300 300 300 300 300 300 300 300 300 300 300 

10 300 300 300 300 300 300 300 300 300 300 300 

11 300 300 300 300 300 300 300 300 300 300 300 

12 300 300 300 300 300 300 300 300 300 300 300 

13 300 300 300 300 300 300 300 300 300 300 300 

14 300 300 300 300 300 300 300 300 300 300 300 

15 300 300 300 300 300 300 300 300 300 300 300 

16 300 300 300 300 300 300 300 300 300 300 300 

17 300 300 300 300 300 300 300 300 300 300 300 

18 300 300 300 300 300 300 300 300 300 300 300 

19 300 300 300 300 300 300 300 300 300 300 300 

20 300 300 300 300 300 300 300 300 300 300 300 

21 300 300 300 300 300 300 300 300 300 300 300 

22 300 300 300 300 300 300 300 300 300 300 300 

23 300 300 300 300 300 299 300 300 300 300 300 

24 300 300 300 300 300 300 300 300 300 300 300 

25 300 300 300 300 300 300 300 300 300 300 300 

26 300 300 300 300 298 297 298 300 300 300 300 

27 300 300 300 300 297 295 299 300 300 300 300 

28 300 300 300 300 299 295 295 300 300 300 300 

29 300 300 300 300 296 294 298 300 300 300 300 

30 300 300 300 300 288 286 294 298 300 300 300 

31 300 300 300 299 281 281 293 299 300 300 300 

32 300 300 300 299 276 262 282 300 300 300 300 

33 300 300 300 297 273 264 278 296 300 300 300 

34 300 300 300 298 275 259 276 295 300 300 300 

35 300 300 300 292 270 258 267 296 300 300 300 

36 300 300 300 288 259 236 239 291 300 300 300 

37 300 300 300 291 227 230 250 290 300 300 300 

38 300 300 299 283 239 224 229 280 300 300 300 

39 300 300 300 280 227 224 239 275 300 300 300 

40 300 300 300 264 207 201 220 261 299 300 300 

41 300 300 299 270 223 193 218 271 300 300 300 

42 300 300 297 262 203 192 204 268 300 300 300 

43 300 300 300 263 209 181 187 254 297 300 300 

44 300 300 296 250 193 147 178 258 300 300 300 

45 300 300 295 240 198 168 181 229 299 300 300 

46 300 300 295 235 166 159 172 235 295 300 300 

47 300 300 295 229 176 167 175 222 295 300 300 

48 300 300 292 211 168 136 180 222 293 300 300 

49 300 300 296 211 183 144 151 208 287 300 300 

50 300 300 290 201 165 155 176 213 289 300 300 
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Table 1. (Continued 1) 

