
Journal of Computers Vol. 28, No. 6, 2017, pp. 64-78 

doi:10.3966/199115992017122806006 

64 

Flexible Parallel Computing for Elliptic Curve Scalar 

Multiplication with Resistance against Simple  

Side-Channel Attacks 

Keke Wu 

School of Computer, Shenzhen Institute of Information Technology 

Shenzhen 518172, China 

wukk@sziit.edu.cn 

Received 9 July 2016; Revised 14 February 2017; Accepted 14 March 2017 

Abstract. In this paper, we proposed a flexible parallel method of scalar multiplication for 

elliptic curve cryptosystems (ECC) using our proposed partition and integration models. In 

contrast to previous parallel scalar multiplication methods, our method can be implemented into 

various parallel systems with resistance against simple side-channel attacks (SSCA). 

Implementation results indicate that our method can be implemented into various parallel 

systems, which provide a speedup ratio of 1.55 relative to the binary method on a generic curve 

over Fp. Furthermore, for resisting against SSCA, previous secure scalar multiplication methods 

can be integrated into our method. Experimental results indicate that our SSCA-protected 

version can resist against SSCA. 

Keywords:  elliptic curve cryptosystems, parallel computing, scalar multiplication, simple side-

channel attacks 

1 Introduction 

Elliptic curve cryptosystems (ECC) were independently introduced by Miller [1] and Koblitz [2] in the 

1980s, which attracted increasing attention in recent years due to the requirement of shorter private key 

length with the same security level, in comparison with other public-key cryptosystems. In ECC, the 

scalar multiplication is the dominant and time-consuming operation. Since then, acceleration of scalar 

multiplication in ECC has become an important issue. Given a scalar d and an elliptic curve point P, a 

scalar multiplication dP is computed by a series of addition operations (A) and doubling operations (D) of 

the point P, depending upon the bit sequence representing of d. The structure of scalar multiplication 

involves three computational levels: scalar multiplication algorithm, point arithmetic, and field arithmetic. 

We will mainly focus on improvements at the scalar multiplication algorithm level to speed up the ECC 

scalar multiplication. In this regard, traditionally, a scalar multiplication dP is computed through the 

binary method [3], whereas the operation time is long due to the sequential process. For the scalar d with 

k bit length, the time complexity of the binary method reaches ( / 2)kD k A+ . Enormous research has been 

conducted to speed up the binary method through reducing the number of elementary point addition 

operations, such as non-adjacent form (NAF) method, window NAF method, and sliding window method 

etc. Detailed analyses of scalar multiplication techniques are given in [4]. 

However, these sequential scalar multiplication methods are not suitable for high-performance end 

servers because of the sequential computation. To adapt to high-performance implementations, parallel 

scalar multiplication methods are needed. Various parallelisms for scalar multiplication have been 

proposed [5-13]. These methods can efficiently speed up scalar multiplication, and some of them [7-11] 

can further secure scalar multiplication against so-called simple side-channel attacks (SSCA) [14-16] that 

have aroused widespread attentions. However, most of them are limited to parallel systems with fixed 

number of processors (normally 2, 3 or 4 processors) due to using the point or field arithmetic level 

parallelism. 



Journal of Computers Vol. 28, No. 6, 2017 

65 

In this paper, based on our previous work of scalable parallel processing of scalar multiplication [17], 

we propose a flexible parallel scalar multiplication method to be implemented into various parallel 

systems that are not limited to fixed number of processors. Based on our previous work, furthermore, we 

give the parallelization implementation for proposed parallel scalar multiplication method in a cluster 

system, and we give the side-channel analysis experiment to verify the side-channel security of our 

proposed method. Usually, various parallel systems with flexible number of processors involve 

symmetric multiprocessor, massively parallel processor, distributed shared memory multiprocessor, 

cluster of workstations, grid computing environment, and even cloud computing environment etc. 

In contrast to previous scalar multiplication parallelisms, we focus our efforts to parallelize ECC scalar 

multiplication operations at the scalar multiplication algorithm level. We first iteratively partition the 

scalar d (with k bit length) in half by n times into 2n

 equal length sub-scalar. Then the 2
n sub-scalar 

multiplications are distributed onto 2n processors in a parallel system. Next, we compute the 2n sub-scalar 

multiplications with the binary method in parallel and then obtain 2n elliptic curve points concurrently. 

Finally, based on our proposed scalar integration model, we compute additions of every two points the 

same way recursively in parallel, until we only need to compute a single addition of two points. The 

division is flexible and on the task level parallelism, which is naturally adapted for execution in various 

parallel systems. The time complexity is only ( / 2 log )kD k p p A+ + . With the optimal partition 

times log 2n k= − , the time complexity is reduced to (log )kD k A+ . Moreover, our technique does not 

aim at any special structure of the elliptic curve due to using the scalar multiplication algorithm level 

parallelism, and it covers the case where curve points are not known a priori. Thus, our method is on an 

arbitrary elliptic curve in Weierstrass form as specified [18-20]. 

On the other hand, since our method is at the highest operation level, previous SSCA-protected scalar 

multiplication methods [16, 22-28] can be integrated into our method for resisting against SSCA. 

Performance analysis results of our parallel SSCA-protected version indicate that our flexible parallel 

scheme can be more suitable for parallelization of expensive SSCA-protected scalar multiplication 

methods. 

Finally, we implement our proposed parallel method in a Chinese DAWNING TC5000 cluster system, 

which is a flexible hyper parallel processing architecture. The maximal speedup ratio reaches 1.55 

relative to the sequential binary method on a generic curve over
p

F with 256 bits for the prime p and a 

scalar d of size 256 bits. Meanwhile, we implement the binary method and double-and-add-always 

method in smart cards and present side-channel experimental results to prove our SSCA-protected 

version is secure against SSCA. 

