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Abstract. Humanoid robots have become the best form of human services for human beings by 

the widespread concern. The mobile manipulation of the humanoid robot means that the 

humanoid robot moves by the footsteps. At the same time, it also uses the arm and hand to 

complete the crawling and other operations. In order to complete the mobile manipulation, the 

robot is required to have target recognition, online path planning and motion control. This paper 

describes the hardware, software design and implementation of the minitype humanoid robot 

mobile operating system, and has carried on the experimental verification. Firstly, it has carried 

out kinematics modeling and inverse kinematics for the NAO experimental platform of minitype 

humanoid robot. Secondly, the research on path planning and motion control of humanoid robot 

is studied. Thirdly, the target recognition and positioning based on monocular vision are studied. 

Finally, it carries out experiments on NAO robots. In the experiment, the robot completes the 

mobile manipulation task accurately and efficiently. Experiments show that the target 

recognition and positioning method are efficient and reliable, and can realize the mobile 

manipulation of the robot completely. In addition, it completes the research topic of minitype 

humanoid robot target recognition and mobile manipulation. 

Keywords: humanoid robot, mobile manipulation, monocular vision, target positioning, target 

recognition,  

1 Introduction 

The humanoid robot is a kind of intelligent robot with a similar shape with human. It has the ability to 

sense, self-improvement, self-control, reverie, image performance and emotional exchange with people. 

Its walking structure can make the robot go to the place where it is needed at any moment, which 

including those where is not easy for people to reach, to complete the task. The larger activity and 

workspace is the main advantage of humanoid robots relative to industrial robots. The biped walking 

structure of a humanoid robot can make it walk on a relatively large obstacle, climb stairs; walk on poor 

conditions of road; and can reach many places. Humanoid robots are not only similar to people, but also 

into our living space. At present, scientists from many developed countries, such as Japan and the United 

States, have done a lot of work in research and development of humanoid robots, and have made 

breakthrough progress. Humanoid robots have had a great impact on human society, and a great impact 

on human society. Further, public hope that the humanoid robot will be able to move as a normal person, 

that is, the humanoid robot exerts a force on the movable object through the arm during the stable biped 

walking, such as taking the old man to push the cart, holding heavy objects and so on. Stable, reliable and 

efficient completion of mobile manipulations without changing the manipulating environment, making 

the humanoid robot has a potentially strong application prospects, social and economic benefits. So 

humanoid robot has become the core of the field of robot research and development, occupied the first 

place of robot research and development. 
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Monocular vision measurement technology in the industrial, agricultural and other fields have 

important and extensive application, where the determination of the target position information is the key 

technology [1]. Wang and Jia proposed a method only by using pinhole imaging principle and geometric 

coordinate transformation to calculate the position of obstacles. This method improved the corresponding 

point calibration and proposed a solution for the camera when it is changed. Xie and Yang proposed a 

monocular vision self- position method for autonomous soccer robot [2].This method was to realize the 

self- position geometric by monocular vision ranging under the premise of the color field information 

identified. At the same time, the lens of the nonlinear distortion and other issues were analyzed. The 

parameters applicable to the camera are dynamic, but the method is not efficient. This paper studies 

target recognition and position based on monocular vision. Using the different color characteristics of the 

object, the color characteristics of the target are identified, and then the target is positioned by the camera 

model and parameter calibration. Finally, the experiment of minitype humanoid robot mobile 

manipulation is done. In the experiment, minitype humanoid robot accurate and efficient to complete the 

mobile manipulation. Experimental results show that the method of target recognition in this paper is 

efficient and reliable, and it can completely realize the robot’s mobile manipulation. 

2 Kinematic Analysis of NAO Robot 

At present, most robotic control codes are basically programmed by the coordinates of the positions of 

the joints. We regard the iron hand as a mechanism connected by some connecting rods in sequence, and 

set up separate coordinate systems for each connecting rod of the iron hand, and then apply the 

homogeneous transformation matrix to reflect the position and posture of the iron hand [3]. 

