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Abstract. The electric power systems (EPSs) is a complex system with lots of bus bars, 

transmission lines, and transformers. The primary goal of maintaining an EPS is providing 

sustainable and stable power supply for customers. However, the quality of service of an EPS 

suffers from the failures of its system sections. Fast and accurate fault diagnosis is the 

prerequisite to bring the system back in normal state, thus has attracted much attentions from 

power engineers. In this paper, we present a minimum square error (MSE) learning based 

optimal fault diagnosis algorithm, in which the operation state of system sections and 

protections are formulated using matrices representations. Optimization model is developed to 

find most probably state of the system sections. The method requires no complex logic 

designing, nor any historical operation records, and it is simple and fast for implementation. Test 

results prove that the proposed method has satisfactory diagnosis performance compared with 

other existing methods. 
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1 Introduction 

In smart grid, the electric power system (EPS) is a complex system composed of different system 

sections, including power generators, transformers, bus bars and transmission lines [1]. EPS aims at 

supplying stable and uninterrupted power sources to remote customers. However, due to reasons, such as 

bad weather, equipment failure, and malicious attack, power transmission in EPS may be interrupted or 

even blackout, which cause huge economic losses. To avoid damage on the system sections, a protective 

system is adopted by using protective relays and circuit breakers (CBs) [2]. Fault diagnosis helps the 

dispatchers to find out faulty system sections, which is the prerequisite to take measures to repair the 

system [3]. When the system is in faulty state, the operation state of the protections will be uploaded to 

supervisor control and data acquisition (SCADA) system, and fault diagnosis tasks can be realized by 

utilizing intelligent algorithms, but not just relies on judgements of experts. 

Many methods have been proposed to deal with the fault diagnosis problem in EPSs [4]. The expert 

system (ES) is the first one for failure identifying in EPS, which utilizes the experts’ professional 

knowledge to design inference rules for fault diagnosing. However, designing such a complex rule-based 

knowledge system is a high-cost project, and the diagnosis efficiency is not satisfactory. 

Since the information of the protective relays and CBs are always incomplete and uncertain, fuzzy 

systems (FS) [5-8] becomes a popular direction for its advantage in dealing with information uncertainty. 

however, designing a fuzzy reasoning system for a complex EPS still needs heavy efforts on designing 

the membership functions and combinational rules, thus it is inefficiency in designing process. 

Optimization methods (OMs), such as genetic algorithm-tabu search (GATS) [9], binary particle swarm 

optimization (BPSO) [10], and genetic algorithm (GA) [11], also have been proposed to utilizing 

intelligent searching strategies to obtain globally optimal solutions. However, due the non-linearity of the 
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objective function and the complexity of EPSs, developing optimization model automatically is not an 

easy task. Moreover, the result may not be stable due to the local optimum property of the objective 

function. 

To overcome the designing cost and improve the diagnosis efficiency, machine learning methods have 

been proposed, including artificial neural networks (ANNs) [12-14] and Bayesian networks (BNs) [15-

16]. However, a well-trained ANN needs sufficient training data to obtain the parameters of the network 

structure. Training a BN also needs lots of prior information. This needs the designer to collect sufficient 

operation sample data, which limits their practicability. Cause-effective networks (CE-Nets) [17-18] is 

another method with high efficiency by using parallel information processing, but its fault tolerance still 

needs to be improved. 

In this paper, we present a simple, fast, and effective method for fault diagnosis in EPSs. Although 

EPS is a system with complex topologies, it still can be represented using matrix, which lays a 

foundation for mathematical analysis. We formulate system structure by using matrix representation, and 

the fault diagnosis problem are formulated as a simple minimum square error (MSE) learning problem. 

Complex inference logics and prior information of system operation are not required. Test results prove 

that the proposed MSE learning method is able to correctly identify faulty sections. 

The remainder of this paper is organized as follows. Section 2 gives an introduction on the fault 

diagnosis problem in EPS. Sections 3 illustrates the principles of the proposed method. Tests results are 

provided in Section 4. Section 5 finally concludes this paper. 

2 Fault Diagnosis in Electric Power Systems 

As aforementioned, fault diagnosis in EPS is based on collecting information of the protective relays and 

circuit breakers (CBs). System sections, including bus bars, transformers, transmission lines, are 

protected by these protections, as shown in Fig. 1. Except the buses, a protective relay of a system section 

has three entities: main protective relay (MPR), first backup protective relay (FBPR), and second backup 

protective relay (SBPR) [19]. A bus line will by only protected by MPR and SBPR. The CBs are 

controlled by the protective relays. Usually, a transformer or a transmission line has two protective 

adjacent CBs, and a bus line has three CBs. 