The rest of the paper is organized as follows. In Section 2, we introduce the background in ECC scalar 

multiplication and side-channel attacks. In Section 3, we propose the scalar partition and integration 

models. In Section 4, we propose a flexible parallel scalar multiplication method based on the scalar 

partition and integration models. In Section 5, we analyze the time complexity for our method. In Section 

6, we present a simple example for the flexible method. In Section 7, we propose an SSCA-protected 

version for our parallel method. In Section 8, we present detailed comparison between previous parallel 

scalar multiplication methods and our proposed flexible parallel method. In Section 9, we implement our 

method in a parallel system and present implementation results. In Section 10, we implement the binary 

method and double-and-add-always method in smart cards and present side-channel experimental results. 

Finally, we conclude in Section 11. 

2 Background 

In this section, we first present the classic binary method of elliptic curve scalar multiplication, and then 

discuss the current state of affairs in scalar multiplication countermeasures against simple side-channel 

attacks (SSCA). 

2.1 Classic Binary Method 

The classic method to compute a scalar multiplication dP is the straightforward binary method [3] based 

on the binary expansion of a scalar
1 2 1 2

( ... )
k k

d d d d d
−

= , where dk and d1 is the most significant bit (MSB) 



Flexible Parallel Computing for Elliptic Curve Scalar Multiplication with Resistance against Simple Side-Channel Attacks 

66 

and the least significant bit (LSB) of d, respectively, and k is the bit length of d. This method includes 

two different implementation types [4]. One is the right to left binary method and the other is the left to 

right binary method. We describe one version (left to right) of them as follows. 

Algorithm 1 (Classic Binary Method). 

Input: 
1 2 1 2

( ... )
k k

d d d d d
−

= , an elliptic curve point P 

Output: dP 

Q=O; 

fori = k to 1 do            /* scan d from MSB to LSB */ 

{ 

Q= 2Q;                /* point doubling */ 

if (di = 1) then Q = Q + P;  /* point addition */ 

} 

Return Q; 

On average, the expected number of bit “1” in the binary representation of d is k/2, thus the expected 

time complexity of the binary method is approximately k/2 point additions (A) plus k point doublings (D), 

denoted as ( / 2)kD k A+ . 

2.2 Side-channel Attacks 

Side-channel attacks (SCA) [14-16] exploit leaked side-channel information, such as power consumption, 

electromagnetic emanations and running time etc., from running cryptographic devices to reveal the 

secret keys. Generally, simple SCA (SSCA) and differential SCA (DSCA) are the two main attack 

techniques. The goal of SSCA is to learn the secret key using the information obtained through carefully 

observing the side-channel leakage. For example, the binary method (Algorithm 1) consists of a point 

doubling followed by a point addition if the key bit is “1”, and a point doubling if the key bit is “0”. 

Since the side-channel pattern of point addition is different from that of point doubling, binary 

implementation operations are key-dependent executions that attackers can easily reveal the secret key 

from a single side-channel trace. The more sophisticated DSCA that perform the programs multiple times 

and manipulate the results with statistical tools are not really a threat to ECC since they are easily 

avoided by randomizing the inputs [16]. Therefore, in this paper we concentrate on SSCA. 

Great research efforts [16, 21-27] have been invested to protect scalar multiplication against SSCA. 

These countermeasures can be generally classified into the following three groups. The first group is to 

make the processing of bits “1” and bits “0” of multiplier d indistinguishable, typically by means of 

double-and-add-always method [16], Montgomery method [21], and partition method [26] where scalar 

multiplication operations appear as a point doubling followed by a point addition regularly. The second 

group is to make the point addition and the point doubling indistinguishable by means of unifying the 

addition formulas [22-24]. The third group is to insert dummy operations and divide each process into 

atomic blocks so that it can be expressed as the repetition of instruction blocks which appear equivalent 

by SSCA [22, 27]. All these SSCA-protected methods can be integrated into our proposed parallel 

method for resisting against SSCA. 

3 Proposed Partition and Integration Models 

In this section, we propose an elliptic curve cryptographic scalar partition and integration technique. The 

basic idea is to iteratively partition the binary bit string of a scalar in half by several times, and then these 

sub-scalars are integrate into the original decimal scalar recursively based on the conversion rule between 

binary and decimal. Consequently, a scalar multiplication can be divided into several sub-scalar 

multiplications along the scalar partition procedures. The products of these sub-scalar multiplications can 

then be accumulated into the final product of the scalar multiplication along the scalar integration 

procedures. The scalar partition and integration techniques are well suited to parallelism. 

Let a k bit length scalar d be iteratively partitioned in half by n times, i.e. d is divided into 2n equal 

length sub-scalars. Let each sub-scalar of d be denoted as n

i
B for 1, 2, ..., 2 1, 2

n n

i = − , i.e. 

2 12 2 1
|| || ... ... || ||

n n

n n n n

d B B B B
−

= , where ‘ || ’ is the concatenation operator. The depth of this full binary tree 



Journal of Computers Vol. 28, No. 6, 2017 

67 

is the partition times n. The number of leaves is 2n

 that is the number of sub-scalars. To better illustrate 

the scalar integration procedures, we first present a definition as follows. 

Definition 1. Let x, y be positive integers, and let |y| denote the bit length of the binary y. We define the 

following function: 

 

| |( , ) 2 yf x y x y= ⋅ + . (1) 

Using the definition, we can quickly obtain a lemma as follows. 