p  Sample

Size ( )n  0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 

51 300 300 298 202 151 126 141 208 282 300 300 

52 300 300 280 169 139 139 156 193 241 300 300 

53 300 300 278 196 144 123 135 197 276 300 300 

54 300 300 276 202 136 118 139 191 269 300 300 

55 300 300 273 160 134 116 123 178 277 300 300 

56 300 300 277 165 132 112 123 178 266 300 300 

57 300 300 257 172 127 92 113 175 257 300 300 

58 300 300 272 160 118 110 90 160 248 300 300 

59 300 300 258 158 114 95 116 157 239 300 300 

60 300 300 258 169 112 87 104 152 252 300 300 

61 300 300 253 96 88 97 100 176 232 300 300 

62 300 300 238 152 103 96 101 151 245 300 300 

63 300 300 229 139 102 92 87 92 237 300 300 

64 300 300 236 122 112 130 99 125 225 300 300 

65 300 300 238 133 92 91 72 139 236 300 300 

66 300 300 222 102 80 70 96 117 214 300 300 

67 300 300 235 118 101 84 94 148 228 300 300 

68 300 300 218 134 94 69 72 110 206 300 300 

69 300 300 211 121 65 71 88 122 208 300 300 

70 300 299 214 122 96 62 89 120 194 300 300 

71 300 299 197 107 75 73 71 117 219 300 300 

72 300 300 201 113 81 73 75 104 206 300 300 

73 300 300 208 121 82 89 70 104 200 300 300 

74 300 300 199 111 70 62 77 95 192 300 300 

75 300 300 171 100 80 65 69 120 197 300 300 

76 300 300 155 98 81 64 63 108 176 300 300 

77 300 300 195 98 72 70 58 72 173 300 300 

78 300 300 172 109 76 72 69 103 167 299 300 

79 300 298 179 102 74 60 72 91 179 299 300 

80 300 298 172 87 62 60 69 98 155 297 300 

81 300 298 153 83 52 59 61 95 174 297 300 

82 300 299 161 87 60 64 60 94 148 299 300 

83 300 298 171 97 59 54 91 82 178 298 300 

84 300 300 187 73 44 63 37 90 161 297 300 

85 300 300 222 177 151 35 30 15 197 298 300 

86 300 300 165 116 56 71 61 101 173 291 300 

87 300 297 145 85 62 65 42 79 145 295 300 

88 300 292 146 93 63 51 62 94 144 291 300 

89 300 293 134 90 56 54 53 75 143 294 300 

90 300 297 82 86 110 57 91 70 160 294 300 

91 300 295 126 72 52 53 58 81 150 299 300 

92 300 296 177 39 46 72 74 90 128 294 300 

93 300 287 115 84 58 38 55 90 132 277 300 

94 300 288 135 76 45 56 61 83 126 288 300 

95 300 280 150 95 61 68 56 77 117 293 300 

96 300 281 120 69 64 43 62 70 130 277 300 

97 300 284 127 73 56 52 48 72 115 286 300 

98 300 283 119 63 46 45 53 66 128 284 300 

99 300 274 120 72 57 43 55 43 116 268 300 

100 300 275 115 69 44 33 36 87 114 277 300 

101 300 282 113 61 52 55 49 56 121 289 300 

102 300 276 117 66 55 60 70 68 136 283 300 

103 300 281 116 70 36 47 61 57 134 273 300 

104 300 274 104 64 54 48 41 78 100 269 300 

105 300 275 101 69 60 52 46 63 123 263 300 
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Table 1. (Continued 2) 

p  Sample 

Size ( )n  0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 

106 300 264 92 74 53 51 49 70 112 243 300 

107 300 267 118 54 56 38 49 55 106 267 300 

108 300 267 109 65 56 48 33 66 103 258 300 

109 300 268 100 72 54 45 52 50 96 260 300 

110 300 260 102 64 56 53 52 72 115 274 300 

111 300 264 101 67 43 29 54 53 97 257 300 

112 300 250 108 54 48 38 47 45 92 265 300 

113 300 248 107 58 59 48 49 56 104 260 300 

114 300 245 99 76 33 42 45 61 111 251 300 

115 300 245 89 60 47 39 42 58 84 235 300 

116 300 244 97 63 55 57 37 43 103 253 300 

117 300 237 101 56 45 43 53 50 85 257 300 

118 300 248 94 56 46 44 46 59 106 257 300 

119 300 250 104 60 43 38 42 54 102 235 300 

120 300 251 101 66 46 30 40 47 82 231 300 

121 300 243 107 39 38 37 39 47 101 251 300 

122 300 236 78 68 35 37 41 49 94 242 300 

123 300 233 97 48 40 36 44 52 94 218 300 

124 300 235 73 61 34 38 49 49 89 226 300 

125 300 231 91 54 55 33 44 47 86 230 300 

126 300 213 73 53 34 41 43 48 101 223 300 

127 300 224 86 55 47 42 46 47 105 223 300 

128 300 229 72 46 38 11 16 48 89 217 300 

129 300 221 87 55 30 37 37 44 70 208 300 

130 300 226 92 46 49 35 40 41 76 217 300 

131 300 227 95 51 37 30 34 54 92 219 300 

132 300 207 70 30 49 43 58 24 68 208 299 

133 300 225 76 53 37 40 40 51 92 220 300 

134 300 205 96 57 40 35 33 49 93 206 300 

135 300 206 94 46 37 35 43 39 92 232 300 

136 300 208 71 55 35 24 34 44 76 208 300 

137 300 217 86 43 41 33 31 47 87 210 300 

138 300 182 84 36 35 30 32 51 86 199 300 

139 300 209 79 46 42 44 41 43 81 180 300 

140 300 184 92 57 39 45 18 42 81 184 300 

141 300 196 88 50 45 29 32 38 70 185 300 

142 300 205 58 48 37 41 30 59 65 199 300 

143 300 191 75 46 33 44 41 49 72 200 300 

144 300 198 62 39 36 30 38 49 89 184 300 

145 300 196 64 44 35 34 42 55 69 175 300 

146 300 187 76 46 28 49 35 48 60 193 299 

147 300 179 73 53 32 36 43 49 68 180 300 

148 300 171 68 40 21 21 35 42 66 204 300 

149 299 188 68 45 46 29 26 56 85 195 299 

150 300 180 76 44 29 31 44 40 66 200 300 

151 299 182 70 52 21 33 27 39 74 171 299 

152 300 178 81 36 27 27 26 10 79 169 299 

153 300 187 76 32 24 41 38 28 73 175 299 

154 300 184 74 45 30 25 36 39 78 179 300 

155 298 161 68 44 33 30 31 33 69 153 300 

156 299 164 63 47 21 35 39 26 63 189 299 

157 299 160 64 43 37 25 30 48 65 160 300 

158 300 190 69 49 32 29 60 40 50 194 298 

159 299 157 75 44 32 33 42 55 65 171 298 

160 298 163 51 47 49 35 28 33 51 160 299 
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Table 1. (Continued 3) 