Transformers/Buses/Lines

MPRs FBPRs SBPRs

SCADA system

 

Fig. 1. The protection system of an EPS 

When a system section fails to operate, the monitoring MPR will try to operate to CBs to protect it 

from damage. If MPR fails to operate, then FBPR tries to work. SBPR is the last protection if both of 

them fail to operate. Subsequently, the faulty alarms will be uploaded to the SCADA system. The 

dispatchers conduct the fault diagnosis operation to find out which system sections are in faulty state, and 

further steps will be taken to repair the faults to make the system back in normal state. 

Let us look at the example in Fig. 2, in which there are 5 system sections, including 1 single bus 
1
A , 2 

transformers 
1 2
,T T , and a double bus 

1 2
,B B . If 

1
T  fails to operate, its protective relays will give orders to 

trip 
2

CB  and
4

CB , thus 
1
T  is isolated from the system. However, information of fault monitoring are 

usually incomplete, or uncertain. For example, when MPR of 
1
A  operates to trip 

2
CB . In this case, we 

are not sure of which one is faulty. The results can be 
1
A  or 

1
T . If we know 

4
CB  are also tripped, then 
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we are confident that 
1
T  fails to operate. Therefore, how to deal with the uncertainty and incompleteness 

of protective information is vital for dealing with fault diagnosis in EPS. 

 

Fig. 2. An example of the protection system of an EPS 

3 Proposed Optimal Fault Diagnosis Method 

In this section, we introduce the proposed optimal fault diagnosis method for electrical power systems. 

For betters understanding, examples will also be provided. 

3.1 Matrix Representation of EPS 

Suppose there are nn system sections 
1 2

{ , , , }
n

S s s s= … and m  CBs 
1 2

{ , , , }
n

V CB CB CB= …  in an electric 

power systems. Note that for all the backup protective relays and the corresponding main protection are 

regarded as one protective relays, and a double bus has two protective relays. Let S  be the vertex set, an 

electric power system can be regarded as a undirected graph { , }G S E= , in which 
1 2

{ , , , }
m

E e e e= …  is 

the edge set of the graph G . For (1 )
k
e G k m∈ ≤ ≤ , { , }k i je s s=  is called an edge of two adjacent vertex 

nodes 
i
s  to 

j
s . 

In this paper, the operation state of an EPS is represented as following four matrices 

 { , , , }Z C D X Y=  (1) 

where 

(1) C  is an n n×  matrix representing the original normal connectivity state of CBs and system sections. 

(2) D is an m n×  matrix representing the faulty connectivity state of CBs and system sections. 

(3) X  is an 1n×  vector representing the operation state indicators of system sections. A system section 

i
s  is in normal state if its corresponding operation state indicator is 0.5

i
x ≤ , otherwise it is in faulty state. 

(4) Y  is a 1m×  vector representing the failure degrees of the lost connections of CBs. When the system 

section of a CB is normal, its failure degree is 0. However, if both two of the CB’s adjacent system 

section are faulty, then the corresponding failure degree is 2. 

Next we illustrate how to obtain the values of the elements in above four matrices. Firstly, matrix C 

can be obtained according to original sketch map of the EPS. We denote 1
ij
c = if 

i
CB  and system section 

j
s  are connected, and 0

ij
d =  if they not adjacent. Note that two arbitrary system sections can not be 

directly connected, thus a CB has at least one connected system section. 

Matrix D  is the real time faulty connectivity state of the system. Apparently, if D C= , the system is 

in normal condition. On the contrary, ifD C≠ , it is in faulty state. Therefore, values of elements in C  

are fixed, while the ones in D  is dynamic with the real-time system condition. For a tripped 
i

CB , 

suppose it is the output end of 
i
s  and the input end of 

k
s . The values of 

ij
d  and 0

ik
d =  are obtained as 

the following strategy: If there is at least one CB in the input end of 
i
s  and at least one CB in the output 

end of 
k
s  are tripped, then 0

ij
d =  and 0

ik
d =  which means 

i
CB  is not connected with 

i
s  and 

k
s  in this 
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scenario. In other situations 0.5
ij

d =  and 0.5
ik

d = , since we are not sure which one of the two system 

relays is in faulty state. 