Lemma 1. Let 1i

j
B

+ and 1

1

i

j
B

+

−
denote the jth and (j-1)th sub-scalars after partition d in half by i+1 times, 

respectively, where {0, 1, ..., 1}i n∈ − and 1 1{2 , 2 2, ..., 4, 2}i ij + +

∈ − . We refer to them as (i+1)th-partition 

sub-scalars. Then we have the ith-partition sub-scalar as follows: 

 

1 1

/ 2 1
( , )i i i

j j j
B f B B+ +

−
= .  (2) 

The equation (2) also can be expressed by a function 1 1

/ 2 1
( , )i i i

j j j
f f B B+ +

−
⇔ . 

Proof. Because 1i

j
B

+ and 1

1

i

j
B

+

−
denote the jth and (j-1)th sub-scalars after partition d in half by i+1 times, 

respectively, we have the ith-partition sub-scalar 1 1

/ 2 1
||i i i

j j j
B B B

+ +

−
= , where {0, 1, ..., 1}i n∈ − and 

1 1{2 , 2 2, ..., 4, 2}i i
j

+ +

∈ − . According to the conversion rule between binary and decimal, and Definition 

1, we can conclude the following equation: 

 

1

1
| |1 1 1 1 1 1

/ 2 1 1 1|| 2 ( , )
i
jBi i i i i i i

j j j j j j j
B B B B B f B B

+

−+ + + + + +

− − −
= = ⋅ + = .  (3) 

According to Lemma 1, we can integrate every two sub-scalars among the 2n sub-scalars the same way 

recursively in parallel until we only need to integrate two sub-scalars into the initial scalar d. The scalar 

integration procedures are the procedures of converting binary to decimal, which is the reverse scalar 

partition model. 

4 Flexible Parallel Computations 

In this section, we first depict the flexible parallel implementation model based on our proposed scalar 

partition and integration models. Then we propose a flexible parallel scalar multiplication method. 

4.1 Flexible Parallelization Model 

Based on the scalar partition model, the scalar multiplication dP can be divided into 2
n sub-scalar 

multiplications that can be computed by the binary method in parallel as follows. 

 

2 12 2 1

2 12 2 1

2 12 2 1

( || || ... ... || || )

( ), ( ), ... ..., ( ), ( )

, , ... ..., , ,

n n

n n

n n

n n n n

n n n n

n n n n

dP B B B B P

B P B P B P B P

Q Q Q Q

−

−

−

= ⋅

⇒ ⋅ ⋅ ⋅ ⋅

⇒

 (4) 

where n

j
Q = Binary Method ( n

j
B , P), i.e. we obtain 2n elliptic curve point outputs concurrently. 

To better depict the procedures of accumulating these sub-scalar multiplications into the final product 

of the scalar multiplication dP in parallel, we present the following theorem. 

Theorem 1. Let 1i

j
Q

+ and 1

1

i

j
Q

+

−
denote the products of sub-scalar multiplications 1i

j
B P

+

⋅ and 1

1

i

j
B P

+

−
⋅ , 

respectively, where {0,1,..., 1}i n∈ − and 1 1{2 ,2 2,...,4,2}i i
j

+ +

∈ − . We refer to them as (i+1)th-partition 

sub-scalar multiplications. Thus, the product of the ith-partition sub-scalar multiplication is as follows: 

 

1 1

/ 2 1
( , )i i i

j j j
Q f Q Q+ +

−
= . (5) 

Herein, we assume that 1

1
| |i

j
Q

+

−
gets the bit length of correspondent sub-scalar 1

1

i

j
B

+

−
. The equation (5) also 



Flexible Parallel Computing for Elliptic Curve Scalar Multiplication with Resistance against Simple Side-Channel Attacks 

68 

can be expressed by a function 1 1

/ 2 1
( , )i i i

j j j
f f Q Q+ +

−
⇔ . 

Proof. According to Lemma 1 and Definition 1 presented above, we have the following equation: 

 

1

1
| |1 1 1 1

/ 2 1 1( , ) 2
i
jBi i i i i

j j j j j
B f B B B B

+

−+ + + +

− −
= = ⋅ + .  (6) 

The equation (6) is multiplied by an arbitrary elliptic curve point P on both sides of the equation. Thus 

we can conclude the following equation: 

 

1

1

1

1

| | 1 1

/ 2 / 2 1

| | 1 1

1

1 1

1

2

2

( , ).

i
j

i
j

Bi i i i

j j j j

B i i

j j

i i

j j

B P Q B P B P

Q Q

f Q Q

+

−

+

−

+ +

−

+ +

−

+ +

−

⋅ = = ⋅ ⋅ + ⋅

= ⋅ +

=

 (7) 

According to the scalar integration model and Theorem 1, we compute additions of every two points 

among the 2n

 points the same way recursively in parallel, until we only need to compute a single 

addition of two points. 

4.2 Proposed Method 

According to the parallelization procedures introduced above, we develop a flexible parallel scalar 

multiplication method as follows. 

Algorithm 2 (Flexible Parallel Method). 

Input: 
12 2 1

|| || ... ... ||
n n

n n n

d B B B
−

= , an elliptic curve point P 

Output: dP 

Q = O; 

for 1j = to 2n do in parallel 

{ 
n

j
Q = Binary Method ( n

j
B , P); 

} 

for 1i n= − downto 0 do 

for 1
2
i

j
+

= downto 2 by 2 do in parallel 
1 1

/ 2 1
( , )i i i

j j j
Q f Q Q+ +

−
= ; 

Return 0

1
Q ; 

In the first “for” loop of Algorithm 2, these 2n sub-scalar multiplications n

j
B P⋅ are independently 

executed in parallel by calling the binary method, and generate 2n elliptic curve points as outputs 

concurrently. The scalar partition times n is flexible. The maximum of n is determined by the available 

number of processors p in a parallel system, where logn p= ⎢ ⎥⎣ ⎦ . In the second and third “for” loops, 

these 2n points are recursively accumulated into the final solution in parallel. 