Kinematics is a subject of research in the state of motion and a part of classical mechanics, which is 

used to reflect the movement of the target, but the reasons for the formation of the movement are not 

counted. The control of the robot is based on the premise of kinematics. Many different ways have been 

put forward to deal with the difficulties of the robot in terms of kinematics [4]. This chapter uses the D-H 

(Denavit-Hartenberg) method to explore the inverse kinematics of minitype humanoid robotic arms. 

2.1 Arm Kinematics Modeling 

Robots usually contain continuous joints and linkers, and moving one joint will affect the connection of 

the joints. The connected joint can have any length (including 0) of the linker and rotate around any axis. 

Each joint has a standard coordinate system to interpret the link, position and determine the basic 

procedures for joint conversion. Starting from the reference point, a joint is followed by a joint in the 

order. Once all conversions have been completed, the transformation matrix is obtained and the position 

of the joint can be obtained from the reference point [5]. 

In this paper, we use the Denavit-Hartenberg (D-H) notation in kinematics calculations. The D-H 

method is used to describe the movement of the robot and to express movements. At the same time, it can 

be applied to any shape of the robot. This D-H method demonstrates the relationship between the 

connected joints with four different variables, as shown in Fig. 1. 

 

Fig. 1. Denavit-Hartenberg (D-H) method was used to represent the relationship between joints 
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In order to use the D-H method to represent the relationship of the robot joint, a standard coordinate 

system is set for each joint. The X  axis and the Z  axis are assigned to each joint. The Y  axis is vertical 

to the X  axis and Z  axis, and can be calculated at any time. In order to calculate the coordinate system 

of the next joint, four standard calculations are required [6]. 

(1) Rotate until i  on the 
1i-

Z  axis. This process makes the 
1i

X
−

 axis parallel to the 
i

X  axis. 

(2) Move the 
1i

X
−

 axis until 
i

d  follows the 
1i-

Z  axis. This process will make 
1i

X
−

 and 
i

X  in the same 

position. 

(3) Move until 
i

A  follow the 
1i

X
−

 axis. This process makes the original coordinates of the two 

coordinate systems in the same position. 

(4) Rotation until i  is on the 
i

X  axis. After the process is complete, the two coordinate systems will 

be exactly same. 

The matrix A  can be obtained by multiplying the four matrices (the matrix produced by each of the 

steps above). Formula 1 is their relationship. Each n  represents the current joint, and 1n +  represents the 

next joint. 
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M : position change (movement), R : coordinate rotation (rotation). 

This transformation matrix is calculated and sorted as shown in formula 2. 
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Table 1 shows the information for all joint lengths. These values can be used in the motion calculation 

of each joint. 

Table 1. The length of the link for minitype humanoid robot 

Name Length (mm) 

NeckOffsetZ 126.50 

ShoulderOffsetY 98.00 

UpperArmLength 90.00 

LowArmLength 50.55 

ShoulderOffsetZ 100.00 

HandOffsetZ 58.00 

HipOffsetZ 85.00 

HipOffsetY 50.00 

ThighLength 100.00 

TibiaLength 102.74 

FootHeight 45.11 

HandOffsetZ 15.90 
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The minitype humanoid robot has a total of 25 joints: the head joint has 2, each arm has five (a total of 

10), each leg has five (a total of 10), one in the pelvis, and two used in the implementation of the hand 

opening and closing movement [7-8]. Each joint can be controlled independently, but both joints in the 

pelvis need to be controlled at the same time. Each joint has an angle limit, and the limits are shown in 

the range of the table above. As for the legs, the robot’s falling touch is also included in the angle limit. 

2.2 Arm’s Kinematic 

In Fig. 2, the position of the hand is calculated using the arm joint value and linker data of the minitype 

humanoid robot. The center point of the minitype humanoid robot is the base point of the whole system 

(0,0,0). Use the following equation to indicate the position change. 

 

Fig. 2. The name and limit of the joint of the right hand of the minitype humanoid robot 

 

0

0

h h
Pos T Pos= ∗ . (3) 

Pos  represents the position of the Cartesian coordinate system. T  represents the transformation 

matrix. The symbol in the upper left corner represents the target to be converted, and the lower left corner 

represents where it is now. h  is the hand, and o  is the center point. The formula 4 (position change) can 

be represented by coordinate action and angle.  