Again, let us look at the example system given in Fig. 2. In this situation, the vertex set is 

1 1 2 1 3 2 4 1 5 2
{ , , , , }V s A s T s T s B s B= = = = = = . There are 10 CBs and 5 protective relays in this EPS, and we 

can get the values of the elements in the corresponding adjacent matrix C , e.g. 
11

1d =  because 
1

CB  and 

1
A  are directly connected. Particularly, matrix C  representing the original connectivity condition of the 

system, and it is given by 

 

1 0 0 0 0

1 1 0 0 0

1 0 1 0 0

0 1 0 1 0

0 0 1 1 0

0 0 0 1 1

0 0 0 1 0

0 0 0 0 1

0 0 0 0 1

0 0 0 1 0

C

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (2) 

Now suppose the system is in faulty state, and the SCDA system observes that CBs 

2 3 4 5
, , ,CB CB CB CB  are tripped. In this situation, the faulty connectivity state matrix D  is given by 

 

1    0     0    0    0

0.5 0.5  0    0    0

0.5 0    0.5  0    0

0    0.5  0    0.5 0

0    0    0.5  0.5 0

0    0    0     1    1

0    0    0     1    0

0    0    0     0    1

0    0    0     0    1

0    0  

D =

 0     1    0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (3) 

Assume that CBs 
1 2 3 4 5
, , , ,CB CB CB CB CB  are tripped, then the corresponding matrix D  is 

 

0  0  0  0  0

0  0  0  0  0

0  0  0  0  0

0  0  0  0  0

0  0  0  0  0

0  0  0  1  1

0  0  0  1  0

0  0  0  0  1

0  0  0  0  1

0  0  0  1  0

D

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (4) 
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We define 
1

[ , , ]
m

Y y y= …  as the failure degree vector of the CBs, and the values of its elements is 

defined as 

 ( )
1

n

i ij ij

j

y c d
=

= −∑   (5) 

We can see that, for arbitrary rows in C  and D , the sum of the elements of the rows equal to 1 or 2. 

Therefore, any element in matrix Y  has one of three values: 0, 1, 2. For example, 2
i
y =  means that 

i
CB  

lose connections with its two adjacent protective relays. In Fig. 2, when CBs 
2 3 4 5
, , ,CB CB CB CB  are 

tripped, the corresponding operation state vector of CBs is [0,1,1,1,1,0,0,0,0,0]Y = . When CBs 

1 2 3 4 5
, , , ,CB CB CB CB CB  are tripped, the corresponding operation state vector of CBs is 

[1,2,2,1,1,0,0,0,0,0]Y = . 

3.2  Optimal Diagnosis 

Now we define vector 
1 2

[ , , ]
T

n
X x x x= …  to represent the operation state of the protective relays. When 

protective relay 
i
s  is in faulty state, we have 1

i
x = , otherwise 0

i
x = . Apparently, when the system is in 

normal state, [0,0, 0]
T

X = … . If the all the CBs are in good functional conditions, i.e. when a protective 

relay is in faulty condition, its adjacent CBs are all tripped. Then we have the following equations 

 CY Y=  (6) 

the operating state vector X  of protective relays can be easily obtained by 

 

1( )T T
X C C C Y

−

=   (7) 

However, as aforementioned, information of fault diagnosis in EPS are always incomplete and uncertain, 

and equation (6) are not always true in real practice. The alternative way is using optimization model to 

find out the most solutions with minimum square error (MSE) to the above equations. as given by 

 

  min   || ||

s.t.  0 1,1

X

i

CX Y

x i n

−

≤ ≤ ≤ ≤
 (8) 

where || ||⋅  denotes the 
2
l  norm operation. Without considering the constraint, the optimal solution is 

†
X C Y= , where †

C  is the Moore-Penrose generalized inverse of matrix C . However, the above 

equation is not applicable in most situations, since elements in X  may not distributed in [0,1] when 

using the above equation. Solving the above optimization model can be realized by any proper optimal 

algorithms, such as a commonly used gradient descent method, and we don’t repeat it again. With the 

obtained vector X , now we have the decision rule 

 

faulty,    if  0.5

normal,  if  0.5

i

i

i

x
CB

x

>⎧
= ⎨

≤⎩
 (9) 

Again, let us look at the example in Fig. 2, when 
2 3 4 5
, , ,CB CB CB CB  are tripped, we can obtain the 

state vector of protective relays as [0,1,1,0,0]X = , which means that the two transformers 
1
T  and 

2
T  are 

in faulty state. Although 2/3 of the connected CBs of 
1
A  are tripped, but it is caused by 

1
T , 

2
T , and 

1
A  

will not be regarded as faulty. 

We can see that, in our method, we just need to get the operation state vector Y  when fault happens. 