Our technique works by iteratively dividing a task (scalar multiplication) into several sub-tasks (sub-

scalar multiplications) of the same type, until these sub-tasks are distributed into the available processors 

in a parallel system. The results of the sub-tasks are then recursively accumulated into the final solution 

to the original task. The division of the task is flexible and closure. Therefore, our method is flexible and 

on the task level parallelism (i.e. scalar multiplication operation level parallelism) that are adapted to 

various parallel systems with flexible number of processors. 

However, previous parallelisms of scalar multiplication are on the point or field operation level 

parallelism (i.e. instruction level parallelism), which are not on the task’s closure. Hence, previous 

parallelisms of scalar multiplication only can be adapted to parallel systems with fixed number of 

processors. Moreover, we do not exploit any special structure of the curve for the parallelization of the 

scalar multiplication, and we cover the case where elliptic curve points are not known a priori. Thus, our 

method works for an arbitrary Weierstrass curve. 



Journal of Computers Vol. 28, No. 6, 2017 

69 

5 Performance Analysis 

Generally, we use the numbers of point additions (A) and point doublings (D) to evaluate the time 

complexity in scalar multiplication methods. In the first “for” loop of Algorithm 2, we use the binary 

method to compute every sub-scalar multiplication n

j
B P⋅ in parallel, where {1, 2, 3, ..., 2 }nj∈ . The 

product is denoted as n

j
Q . Thus, the time complexity of the first loop is as follows: 

 

1

2 2 2
jB n n

k k
t D A= ⋅ + ⋅ ⋅ . (8) 

According to Definition 1, the function 1 1

1
( , )i i

j j
f Q Q+ +

−
takes 1( / 2 )i

k D A
+

+ in parallel in the third “for” 

loop that is embedded in the second “for” loop that executes n time iterations in sequence. Thus the time 

complexity of Algorithm 2 is as follows: 

 

1 1
( ... ) ( )
2 2 2 2jp B n n n

k k k k
t t D nA kD n A

− +
= + + + + + = + + . (9) 

In terms of the equation (9), the problem to solve the minimum of
p
t is the problem to solve the 

minimum of the following function: 

 

1
( )

2x

k
g x x

+
= + . (10) 

When ( ) 0g x′ = , i.e. log log(ln 2) 1x k= + − , ( )g x reaches the minimum. Thus, the optimal partition 

times
opt
n are: 

 

log log(ln 2) 1 log 2,

log log(ln 2) 1 log 1.
opt

k k
n

k k

⎧ + − = −⎢ ⎥⎪ ⎣ ⎦
= ⎨

+ − = −⎡ ⎤⎪ ⎢ ⎥⎩
 (11) 

For simplicity, we get the optimal partition times log 2
opt
n k= − . When the available number of 

parallel processors p is no less than log 2
2 / 4

k
k

−

= , we obtain the best case time 

complexity
min

(log )
p
t kD k A= + . The time complexity of Algorithm 1 also can be given as follows: 

 

( log ) , / 4,
2

(log ) , / 4,

p

k
kD p A when p k

pt

kD k A when p k

⎧
+ + <⎪

= ⎨
⎪ + >=⎩

 (12) 

which are significantly less than ( / 2)kD k A+ of the binary method when the available number of parallel 

processor p is relative large. 

For example, if the bit length of a scalar d is k = 256, then optimal partition times log256 2 6n = − = . 

When 6
2p < , we should partition the scalar d in half by

2
log p times into p parts for obtaining the time 

complexity 256 (256 / 2 log )
p
t D p p A= + + . When 6

2p ≥ , however, we should partition the scalar d in 

half by 6 times for obtaining the best case time complexity
min

256 8
p
t D A= + . 

6 A Simple Example 

Herein, we give an example to depict the process of the proposed technique. For the sake of simplicity, 

we only assume the scalar
10 2

(38749) (1001011101011101)d = = the bit length of d is k = 16. 



Flexible Parallel Computing for Elliptic Curve Scalar Multiplication with Resistance against Simple Side-Channel Attacks 

70 

6.1 Partition and Integration Models 

According to the equation (11), the optimal partition times are log16 2 2
opt
n = − = . We partition the 

scalar d in half by 2 times as shown in Fig. 1. 

 

Fig. 1. Partition a scalar in half by 2 times 

According to Lemma 1, we can integrate every two sub-scalars among the 4 sub-scalars the same way 

recursively in parallel until we only need to integrate two sub-scalars into the initial scalar d. The scalar 

integration model is shown in Fig. 2. 

 

Fig. 2. Integrating four sub-scalars into initial scalar 

6.2 Parallelization Procedures 

Based on the scalar partition model, the scalar multiplication 38749dP P= can be divided into four sub-

scalar multiplications that can be computed by the binary method in parallel as follows. 

 

38749 (1001|| 0111|| 0101||1101)

(1001) , (0111) , (0101) , (1101) .

P P

P P P P

=

⇒

 

By calling the binary method for computing the four sub-scalar multiplications, we obtain four elliptic 

curve point outputs concurrently. 

According to the scalar integration model and Theorem 1, we compute additions of every two points 

among the four points the same way recursively in parallel, until we only need to compute a single 

addition of two points. We present the parallelization procedures of the scalar multiplication 

38749dP P= as following Fig. 3. 