 RMT ∗= . (4) 

Right hand contains five joints, from the top to the bottom, are RshoulderPitch, RShoulderRoll, 

RElbowRoll, RElbowYaw and RWristYaw. If the position of the hand changes from the center point in 

the order, the position information of the hand can be got. The following is the order of the hand to 

change the position from the center point to the hand: center point -> shoulder -> elbow -> wrist -> hand. 
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00 . (5) 

s : shoulder, e : elbow, and w : wrist. RShoulderPitch, RShoulderRoll, RElbowRoll, RElbowYaw, 

RWristYaw, are five joints of minitype humanoid robot used to calculate the D-H method. 

The distance from the wrist to the hand and the movement from the center point to the shoulder are not 

included in the above formula. The transformation matrix T  is the transformation matrix of the above 

five joints, and can be represented by A  as follows. For the D-H method, when analyzing the arm joints 

of a minitype humanoid robot, it can be simplified to the formula 6. 
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Using the D-H method to using A  replace the T  transformation matrix to get the position change, 

you can use the following formula. 

 

0 0 1 2 3 4 5

h s h

w
T T A A A A A T= ∗ ∗ ∗ ∗ ∗ ∗ . (7) 

The change in the distance between the fulcrum and the shoulders without rotation is indicated by only 

the displacement operation, and the change of position can be shown in the following formula. 

 

0 0 0 0

y z
s ss s

T M M M= = + . (8) 

y
S  represents the movement to the Y  axis, 

z
S  represents the movement to the Z  axis and the sum 

matrix of the two movements. In the Cartesian coordinate system, move to the Y  axis by -98 mm and 

move to the Z  axis by100 mm from the center point to the right shoulder. Formula 9 shows the 

transformation matrix described above. 

 

0

1 0 0 0

0 1 0 98

0 0 1 100

0 0 0 1

s

T

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

. (9) 

The rotation transformation has been included in the shoulder-to-wrist position change, and the 

transformation matrix is determined according to the D-H method’s d , a , θ , α . The change of the 

shoulder joint is represented by T
e

s
, which contains two fulcrum joints, as shown in the equation. 

yp

e

s
R  

means rotates around the Y  axis. 
xr

e

s
R  represents a roll that rotates around the X  axis. 

 

e e e e

s s s yp s xr
T R R R= = ∗ . (10) 

yp

e

s
R  obtained from the right shoulder anterior joint (the first fulcrum joint) is 

1
A  in the D-H method. 

1
A  is °−= 90

1
α , 0

1
=d . The transformation matrix is shown in formula 11. 
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xy

e

s
R  obtained from the right shoulder rolling joint (the second key joint) is 

2
A  in the D-H method. 

2
A  is °= 90

2
α , 0

2
=d . The transformation matrix is shown in formula 12. 

 

2 2

2 2
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. (12) 

The change in the elbow position is done by moving the shoulder to the elbow. The rotation is also 

done by the movement of 1 and the rotation of 2. 
xr

w

e
R  represents the rolling rotation of the X  axis, 

while 
zy

w

e
R  represents the rotation of the forward and backward rotation of the Y  axis. 

 

w e w w

e e e xr e zy
T M R R= ∗ ∗ . (13) 

The movement from the shoulder to the elbow in the right elbow rolling joint (the first elbow) is 

90mm on the X  axis and expressed as “ d ”. Because °= 90
3

θ , °= 90
3

α , °= 903d , the transformation 
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matrix is shown in formula 14. 

 

3 3 3 3

3 3 3 3

3
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0 1 0 90
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. (14) 

zy

w

e
R  indicates the position of the right elbow anterior joint (the elbow’s fulcrum joint), which 

represents the rotation of the forward and backward rotation of the Y  axis and is expressed as 
4

A . This 

transformation matrix is shown in formula 15. 
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. (15) 

The position change of the right wrist anterior joint (wrist joint) occurs at 1 movement and rotation. 

The movement of the wrist is 50.55mm on the
 
X  axis. R

h

w
 represents the rotation of the forward and 

backward rotation of the Y  axis.
 

The transformation matrix of 
5

A  is shown in formula 16.
 

