
Journal of Computers Vol. 28, No. 6, 2017, pp. 246-256 

doi:10.3966/199115992017122806022 

246 

An Elman Neural Network-based Prediction Model for  

the Power Consumption of Servers 

Xi Jiang1, Chuan Xue2, Shengnan Yin3 and Guangjie Han*3,4 

1 School of Intelligent Equipment and Information Engineering, Changzhou Vocational Institute of 

Engineering, Changzhou 213164, China 

8000000321@czie.edu.cn 

2 College of Mechanical and Electronic Engineering, Nanjing Forest University, Nanjing, 210037, China,  

skplayer2592@gmail.com 

3 Deparment of Information and Communication Systems, Hohai University, Changzhou, 213022, China 

2466893746@qq.com 

4 State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing, 100190, 

China 

hanguangjie@hotmail.com 

Received 25 July 2017; Revised 16 October 2017; Accepted 30 October 2017 

Abstract. The growing number of the servers across the world has spurred the development of 

cloud computing. However, the appetite of the servers for power consumption is extraordinary 

because of the round-the-clock operation. This paper models the running process of the servers 

to be a nonlinear and time-variation system with uncertainties. An Elman neural network is 

established to find out the major factors that influence the power consumption of the server in 

different working conditions. Using the recommended input vector that consists of the major 

factors, the proposed Elman neural network correlate different kinds of performance data 

generated in the running of the server and transforms the data into energy information. The 

simulation results demonstrate that after training with the recommended input vector, the Elman 

neural network can provide the prediction results that has a high reliability. 

Keywords:  cloud computing, Elman neural network, mean impact value, power consumption 

prediction 

1 Introduction 

With the development of cloud computing and the global growth of data, the number of the servers in the 

data centers across the world is unceasingly increased. Currently, the appetite of the data center for power 

consumption is extraordinary because the servers in most data centers continue to slurp energy even 

when their processors are idle [1]. Thus, the power consumption of the data center has been in a 

prominent position. Against this backdrop, green data centers are put forward to reduce the power 

consumption without compromising availability or reliability [2]. There are many factors that might 

influence the power usage effectiveness (PUE) of a data center, such as cooling system, power density, 

server device, and the data center environment. The primary goal of the green data center is to timely 

predict the power consumption of the energy-consuming devices in the data center, and then prioritize 

opportunities to reduce the power consumption with available technologies and best practices. 

Consuming 50-70% of the total power consumption, servers are the primary energy-consuming 

equipment in the data center. Predicting the power consumption of the server is an important research 

direction in the establishment of the green data center [3]. The components of a server include the 
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motherboard, CPU, fans, memory, hard disk, network card, and power supply unit. Since these 

components have certain interactions during the operation of the server, the power consumption of the 

server is a complex and non-linearity process by effect of multiple factors. However, the power 

consumption of each component cannot be measured in a uniform way. Also, exactly describing the 

power consumption of each component by accurate mathematics is unrealistic. It is difficult to establish a 

precise model to obtain appropriate forecasting results using traditional mathematical models and 

statistical methods. 

Domestic and international scholars have done lots of studies on predicting the power consumption of 

the physical machines and virtual machines. Lewis, Ghosh and Tzeng [4] summed up the power 

consumption of all functional modules with different weighting factors to predict the power consumption 

of the physical machine. Bircher and John [5] divided the physical machine into several subsystems and 

accumulate the power consumption of each subsystem. Bertarn, Gonzalez and Martorell [6] predicted the 

power consumption of the physical machine by monitoring the power consumption of each core 

contained in the physical machine. Many papers have been published to date on the use of linear 

regression models for predicting the power consumption of the virtual machines [7-11]. For example, 

Quesnel, Mehta and Menaud [12], proposed a linear regression model to calculate the power 

consumption of a single virtual machine. The proposed model considers the memory resource 

consumption and the CPU resource consumption independently. Jiang, Lu and Cm [13] established a 

two-dimensional table to describe the relationship between the LLC (Logical Link Control) and the CPU 

utilization. Given the number of LLC and the CPU utilization, the power consumption of the virtual 

machine can be obtained by looking up the table. However, existing strategies widely use linear 

regression model for power consumption prediction, ignoring the non-linear process when the server 

works in different conditions [14-15]. A performance comparison of existing linear power models is 

shown in Table 1. 