 

Fig. 3. Parallelization procedures of a scalar multiplication 

The four sub-scalar multiplications 1001P, 0111P, 0101P and 1101P are executed in four parallel 

processors concurrently by calling the binary method. According to Theorem 1, the former two points 



Journal of Computers Vol. 28, No. 6, 2017 

71 

and the latter two points are accumulated into one point 151P and one point 93P in two processors 

concurrently by means of 1

2
f and 1

1
f , respectively. Then the two points 151P and 93P are accumulated 

into the final one point 38749P in one processor by means of 0

1
f . 

According to the equation (12), the best case time complexity of the example is about 16 4
p
t D A= + . 

However, the time complexity of the example implemented by the sequential binary method reaches 

about 16 8
s
t D A= + . 

7 SSCA-Protected Version 

In Algorithm 2, the 2n sub-scalar multiplications of our method are executed independently in parallel by 

calling the binary method, thus the kinds of variants of the binary method can be applied to our method 

by means of substituting the binary method. For example, the three group SSCA-protected scalar 

multiplication methods mentioned above can be integrated into our method for resisting against SSCA by 

means of substituting the binary method. 

7.1 Proposed Method 

Algorithm 2 mainly consists of two “for” loops. The second “for” loop is to continuously execute a 

serious of point doubling operations followed by one point addition operation, and the number of point 

doublings is dependent upon the bit length not the bit value of sub-scalars. Hence, the second “for” loop 

is inherently key-independent execution that is secure for resisting against SSCA. The first “for” loop is 

key-dependent execution due to the unprotected binary method. Thus, previous SSCA-protected scalar 

multiplication methods (double-and-add-always method [16], Montgomery method [21], partition 

method [26], unifying the addition formulas [22], [23], [24], and side-channel atomicity [22], [27] etc.) 

can be still applied to the first “for” loop of Algorithm 2 for resisting against SSCA by means of 

substituting the unprotected binary method. 

For example, we substitute the binary method with double-and-add-always method to compute these 

sub-scalar multiplications in parallel for side-channel security as shown in Algorithm 3. 

Algorithm 3 (Flexible Parallel Secure Method). 

Input: 
12 2 1

|| || ... ... ||
n n

n n n

d B B B
−

= , an elliptic curve point P 

Output: dP 

Q = O; 

for 1j = to 2n do in parallel 

{ 
n

j
Q = Double-and-add-always Method ( n

j
B , P); 

/* substitute the binary method with an SSCA-protected scalar multiplication method */ 

} 

for 1i n= − downto 0 do 

for 1
2
i

j
+

= downto 2 by 2 do in parallel 
1 1

/ 2 1
( , )i i i

j j j
Q f Q Q+ +

−
= ; 

Return 0

1
Q ; 

Similarly, we can substitute the binary method with other SSCA-protected scalar multiplication 

methods, which also can achieve the same secure effect. 

7.2 Time Complexity 

The complexity of double-and-add-always method is about kD kA+ , thus the time complexity of 

Algorithm 3 is as follows: 



Flexible Parallel Computing for Elliptic Curve Scalar Multiplication with Resistance against Simple Side-Channel Attacks 

72 

 

1
( ) ( ... )
2 2 2 2 2

( ) .
2

p n n n n

n

k k k k k
t D A D nA

k
kD n A

−

= + + + + + +

= + +

 (13) 

Similarly, we solve the optimal partition times log 1
opt
n k= − (or log k ). The time complexity of 

Algorithm 3 also can be given as follows: 

 

( log ) , / 4,

(1 log ) , / 4,

p

k
kD p A when p k

pt

kD k A when p k

⎧
+ + <⎪

= ⎨
⎪ + + >=⎩

  (14) 

which are significantly less than kD kA+ of double-and-add-always method when the available number of 

parallel processor p is relative large. 

8 Comparison 

Similarly to other systems, ECC can be adapted to parallel architectures at different algorithmic levels. 

Aoki, Hoshino and Kobayashi [5], Izu and Takagi [6] introduced efficient parallel point operations 

targeting SIMD-based processors. Aoki et al. [5] introduced modified Jacobian coordinates (X, Y, Z, Z2) 

to develop fast parallel formulas for platforms that can execute two and three operations simultaneously. 

Izu and Takagi [6] presented formulas for two-processor architectures. Longa and Miri [11] introduced 

the replacing multiplications methodology that allows the development of superior parallel operations 

that are more efficient for multiprocessor/parallel execution. In this regard, Longa and Miri [11] proposed 

faster parallel formulas that are able to execute three and four operations simultaneously. However, the 

limitation of these works is that they rely on traditional point operation formulas, which are restricted to a 

fixed number of squarings and multiplications over finite fields. 

The previous methods target unprotected implementations where simple side-channel analysis (SSCA) 

is not a concern. However, Fisher, Giraud, Knudsen and Seifet, Izu and Takagi [7-8] presented efficient 

parallel schemes on generic curves over prime fields using the Montgomery Ladder, which is 

intrinsically protected against SSCA because every iteration in the main loop involves one doubling and 

one addition. An advantage of this method is that the formulas involve computation with the x-coordinate 

only. In particular, Fischer et al. [7] presented a more attractive scheme since it parallelizes doublings and 

additions at the field operation level, whereas Izu and Takagi [8] proposed parallel method in point 

operation level in the main loop. The latter has the limitation that the cost of the every iteration is 

determined by the most costly point operation, namely, point doubling and addition. Later, Izu and 

Takagi [9] improved the previous proposals and introduced a unified Doubling-Addition formula for the 