 

5 5

5 5

5
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0 1 0 50.55
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C S

S C
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θ θ
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−⎡ ⎤
⎢ ⎥
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. (16) 

The change from the shoulder to the wrist position (including the rotation matrix) is expressed as 

54321
AAAAAT

w

s
××××=

. 

Movement from the wrist to hand is 58mm in the X  axis, 15.9mm in the Y  axis. The transformation 

matrix of T
h

o
 is shown in formula 17. 

 

0 0

1 0 0 0 1 0 0 58

0 1 0 98 0 1 0 0

0 0 1 100 0 0 1 15.90

0 0 0 1 0 0 0 1

h s h

w
T T A T A

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥= ∗ ∗ = ∗ ∗
⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

. (17) 

The hand based on the center point in the Cartesian coordinate system can be calculated by the 

following matrix. 

 

0

0
( , , ) (0,0,0)h h

Pos x y z T Pos= ∗ . (18) 

2.3 Arm Inverse Kinematics and Control the Action 

Inverse kinematics is the study of how to find the Angle and the moving distance of each joint, when the 

position of the hand has been determined. It also controls the action by calculating the continuous change 

in the angle value of the joint [9]. 

It is necessary to use a plurality of combinations to move the robot’s hand to a specific position. It is 

impossible to find a matrix that can calculate the angle of all joint angles to get the trigonometric function 

equation required for the conversion. Therefore, in order to separate the equation to obtain the value of 

each joint, inverse matrix of the transformation matrix 
n

A  must be multiplied by the left side of the 
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relational equation to obtain the element that calculates the angle value. 

The transformation matrix A  of the data obtained from the arm of the minitype humanoid robot in the 

previous section. Although the wrist’s front yaw joint can be used to determine the direction of the hand, 

the position is meaningless, so the calculation of the joint is not required in the calculation of the position 

of the hand. Therefore, for A, only need to get
1

θ , 
2

θ , 
3

θ , 
4

θ ( the joint value of
1

A , 
2

A , 
3

A , 
4

A ), you 

can calculate the position of the hand. The connection value is removed from the front joint. 

Using the algebraic operation, the angular value(
1

θ , 
2

θ , 
3

θ , 
4

θ ) of each joint can be obtained, and the 

position of the robot’s hand in the Cartesian coordinate system (
x

P ,
y

P ,
z

P ) is pointed out. 

The Cartesian coordinate system determines the hand position and sequentially enters the desired joint 

angle value to the joint action plane, and then passes the commands to move the minitype humanoid 

robot. 

Fig. 3 presents simulation of the movement of minitype humanoid robots in the Choregraphe window. 

Received nine target points and the joint angles have been calculated, then the robot will receive the 

angle value to move. 

 

Fig. 3. Using inverse kinematics to control the continuous motion of minitype humanoid robots  

3 Target Recognition Method Based on Monocular Vision 

The image feature refers to the significant difference between the identified target and other objects, and 

the need to quantify the difference between them [10]. Usually a type of target can extract a number of 

features, they formed a number of quantitative values can be composed of a vector, that is the target 

eigenvector. So identify the target by determining whether the detected feature matches the target model. 

The color, corner, edge and so on of the monocular vision robot are concerned. The algorithm is 

optimized for the visual path tracking of the indoor robot. 
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3.1 Characteristics of Image Color 

Color features can be described from subjective sensations and physical quantities. The color feature is 

used to express the color model. The commonly used color models include RGB model, CMY model and 

HSV model. Feature extraction methods based on different models have their own advantages and 

disadvantages. 

The color model is to establish a mathematical model to represent the color. The basic idea is to 

establish a suitable three-dimensional coordinate system with different color components. For example, 

the RGB model can be used to create spatial coordinate systems by R, G, and B components. The type of 

color model comes from different needs. The demand for color models varies from human, electronic, 

and printing devices. People’s perception of color is more suitable for using HSV color models. The 

display is more suitable for RGB mode. Therefore, by the RGB color model through a series of matrix 

conversion can get more color models to meet the needs of different algorithms. The appropriate color 

space affects the performance of the edge detection algorithm to a large extent. 