And the fault diagnosis results can be easily calculated by using the above optimization model. Finally, 

the diagnosis decisions can be obtained via the decision rule. The whole process is simple, fast, and 

requires no prior information except the original normal condition C . In next section, simulation results 

will be provided prove the high fault diagnosing performance of the proposed method. 
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4  Experimental Results 

In is section, experiments will be conducted with several single and multiple fault cases in the EPS 

shown in Fig. 3, which includes 28 system sections and 40 CBs. The 24 system sections have 84 

protective relays. The system sections are marked by circled numbers, and single bus, double bus, 

transformer, and line are denoted by , , ,A B T L , respectively. Subscripts S  and R  represent sending and 

receiving ends of a line, respectively. Subscripts , ,m p s  designate the main protection, the first backup 

protection and the second backup protection, respectively. The 40 CBs are labeled as 
1 40
~CB CB . The 28 

system sections are marked as
1 28
~S S , including 

1 4
~A A , 

1 8
~T T , 

1 8
~B B , 

1 8
~L L . There are 36 main 

protective relays
1 36
~r r , including 

1 4
~

m m
A A , 

1 8
~

m m
T T , 

1 8
~

m m
B B , 

1 8
~

Sm Sm
L L , 

1 8
~

Rm Rm
L L . The others 

are backup protections
37 84
~r r , including 

1 8
~

p p
T T , 

1 8
~

s s
T T , 

1 8
~Sp SpL L , 

1 8
~

Rp Rp
L L , 

1 8
~

Ss Ss
L L , 

1 8
~

Rs Rs
L L . 

 

Fig. 3. The local sketch map of the EPS used in simulation 

The status information of protective relays and CBs of the seven faulty cases are shown in Table 1, in 

which cases 1 and 2 are single fault situations, the others are multiple faults situations. Note that the 

operated relays are not equivalent to the faulty sections. Usually, the faulty sections are included in the 

operated protections, but sometimes when the status information are incomplete and uncertain, the faulty 

sections may not be appeared in the operated relays. 

Table 1. The status information of 7 faulty cases 

No. Operated Relays Operated CBs 

1 1 2 4
, ,

m Rs Rs
B L L  

4 5 7 9 12 27
, , , , ,CB CB CB CB CB CB  

2 2 4
,

Rs Rs
L L  

4 5 7 9 12 27
, , , , ,CB CB CB CB CB CB  

3 1 1 1
, ,

m Sp Rm
B L L  

4 5 6 7 9 11
, , , , ,CB CB CB CB CB CB  

4 1 1 1 2 2 2
, , , , ,

m Sm Rp m Sp Rm
B L L B L L  

4 5 6 7 9 10 11 12
, , , , , , ,CB CB CB CB CB CB CB CB  

5 3 7 7
, ,

p Sp Rp
T L L  

14 16 29 39
, , ,CB CB CB CB  

6 1 1 2 2 7 7 8 8
, , , , , , ,

Sm Rp Sp Rp Sp Rm Sm Rm
L L L L L L L L  

7 8 11 12 29 30 39 40
, , , , , , ,CB CB CB CB CB CB CB CB  

7 7 8 7 8 5 5 6 7 7 8
, , , , , , , , ,

m P m m Sm Rp Ss Sp Rm Rs
T T B B L L L L L L  19 20 29 30 32 33 34

, , , , , ,CB CB CB CB CB CB CB  

35 36 37 39
, , ,CB CB CB CB  

 

In this step, we have the system’s original connectivity condition matrix 
40 28

C
×

, as given in Fig. 4, in 
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which the non-zero elements are marked with grey background. The failure degree vector of CBs in 

faulty state are given in Table 2. Subsequently, the optimal solution can be obtained using the proposed 

optimization model, and the results are provided in Table 3. 

 

Fig. 4. The original connectivity matrix of normal state of the EPS 

Table 2. Operation state vector of CBs of the 7 fault cases 

No. Failure degree vector of CBs 

1 [0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0]
T  

2 [0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0]
T  

3 [0 0 0 1 1 1 2 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
T  

4 [0 0 0 1 1 2 2 2 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
T  

5 [0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0]
T  

6 [0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1]
T  

7 [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 2 2 2 2 1 1 0 2 0]
T  

Table 3. The diagnostic operation state vector of system sections 

No. Failure degree vector of CBs 

1 [0 0.667 0 0 0.111 0 0 0.111 0 0 0 0 0.167 0.167 0.167 0.444 0 0 0.167 0.444 0 0 0 0 0 0 0 0]
T  

2 [0 0.667 0 0 0.111 0 0 0.111 0 0 0 0 0.167 0.167 0.167 0.444 0 0 0.167 0.444 0 0 0 0 0 0 0 0]
T  

3 [0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0]
T  

4 [0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0]
T  

5 [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0]
T  

6 [0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0]
T  

7 [0 0 0 0.316 0 0 0 0 0.316 1 0.579 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0.053 1 1]
T  
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Next, by using the decision rule, the final diagnosis results can be obtained, and they are shown in 