Montgomery Ladder method. The composite formula was then efficiently parallelized. Mishra proposed 

a pipelined approach for generic curves over prime fields using the standard point arithmetic [10]. In this 

scheme, each point operation is protected against SSCA using atomicity and the atomic block execution 

is done through a pipeline, where up to two atomic blocks can be computed simultaneously. Because a 

pipelined atomic operation can begin its execution before the previous atomic operation is complete, the 

total throughput is significantly reduced to a few atomic blocks. Longa and Miri [11] propose a faster 

two-processor SSCA-protected scheme that introduces further cost reductions by using the enhanced 

atomic structure with squarings. The atomic structure not only offers true protection against SSCA by 

distinguishing multiplications from squarings but also allows us to pack more field operations in each 

block. Ahmed, Turki and Paul [12] computed scalar multiplication more efficiently using the post-

computation method in the more typical case where the elliptic curve point is variable. Reza and Arash 

[13] proposed efficient and high speed architectures to implement point multiplication on binary Edwards 

and generalized Hessian curves. They perform a data-flow analysis and investigate maximum number of 

parallel multipliers to be employed to reduce the latency of point multiplication on these curves.  

In a word, previous parallel scalar multiplication methods are on point or field arithmetic level 

parallelism that only can be adapted to parallel systems with fixed number of processors (normally 2, 3 or 

4). In this paper, we focus our efforts to parallelize scalar multiplication at the scalar multiplication 



Journal of Computers Vol. 28, No. 6, 2017 

73 

algorithm level for the implementation in various parallel systems with flexible number of processors. On 

the other hand, the binary method embedded in our method can be substituted with previous SSCA-

protected scalar multiplication methods [16, 22-28] to resist against SSCA. 

In contrast to previous methods, our method is on scalar multiplication algorithm level (task level) 

parallelism that prompts good scalability. Consequently, our method can be implemented into various 

parallel systems with flexible number of parallel processors. 

On the other hand, since our method is on the highest operation level, previous parallel scalar 

multiplication techniques [5-13] can be integrated into our method for further speedup. These parallel 

techniques usually involve efficient elliptic curve point or field arithmetic. In a sense, our method is 

downward compatible with previous parallel scalar multiplication methods, which are on the point or 

field operation level parallelism. Consequently, there is no need to compare the time complexity between 

our method and previous parallel scalar multiplication methods. 

9 Parallelization Implementations 

In this section, we implement our method (Algorithm 2) on generic curves in a parallel system. For the 

implementation of Algorithm 2 we exploit a Chinese DAWNING TC5000P cluster system (Fig. 4), 

which is a flexible hyper parallel processing architecture: Generation IV Blade Server, 7U/40PCS 

architecture, 4-way AMD 1.9GHz master frequency 4-core Bacelona CPU, 4-way AMD Shanghai 

8374HE 2.2GHz processor, 4GB Reg. per processor, 64GB solid state disk, dual 1000M network adapter. 

 

Fig. 4. Chinese DAWNING TC5000 cluster system 

We choose a generic curve 2 3
:E y x ax b= + + over

p
F with 256 bits for the prime p, a generating point 

P of this group and a scalar d of size 256 bits. The running time of the binary method (Algorithm 1) is 

about 7.13ms when choosing a single processor from the cluster system. Table 1 summarizes our running 

time (ms) and speedup ratio (Sp) results for various implementations of Algorithm 2 on a generic curve in 

parallel systems with flexible number of parallel processors. 

Table 1. Speedup ratio and running time t (ms) for partition times n and parallel processor number p on a 

generic curve when k = 256. 

n 1 2 3 4 5 6 7 8 

p 2 4 8 16 32 64 128 256 

t 5.77 5.19 4.91 4.73 4.64 4.61 4.82 5.25 

Sp 1.24 1.37 1.45 1.51 1.54 1.55 1.48 1.36 

 

Table 1 can be clearly described by Fig. 5. The lower curve is the implementation results. Similarly to 

the performance analysis results, the Sp of the implementation is increasing when p < 64. However, the 

difference is that Sp is decreasing when p > 64 (not p > 128). When p = 64, the maximal speedup ratio 

(Spmax) reaches 1.55. We also can find the slope is decreasing with the increase of the number of parallel 

processors when p < 64. Moreover, every Sp and slope of the implementation results are less than that 

every correspondent Sp and slope of the performance analysis results when p < 64. These variations 

indicate that implementation results are slower than performance analysis results, which results from 

communication delays between units. The communication delay is increasing with the increase of the 

number of parallel processors. Thus, when the number of parallel processors p reaches 128 even 256, Sp 

is decreasing significantly. Nevertheless, the Spmax of the implementation still reaches 1.55, which is only 



Flexible Parallel Computing for Elliptic Curve Scalar Multiplication with Resistance against Simple Side-Channel Attacks 

74 

less about 17.6% than the Spmax = 1.88 of the performance analysis. We also can get a suitable parallel 

processor number p = 16 where Sp = 1.51 that is only less about 2.6% than the Spmax = 1.55. 

 

Fig. 5. Comparison between implementation results and performance analysis results of  

our method on a generic curve 

10 Side-Channel Experiments 

In this section, we use power measurement experiments to evaluate side-channel security of the binary 

method and double-and-add-always method to prove our proposed SSCA-protected version (Algorithm 3) 

can resist against simple side-channel attacks (SSCA). 

10.1 Experimental Setup 

Our experimental setup consists of a PC, a power tracer (embedded a resistor), a digital oscilloscope, a 

USB line, a network cable, a BNC trigger line, a BNC signal line and three smart cards. The 

experimental setup is as shown in Fig. 6. The two smart cards with 8 bit 10MHz microprocessors are 

implemented with the binary method, double-and-add-always method, respectively, where EC-operations 

of scalar multiplication methods are implemented in software implementation style except the hardware 

implementation of modulo multiplication operation in prime field. The sampling frequency of power 

traces is 781.2K samples per second in our experiments. 