p  Sample 

Size ( )n  0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 

161 300 169 68 43 43 38 26 50 60 156 298 

162 300 167 56 40 27 28 34 48 67 174 298 

163 296 162 75 38 27 30 35 42 65 161 299 

164 295 167 72 33 26 27 38 29 56 151 300 

165 298 173 65 25 30 30 36 39 62 145 294 

166 298 167 67 36 29 24 33 41 61 153 300 

167 296 157 52 31 35 27 29 41 67 162 300 

168 295 152 49 30 31 21 32 29 64 163 294 

169 297 161 60 28 31 24 26 37 51 158 296 

170 294 165 68 35 34 35 29 43 61 142 297 

171 298 166 55 43 21 31 33 47 50 154 299 

172 289 146 62 48 10 21 34 51 56 143 298 

173 292 158 52 44 28 26 31 49 54 153 291 

174 297 146 52 30 21 17 31 37 69 140 288 

175 295 139 50 29 38 38 33 32 50 151 290 

176 293 146 53 40 28 25 32 33 66 161 297 

177 293 145 53 45 33 17 29 38 52 163 290 

178 291 146 57 47 59 42 47 31 49 185 290 

179 294 150 55 25 25 30 45 46 45 134 295 

180 290 143 53 35 28 23 29 31 52 142 295 

181 290 149 46 44 35 24 27 43 59 153 290 

182 290 142 64 34 27 26 32 35 44 123 290 

183 287 132 64 35 26 28 33 41 63 132 290 

184 293 128 63 35 22 27 31 23 55 157 289 

185 292 123 51 30 32 31 33 44 48 132 283 

186 289 153 58 34 30 36 38 39 50 141 288 

187 288 134 55 37 35 22 26 28 46 131 287 

188 275 146 45 78 34 17 21 31 32 165 299 

189 279 121 52 43 27 27 23 38 51 135 289 

190 289 131 52 42 28 24 31 36 69 130 288 

191 285 135 48 29 21 20 29 37 60 134 276 

192 286 138 58 38 35 28 30 25 50 130 287 

193 275 120 55 36 27 23 32 28 61 132 286 

194 283 120 40 43 32 44 26 16 31 138 283 

195 278 128 42 26 22 16 29 25 58 149 279 

196 279 105 51 30 28 28 22 21 50 113 276 

197 276 129 57 25 33 30 28 38 48 125 284 

198 285 118 53 37 33 29 27 34 42 146 281 

199 276 128 50 24 26 30 30 36 51 117 276 

200 295 142 63 48 33 43 14 24 54 119 281 

201 278 120 54 29 25 12 30 34 59 125 276 

202 278 120 48 40 30 31 28 34 49 123 281 

203 274 121 57 36 32 11 18 25 54 131 271 

204 278 125 42 39 19 30 31 25 50 106 279 

205 280 102 52 52 27 24 31 28 41 89 282 

206 270 115 29 43 32 24 36 24 45 112 281 

207 271 118 42 30 22 18 32 25 47 115 268 

208 268 108 45 34 29 24 34 30 51 125 277 

209 280 107 38 42 25 22 25 28 31 121 267 

210 256 111 47 29 19 32 30 28 51 118 274 

211 268 120 48 27 29 33 18 25 50 131 277 

212 262 112 49 31 28 22 27 36 52 119 266 

213 268 131 48 25 24 21 26 31 48 106 264 

214 267 126 60 30 22 26 31 38 48 117 260 

215 268 118 46 26 28 18 18 29 49 133 268 
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Table 1. (Continued 4) 