In the cube of the RGB model, the color corresponding to the origin is black, and the color 

corresponding to the furthest from the origin is white. In the machine vision, the collected image pixels 

are compared with the color of the target in the RGB model, If the distance is within a sphere radius, the 

color of the pixel is considered to match the target color. Let the color of the pixel in the image 

be ( )
ppp

,B,GR , the color of the target is ( )Bc,Gc,Rc . The radius from the center of the sphere is r . As 

shown in Fig. 4, the model is represented by a Cartesian coordinate system. 

 

Fig. 4. RGB color model  

 

2 2 2

2 2 2

1( ( ) ( ) ( ) )

0( ( ) ( ) ( ) )

p c p c p c

p c p c p c

R R G G B B r
y

R R G G B B r

⎧ − + − + − ≤⎪
= ⎨

− + − + −⎪⎩ �

. (19) 

1=y  indicates that the pixel color is the same as the target point color, and vice versa. 

Although the RGB model is simple, most of the image device supports this mode. But the model is 

greatly affected by the light, any changes in light intensity will lead to complete failure of identification 

[11].  

HSV (Hue, Saturation, Value) is a color space created by A. R. Smith in 1978 based on the intuitive 

nature of color, also known as Hexcone Model. The parameters of the color in this model are hue (H), 

saturation (S) and value (V). 

The RGB and CMY color models are hardware-oriented, while the HSV (Hue Saturation Value) color 

model is user-oriented. The three-dimensional representation of the HSV model evolved from the RGB 

cube. Imagine that you can see the hexagonal shape of the cube from the white vertex of the cube to the 

black vertex. The hexagonal boundary represents the color, the horizontal axis represents the purity, and 

the brightness is measured along the vertical axis [12]. 
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HSV models are commonly used in computer graphics applications [13]. The user must choose a color 

applied to a particular graphic element in various application environments often using HSV color wheel, 

as shown in Fig. 5. In which the hue is expressed as a ring. A separate triangle can be used to represent 

the saturation and brightness. Typically, the vertical axis of the triangle indicates saturation, while the 

horizontal axis represents the brightness. As shown in Fig. 6, the choice of color can first select the hue in 

the ring, then select the desired saturation and brightness from the triangle. Another visual method of the 

HSV model is the cone. In this representation, the hue is expressed as the angle about the central axis of 

the cone. The saturation is expressed as the distance from the center of the cross section of the cone to 

this point [14]. The brightness is expressed as the distance from the center of the cross section of the cone 

to the vertex. This method is more suitable for displaying this HSV color space in a single object. 

Because of its three-dimensional nature, it is not suitable for selecting colors in a two-dimensional 

computer interface. The HSV color space may also be represented as a cylinder similar to the above-

mentioned cones. The hue varies along the outer circumference of the cylinder. The saturation varies 

along the distance from the center to the outside of the cross section. The brightness varies along the 

distance from the cross-section to the bottom and top. This representation may be considered a more 

accurate mathematical model of the HSV color space [15]. However, the number of levels of saturation 

and hue that can be distinguished in practice decreases as the brightness approaches black. In addition, 

the computer typically stores the RGB value with a limited precision range, which is limited the accuracy. 

Considering human color-aware constraints, making the cone representation more practical in most cases 

[16]. 

 

Fig. 5. HSV model  

 

Fig. 6. HSV color wheel allows users to quickly select many colors  
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3.2 RGB to HSV 

Let ( )R,G,B  are the red, green and blue coordinates of a color, and their values are real numbers 

between 0 and 1. Let max be the largest of r , g , and b . Let min be equal to the smallest of these values. 

To find the ( )vsh ,,  value in the HSV space, where [ ]0,360h∈  is the hue angle of the angle, and 

[ ]1,0, ∈vs  is the saturation and the brightness. 
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0, max 0

max min min
1 ,

max max

if

s
otherwise

=⎧
⎪

= −⎨
= −⎪⎩

. (21) 

OpenCV has a function can be directly converted RGB model to HSV model, but in OpenCV 

[ ]0,180 ,h∈  [ ]255,0∈s , [ ]255,0∈v . We know that the h  component basically represents the color of 

an object, but the value of s  and v  must be within a certain range. s  represents the degree of mixing of 

white and the color represented by h . The smaller the s , the whiter the color. v  represents the degree of 

mixing of black and the color represented by h . The smaller the v , the darker the color. Experiments 

show that the value of blue is h  between 100 and 140, and s  and v  are between 90 and 255. 