 

Fig. 6. Side-channel experimental setup 

10.2 Side-channel Models 

Simple side-channel attacks (SSCA) attackers try to derive the key more or less directly from one sample. 

This often requires detailed knowledge about the implementation of the cryptographic algorithm under 

attack. Generally, the principles of SSCA are: (1) the attackers need to be able to monitor the side-

channel leakage of the device under attack; and, (2) in the attacked device, the key must have a 

significant impact on the side-channel leakage within a trace or very few traces. We define following 



Journal of Computers Vol. 28, No. 6, 2017 

75 

SSCA model and security model of ECC based on the principles of SSCA and the scalar multiplication 

implemented rule. 

Definition 2. SSCA Model: SSCA on scalar multiplication implementations exploits: (1) the different 

patterns between the side-channel features of point addition (ADD) and point doubling (DBL); and, (2) 

the different patterns depend upon the key bits due to conditional branch statements. We refer to this 

SSCA model as key-dependent pattern. 

According to the Definition 2, knowledge of how the algorithm is used and implemented facilitates 

SSCA. Any implementation where the execution path is determined by the key bits has a potential 

vulnerability. 

Definition 3. SSCA-Resistant Security Model: The SSCA-resistant security is to remove the dependence 

between the different side-channel patterns of ADD and DBL and the key bits. We refer to this security 

model as key-independent pattern. 

According to the Definition 3, the three group secure methods mentioned above are to remove the key-

dependent patterns by means of indistinguishing the processing of bits “1” and bits “0” of multiplier d, 

indistinguishing the ADD and DBL, and dividing each process into atomic blocks by inserting dummy 

operations so that it can be expressed as the repetition of instruction blocks which appear equivalent by 

SSCA, respectively. 

10.3 Unprotected Binary Method 

SSCA are made easier for unprotected scalar multiplication algorithms because the field operations of 

ADD have a different side-channel pattern than that of point doubling DBL. We do power experiment of 

the binary method implementation (as shown in Fig. 7): the peaks in ADD trace are 3 clusters, but several 

slim clusters in DBL trace, and the running time of ADD is obviously longer than DBL. Obviously, there 

are different features of side-channel traces between ADD and DBL. Therefore, the power trace satisfies 

the first condition of Definition 2. 

 

Fig. 7. The different power patterns between a DBL and an ADD 

We cut one section power trace randomly from the sampled power trace as the following Fig. 8. We 

note that the conditional branch “if statement” in the binary method and the different power patterns of 

EC-operations depend on the key bits. Hence, the power trace also satisfies the second condition of 

Definition 1. Thus, according to Definition 1, recovering the key is feasible in this naive implementation 

of the binary method. Fig. 8 shows that key bit is “1” when ADD operation is followed by one DBL 

operation in one iteration between two dashed lines, whereas key bit is “0” when only one DBL operation 

in one iteration. 

 

Fig. 8. Key-dependent pattern of binary method 



Flexible Parallel Computing for Elliptic Curve Scalar Multiplication with Resistance against Simple Side-Channel Attacks 

76 

10.4 Secure Double-and-add-always Method 

According to the side-channel security analysis of Algorithm 2 in Section 6, we only need to substitute 

the unprotected binary method with side-channel secure scalar multiplication methods to resist SSCA. 

Taking double-and-add-always method for example, please see Algorithm 3, we only need to prove the 

side-channel security of double-and-add-always method. Please see Algorithm 4, according to the 

Definition 3, double-and-add-always method consists of regular operation iterations, which are key-

independent executions. 

Algorithm 4 (Double-and-add-always Method). 

Input: 
1 2 1 2

( ... )
k k

d d d d d
−

= , an elliptic curve point P 

Output: dP 

0
Q P= ; 

fori = k - 1 to 1 do /*Scan d from MSB to LSB*/ 

{ 

0 0
2Q Q= ;          /* DBL */ 

1 0
Q Q P= + ;      /* ADD */ 

0
i

d
Q Q= ; 

} 

Return 
0

Q ; 

Experimental results are shown in Fig. 9, which presents the regular “DBL-ADD” power trace 

iterations of double-and-add-always method. Hence, the experiment result proves that double-and-add-

always method is secure against SSCA. 

 

Fig. 9. Key-independent pattern of double-and-add-always method 

11 Conclusions 

In this paper we presented a fast and flexible parallel scalar multiplication method for the encryption and 

decryption of ECC on an arbitrary elliptic curve in Weierstrass form. Sequential scalar multiplication 

methods are too slow for parallel systems, and previous parallel scalar multiplication methods are limited 

to parallel systems with fixed number of processors. For these reasons, herein we proposed a fast and 

flexible parallel scalar multiplication method that can be adapted to various parallel systems. 

Implementation results indicate that our method can be implemented into various parallel systems and 

that can provide the better speedup effect. Side-channel experiments prove that our SSCA-protected 

version is secure against SSCA. 

Since our proposed parallelization technique is on the scalar multiplication algorithm level not the 

elliptic curve group law, they also can be applicable for parallelization of exponentiation using partition 

and integration exponent in other public-key cryptosystems, such as RSA cryptosystem. 

Acknowledgements 

This work was supported by the Guangdong Natural Science Foundation (Grant No. 2014A030310299), 

and the Basic Research Project of Shenzhen (Grant No. JCYJ20160415113927863). 



Journal of Computers Vol. 28, No. 6, 2017 

77 

References 

[1] V.S. Miller, Use of elliptic curves in cryptography, in: Proc. International Cryptology Conference on Advances in 

Cryptology, 1985. 