Table 4. For performance comparison, the results of 5 existing methods are provided, including fuzzy 

reasoning spiking neural P systems (FDSNP), fuzzy logic (FL), fuzzy petri networks (FPN), genetic 

algorithm-tabu search (GATS), and genetic algorithm (GA). The above five methods have provided the 

diagnosis results of the 7 faulty states by in the same EPS considered in this simulation. The “-” symbol 

means that the corresponding faulty case is not provided in their original works. 

Table 4. Comparison of diagnosis results 

No. MSE(proposed) FDSNP FL FPN GATS GA 

1 
1

B  
1

B  
1

B  
1

B  - 1
B  

2* 
1

B  
1

B  - - - - 

3 
1 1
,B L  

1 1
,B L  

1 1
,B L  

1 1
,B L  - 1 1

,B L  

4 
1 2 1 2
, , ,B B L L  

1 2 1 2
, , ,B B L L  

1 2 1 2
, , ,B B L L  

1 2 1 2
, , ,B B L L  - 1 2 1 2

, , ,B B L L  

5 
3 7
,T L  

3 7
,T L  

3 7
,T L  

3 7
,T L  

3 7
,T L  

3 7 3

7

(1) , , (2) ,

(3) , (4)No

T L T

L
 

6 
1 2 7 8
, , ,L L L L  

1 2 7 8
, , ,L L L L  

1 2 7 8
, , ,L L L L  

1 2 7 8
, , ,L L L L  

1 2 7 8
, , ,L L L L  

1 2 7 8

1 7 8

(1) , , ,

(2) , ,

L L L L

L L L
 

7* 

5 7 7 8

7 8

, , ,

,

L L B B

T T
 

5 7 7 8

7 8

, , ,

,

L L B B

T T

5 7 8

7 8

, ,

,

L L B

T T
 

5 7 8 7 8

7 8

, , , ,

,

L L L B B

T T
 

5 7 7 8

7 8

, , ,

,

L L B B

T T
 

5 7 7 8

7 8

5 7 7

(1) , , ,

    ,

(2) , , ,

L L B B

T T

L L T B

 

 

In Table 3, only 
2 1
( )S B  in fault cases 1 and 2 has the state value larger than 0.5, thus the diagnosis 

result is 
1

B . We can see that the state values of 
16 2
( )S L  and 

20 4
( )S L  are all 0.444, which means that they 

maybe in faulty state. The reason is that 
12

CB  and 
27

CB  are tripped in the two cases. However, 
8

CB  and 

10
CB  remain unchanged, thus this is insufficient to prove 

16 2
( )S L  and 

20 4
( )S L  are faulty, which is 

consistent with the diagnosis results. In case 2, the operated relays are 
2 4

,
Rs Rs

L L , but actually the faulty 

section is 
1

B , this is because the information in EPS protection systems may be incomplete, the faulty 

sections may not be included in the operated ones. 

The test results of cases 1-6 are almost the same with each other, except the GA method. We can see 

that the results of GA method are not robust, and sometimes the results are not reliable, thus it is 

incompetent with other methods. Case 7 has several different diagnosis results. In this case, the results of 

the proposed method, FDSNP method and GATS method are the same with each other. Since 

5 7 8 7 8
, , , ,L L B T T  are all detected by the 6 methods, and the difference is that, 

7
B  is not found in FL, and 

8
L  is regarded as faulty in FPN. For 

7
B , we can see that 

33 34
,CB CB  and 

35
CB  are tripped, which mean 

more than half of the its connected CBs are tripped, thus 
1

B  is more likely to be a fault section. In Table 

3, 
11

0.579x = , which is also consistent with this result. For 
8
L , just 

30
CB  is tripped, and it is not enough 

to prove that 
8
L  is fault. In conclusion, the results of the proposed MSE method, the FDSNP and GATS 

are more reasonable. As a conclusion, we can see that the proposed method is more fast, effective, and 

feasible compared with the existing methods. 

4 Conclusions 

This paper presents a new way for fault diagnosis in EPS. Operation states of system sections and CBs 

are represented by using matrices, and the fault diagnosis problem is formulated as a MSE learning 

problem. Test results demonstrate the diagnosis performance of the propose MSE method. Besides, it is 

also easy for implementation, and no prior results are needed. Our future work is applying the method for 

more complex situations, and consider prior information to improve its effectiveness. 
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