4 Target Positioning Method Based on Monocular Vision 

The optical imaging process of the camera is to process by simplifying it into a mathematical model. 

Therefore, the mathematical model (geometric imaging model) are set up to ensure a higher degree of 

accuracy [17]. At the same time, the establishment of the model will be affected by the parameters of the 

camera itself and the camera relative to the world coordinate system of geographical impact. The model 

is usually built by the principle of pinhole imaging. Moreover, the model of pinhole imaging is the linear 

imaging model, which does not meet the lens distortion caused by linear and non-linear distortion. The 

position of the camera in the world coordinate system also needs to be clear [17]. The internal parameters 

in the calibration are the parameters of the camera itself, such as the scale factor, the focal length and the 

lens distortion coefficient, which directly affect the effect of the camera to obtain the image. The external 

parameters can be understood as the process of determining the orientation and angle of the camera, 

where the spin matrix and the translation matrix are needed to be precisely known for the establishment 

of the model. The aim of the camera calibration is to establish the imaging mathematical model for the 

optical imaging process of the camera. Based on the model, the three-dimensional information in the 

world coordinate system can be deduced by the two-dimensional information in the image coordinates; 

can also be reversed.  

Camera calibration refers to the given camera model for the process of obtaining the camera’s internal 

and external parameters. Camera imaging model is a mathematical model. It is an abstract vision-ranging 

algorithm for optical imaging process, and is implemented based on imaging. In the ideal case, the 

camera only need to consider the linear model. However, in fact, due to the camera production process or 

other reasons, the camera will cause linear or nonlinear distortion. In the daily modeling, we must 

consider the impact of these factors. As shown in Fig. 7. 
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Fig. 7. RGB to HSV experiment screenshots  

4.1 Pinhole Camera Model  

When the object passes through the center point of the camera axis, the model projected onto the imaging 

surface is called the pinhole-imaging model. The center point of the camera’s optical axis is the heart of 

the camera lens. As shown in Fig. 8, it is the center of the camera’s optical axis, the plane of the object, 

the imaging plane of the camera. Since the plane looks like an inverted image, it converts its direction in 

the signal processing of the camera so that it can reverse again, the same as the objects up and down, left 

and right. Therefore, it can be considered that the imaging plane is equivalent to the image plane. 

 

Fig. 8. Principle of pinhole imaging  

The camera coordinate system is set up and the center point of the camera’s optical axis is taken as the 

origin; the Z  axis is parallel to the camera’s optical axis, from the camera to the direction of the object is 

positive; the X  axis is parallel to the vertical plane, with the upward direction positive. In the 

coordinates of the camera, set the object point P  coordinates to ( )zyx ,, , P  in the plane 
2

C  of the 

imaging point 
2
P  coordinates to ( )2 2 2

, ,x y z . 

 

1 2 2

1 2

1 2 2

1 2

x x x

z z f

y y y

z z f

⎧
= =⎪

⎪
⎨
⎪ = =
⎪⎩

. (22) 

In the formula: f is the focal length of the camera, 
2
Pf = . 
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4.2 The Internal Parameter Model of Camera  

The camera’s internal parameter model describes the relationship between the object points and the 

image pixels, while the equation 22 is the relationship between the object points and the imaging points 

in the camera coordinate system. The image on the imaging plane is enlarged and processed to obtain a 

digital image where the imaging point ( )
22

, yx  is mapped to the pixel in the digital image ( )vu, . Let the 

intersection of the center of the optical axis and the imaging plane correspond to the coordinate in the 

digital image is ( )vu 00 , . 

 

0 2

0 2

x

y

u u a x

v v a y

− =⎧
⎨

− =⎩
. (23) 

ax
 and a y

 are the magnification coefficients of the plane-to-digital image plane in the X  and Y  

directions, respectively. 