[2] N. Koblitz, Elliptic curve cryptosystems, Mathematics of Computation 48(177)(1987) 203-209. 

[3] D.E. Knuth, The Art of Computer Programming Volume 2: Seminumerical Algorithms (3nd edn), Tsinghua University Press, 

Beijing, 2002. 

[4] D. Hankerson, A. Menezes, S. Vanstone, Guide to Elliptic Curve Cryptography, Springer-Verlag, London, 2004. 

[5] K. Aoki, F. Hoshino, T. Kobayashi, H. Oguro, Elliptic curve arithmetic using SIMD, in: Proc. Fourth International 

Conference on Information Security, 2001. 

[6] T. Izuand, T. Takagi, Fast elliptic curve multiplications with SIMD Operations, in: Proc. Fourth International Conference on 

Information Security, 2002. 

[7] W. Fischer, C. Giraud, E.W. Knudsen, J.P. Seifert, Parallel scalar multiplication on general elliptic curve over Fp hedged 

against non-differential side-channel attacks, Cryptology ePrint Archive 2002(7) IACR, 2002. <http://eprint.iacr.org/2002/ 

007/> (accessed 09.01.02). 

[8] T. Izu, T. Takagi, A fast parallel elliptic curve multiplication resistant against side channel attacks, in: Proc. International 

Workshop on Practice and Theory in Public Key Cryptosystems, 2002. 

[9] T. Izu, T. Takagi, Fast elliptic curve multiplication resistant against side channel attacks, IEICE Transactions on 

Fundamentals E88-A(1)(2005) 161-171. 

[10] P.K. Mishra, Pipelined computation of scalar multiplication in elliptic curve cryptosystems, IEEE Transactions on 

Computers 55(8)(2006) 1000-1010. 

[11] P. Longa, A. Miri, Fast and flexible elliptic curve point arithmetic over prime fields, IEEE Transactions on Computers 

57(3)(2008) 289-302. 

[12] A.O. Ahmed, F.A.S. Turki, B. Paul, Efficient elliptic curve parallel scalar multiplication methods, in: Proc. 8th 

International Conference on Computer Engineering & Systems (ICCES), 2014. 

[13] A. Reza, R.M. Arash, Parallel and high-speed computations of elliptic curve cryptography using hybrid-double multipliers, 

IEEE Transactions on parallel and distributed systems 26(6)(2015) 1668-1677. 

[14] P.C. Kocher, Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems, in: Proc. International 

Cryptology Conference on Advances in Cryptology, 1996. 

[15] P.C. Kocher, J. Jaffe, B. Jun, Differential power analysis, in: Proc. International Cryptology Conference on Advances in 

Cryptology, 1999. 

[16] J.S. Coron, Resistance against differential power analysis for elliptic curve cryptosystems, in: Proc. Workshop on 

Cryptographic Hardware and Embedded Systems, 1999. 

[17] K. Wu, H. Li, D. Zhu, Fast and scalable parallel processing of scalar multiplication in elliptic curve cryptosystems, Security 

and Communication Networks 5(6)(2012) 648-657. 

[18] ANSI, Public Key Cryptography for the Financial Services Industry: The Elliptic Curve Digital Signature Algorithm 

(ECDSA), Accredited Standards Committee X9 Incorporated, Annapolis, 1999. 

[19] IEEE, IEEE Standard Specifications for Public Cryptography, IEEE Std 1363-2000, IEEE Computer Society, District of 

Columbia, 2000. 



Flexible Parallel Computing for Elliptic Curve Scalar Multiplication with Resistance against Simple Side-Channel Attacks 

78 

[20] NIST, Digital Signature Standard (DSS), FIPS PUB 186-2, National Institute of Standards and Technology, Gaithersburg, 

2000. 

[21] N. Koblitz, CM-curves with good cryptographic properties, in: Proc. International Cryptology Conference on Advances in 

Cryptology, 1991. 

[22] P.L. Montgomery, Speeding the pollard and elliptic curve algorithms for factorizations, Mathematics of Computation 

48(177)(1987) 243-264. 

[23] M. Joye, J.J. Quisquater, Hessian elliptic curves and side-channel attacks, in: Proc. Workshop on Cryptographic Hardware 

and Embedded Systems, 2001. 

[24] E. Brier, M. Joye, Weierstrass elliptic curves and side-channel attacks, in: Proc. Public Key Cryptography 2002, LNCS 

2274, 2002. 

[25] O. Billet, M. Joye, The Jacobi model of an elliptic curve and side-channel analysis, in: Proc. International Symposium on 

Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, 2003. 

[26] B. Chevallier-Mames, M. Ciet, M. Joye, Low-cost solutions for preventing simple side-channel analysis: side-channel 

atomicity, IEEE Trans. Computers 53(6)(2004) 760-768. 

[27] K.K. Wu, H.Y. Li, D.J. Zhu, F.Q. Yu, Efficient solution to secure ECC against side-channel attacks, Chinese Journal of 

Electronics 20(3)(2011) 471-475. 

[28] C.Y. Lu, S.M. Jen, C.S. Laih, A general framework of side-channel atomicity for elliptic curve scalar multiplication, IEEE 

Transactions on Computers 62(3)(2015) 428-438. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Japan Color 2001 Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJDFFile false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks true
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks false
      /BleedOffset [
        8.503940
        8.503940
        8.503940
        8.503940
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 400
        /LineArtTextResolution 1200
        /PresetName <FEFF005B9AD889E367905EA6005D>
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 0
      /MarksWeight 0.283460
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /JapaneseWithCircle
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [1200 1200]
  /PageSize [612.000 792.000]
>> setpagedevice