p  Sample 

Size ( )n  0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 

216 263 113 41 29 19 20 25 33 45 119 256 

217 251 111 44 31 24 31 30 34 54 97 265 

218 250 110 41 25 26 27 30 34 44 113 251 

219 242 115 37 31 32 30 27 43 53 107 264 

220 264 114 43 38 29 29 21 25 45 117 266 

221 263 115 48 42 32 23 27 31 38 110 265 

222 246 96 76 22 21 31 21 47 49 113 261 

223 255 102 41 39 33 13 26 39 33 120 265 

224 248 113 43 25 31 25 28 33 56 98 268 

225 239 96 39 23 27 25 31 24 43 110 264 

226 254 107 44 37 32 30 19 39 33 115 250 

227 255 99 46 31 20 29 34 29 58 94 259 

228 259 110 43 32 18 27 27 25 42 113 247 

229 243 122 46 28 20 15 24 31 55 103 241 

230 244 102 46 35 24 12 31 33 40 99 262 

231 241 121 31 37 30 27 21 12 41 99 254 

232 251 89 39 30 23 24 21 38 42 115 249 

233 260 101 43 30 20 24 24 29 44 98 256 

234 292 74 38 6 1 12 23 14 67 74 244 

235 236 102 28 39 27 27 27 16 30 119 253 

236 245 81 49 31 29 15 30 31 36 98 245 

237 239 97 40 31 26 28 25 25 43 90 256 

238 241 97 38 15 24 20 23 25 46 111 245 

239 230 103 38 40 32 27 31 38 41 102 246 

240 243 92 32 66 24 19 30 24 37 104 238 

241 242 101 38 30 22 28 25 24 53 98 248 

242 234 105 35 21 30 23 19 23 43 89 228 

243 238 85 50 36 20 21 29 23 41 90 232 

244 234 81 45 29 19 20 23 24 47 99 231 

245 235 91 50 29 22 28 30 28 38 103 231 

246 239 106 24 50 11 24 17 17 32 101 227 

247 223 103 32 34 21 20 21 25 48 105 220 

248 230 84 32 26 29 25 28 34 48 85 230 

249 220 87 46 6 33 23 19 20 49 73 222 

250 213 72 32 34 20 26 21 29 42 82 230 

251 232 86 35 33 16 18 21 27 40 117 228 

252 211 86 33 24 23 26 23 27 55 94 218 

253 223 86 49 28 26 22 20 25 38 90 224 

254 229 108 38 45 30 24 23 29 42 88 223 

255 215 95 30 22 30 16 38 44 46 85 216 

256 229 71 22 32 21 19 15 23 40 102 232 

257 232 86 35 27 24 19 19 30 38 92 227 

258 220 104 34 25 15 13 24 25 45 87 208 

259 217 64 48 22 21 20 25 28 39 94 228 

260 216 80 29 30 35 16 24 33 45 81 232 

261 225 81 41 21 29 24 29 35 56 100 219 

262 218 86 33 25 26 29 23 28 36 82 216 

263 221 83 39 29 14 25 19 20 40 82 223 

264 213 87 42 34 22 29 31 32 30 84 216 

265 207 94 41 26 22 23 16 34 39 95 215 

266 223 70 37 20 22 16 23 24 29 79 215 

267 204 79 36 33 31 24 34 29 47 79 211 

268 238 86 33 19 25 13 23 14 25 45 231 

269 210 86 46 21 27 23 20 27 39 90 218 

270 193 75 31 26 22 21 31 28 35 87 199 



Journal of Computers Vol. 28, No. 5, 2017 

131 

Table 1. (Continued 5) 

p  Sample

Size ( )n  0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 

271 230 152 9 4 3 4 16 9 60 98 264 

272 215 86 46 24 21 26 15 26 39 76 201 

273 177 75 57 34 31 0 24 14 23 85 200 

274 209 77 43 20 23 22 16 29 37 91 207 

275 212 77 44 31 23 22 20 31 34 87 208 

276 215 86 36 35 28 27 24 28 38 109 194 

277 212 77 32 21 24 15 23 30 31 81 203 

278 200 66 40 32 24 16 22 31 33 89 204 

279 196 70 41 20 21 19 13 31 42 73 202 

280 209 74 38 18 29 17 25 20 36 97 192 

281 212 67 37 25 27 21 27 24 36 101 219 

282 206 72 37 32 32 25 25 27 36 81 203 

283 185 75 29 17 21 30 20 28 38 73 176 

284 183 78 30 33 25 38 24 28 40 75 205 

285 196 93 35 31 21 32 20 23 41 67 198 

286 197 77 35 15 30 30 32 32 31 86 188 

287 189 69 41 31 21 24 12 34 34 73 193 

288 190 81 49 34 40 31 14 31 32 74 200 

289 180 83 43 27 20 32 18 36 37 83 196 

290 184 68 36 33 26 27 21 24 42 87 198 

291 197 85 29 25 18 22 31 23 41 66 185 

292 209 87 38 22 13 30 24 13 46 18 231 

293 198 65 27 30 22 32 29 37 42 78 182 

294 203 72 24 29 16 21 19 36 43 88 186 

295 203 67 27 24 19 27 22 32 50 85 185 

296 196 57 45 27 17 13 17 24 27 81 192 

297 182 71 28 22 24 23 25 31 40 73 175 

298 215 69 43 30 24 21 15 25 44 68 184 

299 180 92 20 36 27 15 25 23 30 74 197 

300 187 74 34 17 15 11 19 21 33 78 187 

 

 

 

 

 