Substituting formula 22 into formula 23. 
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. (24) 

Rewriting formula 24 into a matrix form 25.  
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In the formula 25, fak xx
=  and fak yy =

 are the magnification coefficients of the X  and Y  axis 

direction. M m
 is called the internal matrix. ( )

111 ,, zyx is the object point in the camera coordinate 

system coordinates, where the subscript is changed to ( )
ccc
zyx ,, . 

In the formula 26, there are four parameters, which is called four-parameter model. In the formula 27, 

if the difference is not considered between k x
 and k y

, there are only three parameters, which is called 

three-parameter model. In the formula 28, if the difference between k x
 and k y

 is considered, the internal 

model of the camera has five parameters called the five-parameter model. 
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4.3 The Internal Parameter Model of Camera  

The description of the object coordinate system in the camera coordinate system is called the external 

parameter model of the camera. The object coordinate system ZYXO
www
 is represented in the camera 

coordinate system XYZOc
, which constitutes the external matrix of the camera. 
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. (29) 

( )
ccc
zyx ,,  is the coordinates of the object in the camera coordinate system XYZOc

. ( )
www
zyx ,,  is 

the coordinates of the object in the object coordinate system ZYXO
www
. M w

 is the external parameter 

matrix. 

5 Conclusions 

In this chapter, the experiment of mobile manipulation of a minitype humanoid robot is done based on 

the study of the various parts of the mobile manipulation. It describes the process of the mobile 

manipulation of the minitype humanoid robot in detail, and validates the validity and feasibility of the 

previous chapters. 

5.1 Mobile Manipulations Based on Monocular Vision  

Target search. Only when minitype humanoid robots can see the target, we can track the target. We put 

the minitype humanoid robot in an unknown job space and plan to let it search for the target. There are 

two stages of the search, the first stage is to stand still in the search target, just swing the head, when this 

stage does not search the target, the minitype humanoid robot begins to circle search target. If the robot 

still cannot find the target, it will search the way as described above until the target is searched. Search 

and approach the process is shown in Fig. 9. 

 

Fig. 9. Process of search and approach  

Target positioning. The camera of minitype humanoid robot can measure a wide range. In the vertical 

direction, it can measure the upper edge to the middle line of 23.82°. In the horizontal direction, it can 

measure the upper edge to the middle line of 30.45°. It first identifies the target, at this stage, obtains the 
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target spatial coordinates ( )zyx ,, . The coordinates of the center of the camera lens are (320,240), the 

coordinates of the coordinates come from the resolution of the camera when lens collect images. The 

solution algorithm is as follows. 

The center of the target and the camera’s main axis has an angle of α , which is horizontal. 

 

180

π
α X  axis direction ratio Horizontal visual range  = × × . (30) 

 

320

640

x
X  axis  ratio

−

= . (31) 

 60 9  Horizontal field view .= ° . (32) 

 

320
 60.9

640 180

x π

 α

−
= × °× . (33) 

After the target is identified, the coordinates ( )zyx ,,  of the target are calculated by a series of 

algorithms, substituting into formula 33, and finally get the camera lens center in the horizontal direction 

of the angle α . The α  is passed to the minitype humanoid robot to control the moving correlation 

function, and control the minitype humanoid robot towards the target. 

 

240
47 64

480 180

y π
β .

−
= × °× . (34) 

Y  is the y in the center coordinates ( )zyx ,,  of the target recognition through a series of algorithms. It 

is possible to obtain the angle β  of the target at the center of the camera lens by substituting it into the 

formula 34. The β  is in the vertical direction, and specifies the value of the head joint by the β  from 

the head, ensuring that the target is always at the midpoint of the camera lens. 

Target Tracking. In the experiment, we used a very simple but very efficient algorithm to track moving 

objects. This algorithm enhances the autonomy of mobile manipulations. 

We use the midpoint of the bottom of the target minimum rectangle to represent the target. As shown 

in Fig. 10, when the abscissa of the target after moving is greater than the abscissa before the movement, 

it means moving to the right. When the abscissa of the target after moving is less than the abscissa before 

the movement, it means moving to the left. When the coordinates of the target after moving is greater 

than the ordinate before the movement, it represents the upward movement. When the moving target is 

less than the ordinate before the movement, it represents the downward movement. 

 

Fig. 10. Identify the midpoint of the smallest rectangular bottom edge  

Monocular vision ranging. Other visual measurement methods are based on monocular vision 

measurements, for example, single cameras take multiple targets from different angles, and the effect is 

similar to using multidimensional vision. Monocular vision can use simpler devices than multi eye vision, 

thus it reduces the cost, runs fast and has great flexibility. The most basic method avoids the difficulty of 

stereo matching, but the multi eye vision cannot avoid this problem. Monocular vision has a better real-

time than the multi-vision, so in this context, it is widely used. 
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With the progress of science and technology, monocular vision is also rapid development. There are 

many different ways, for example, optical structure method is widely used in the measurement of high 

precision requirements of the parts, geometric constraint method can measure the posture state of the 

movement, and even intelligent aircraft, geometric similarity method is used to measure the height of the 

target.  

Referring to the principle of monocular vision ranging, a distance-measuring algorithm is designed 

based on the hardware structure and parameters of minitype humanoid robot. Distance-measuring 

algorithm is shown in Fig. 11. 

 

Fig. 11. Distance-measuring algorithm  

 ( )tan
h t

β θ
s

−
+ = . (35) 

The transformation formula is available. 

 

( )tan

h t
S

β θ

−
=

+

. (36) 

h  is the height of the robot neck to its sole. β  is the current offset angle of the Head Pitch joint. θ  is 

the natural angle of the NAO robot mouth camera and the horizontal line. t  is the height of the table. S  

is the distance between the target center and the robot. mmt 59.459= , °= 7.39θ . 

 

( )

0 45959

tan 39 7

. t
S

β .

−
=

+ °
. (37) 

We can calculate the target center to the minitype humanoid robot near the S . This calculation is 

based on the robot head angle in the vertical direction. S  is obtained only based on the algorithm. Only 

need to determine the angle can get an order of forward, backward or stop, so that can make the target 

keep S  meters away from the robot. The result of this is to reduce the cost of human time. 

5.2 Experimental Results and Analysis 

First, the minitype humanoid robot searches and identifies the target. The visual sensor identifies the 

target by the features of the image color. Secondly, the target is positioned through the camera modeling 

and parameter calibration. The target position coordinates is got. Then, model the mobile manipulation of 

the whole body kinematics is established. The robot is moved to the target position by kinematics 

algorithm. Finally, the kinematics model and control algorithm of arm are used to grab the objects, and 

the mobile manipulation experiment of minitype humanoid robot is completed. 

The robot identifies the target and moves towards the target. The experiment is shown in Fig. 12. 
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Fig. 12. Identify the goal and move towards the goal  

In the research experiment of mobile manipulation control method of the minitype humanoid robot 

based on monocular vision, the minitype humanoid robot has been adjusted more than sixty times, so that 

the distance of the minitype humanoid robot to the target is more suitable for the crawling operation. The 

best distance from the target is S . Fig. 13 shows the real-time data capture of the optimal distance from 

the target for the minitype humanoid robot in the mobile manipulation. Fig. 14 is the line map of real-

time data. It is possible to conclude that the minitype humanoid robot is closer to the target than the 

distance of 15cm, which is most suitable for crawl distance S  of the minitype humanoid robot. 

 

Fig. 13. Minitype humanoid robot adjusts the real-time data of the best distance process  

 

Fig. 14. Minitype humanoid robot adjusts the real-time data of the best distance process  



Method for Target Recognition and Mobile Manipulation Control of Humanoid Robot 

244 

The minitype humanoid robot moves to the target and performs the crawling operation. The robot has 

successfully captured the target and verified the accuracy of the kinematic model of the minitype 

humanoid robot we established, as shown in Fig. 15. At the same time, it also verifies the correctness 

from target recognition, positioning to the whole body kinematics analysis, arm kinematics modeling and 

inverse kinematics solving of the minitype humanoid robot. It shows that the research of target 

recognition and mobile manipulation control method of minitype humanoid robot is successful. 

 

Fig. 15. Minitype humanoid robot completes the mobile manipulation successfully  
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