Table 1. A performance comparison of linear power model 

Model Element Linear Power 
Model CPU I/O Chip Disk Memory Bus Cache DRAM HDD

Temper
ature 

Prediction error 

[4] √     √    √ 4% 
[5] √ √ √ √ √      9% 
[6] √          1.89-6% 
[7] √   √ √      0.4-2.4W 
[8] √ √ √ √ √ √ √ √ √  3% 
[9] √    √    √  5% 
[10] √   √   √ √   6-7% 
[11] √   √ √  √    3.91% 
[12] √    √      5-6% 
[13] √    √      2.61W 

 

During the operation of the server, massive data will be produced. However, without fully mine the 

information contained in data, people confront the problem of rich data and poor knowledge. Different 

from existing work which model the server as a fixed linear system, this paper considers the running 

process of the servers to be a nonlinear and time-variation system with uncertainties. To fully exploit the 

value of data generated in the running process, an Elman neural network is established to find out the 

major factors that influence the power consumption of the server in different working conditions. Finally, 

using the major factors as input vector, the proposed Elman neural network is able to correlate different 

kinds of performance data generated in the running of the server and transforms the data into energy 

information. The technical achievements of our work is summarized as follows: 

‧Model the running process of the servers as a nonlinear and time-variation system with uncertainties. 

‧Figure out the major factors that influence the power consumption of a server in different working 

conditions through an Elman neural network-based mean impact value (MIV) algorithm. 

‧For a certain working condition, purely using the major factors as the input vector of the Elman neural 

network to predict the energy consumption of the server. 

‧Adjust the parameter of the Elman neural network and test the accuracy of its output. 
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The remainder of the paper is structured as follows: section 2 introduces the Elman neural network; 

section 3 describes the Elman neural network prediction model for the power consumption of servers; 

section 4 compares and analyzes the proposed prediction model with the conventional model; and section 

5 describes the conclusions. 

2 Elan Neural Network 

This paper establishes an Elman neural network to predict the power consumption of the servers because 

the running process of the servers is a nonlinear and time-variation system with uncertainties [16-17]. 

The topology structure of an Elman neural network is shown in Fig. 1. The first layer is called the input 

layer. Besides the nodes for the input data, the input layer includes the output feedback. When a server 

switches from the standby state to low power state, or from the low power state to high power state, the 

power consumption of the server will not happen suddenly changes. It suggests that the energy consumed 

by the server one second before is correlated with the power consumption of the server after the second. 

Therefore, the introduction of the output feedback makes sense in the predicting the power consumption 

of the server. The second layer is the hidden layer, in which the number of nodes can be adapted 

dynamically. The transfer function used in the hidden layer can be either linear or nonlinear. The third 

layer is called the transition layer, which can be viewed as a lag operator. The function of the transition 

layer is to use the output of the hidden layer in previous time as additional input added in the current 

input. The last layer is called the output layer, which transforms the input data into results. The output 

result obtained by the Elman neural network can be expressed by Eq. 1: 

 

3( ) ( ( ))y k g w x kj= . (1) 

 

3 2( ) ( ( ) ( ( 1)))
c

x k f w x k w u k= + − . (2) 
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is the knot vector in the hidden layer. xc is a feedback vector, 2
w  is the connection weight between the 

input layer and the hidden layer, 3
w  is the connection weight between the hidden layer and the output 

layer. f(*) and g(*) denote the transfer function used in the hidden layer and the output layer, respectively. 

 

Fig. 1. Elman neural network topology structure 

To evaluate and optimize the current output, Elman neural network computes error rate using the sum 

of error square as follows: 
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Through continuously adjusting the connection weight for each layer in the learning procedure, the 

network is able to achieve the minimum sum of squared errors [18]. 

3 The Elman Network Prediction Model for the Power Consumption of Servers 

The choice of input variables is essential for a neural network to predict the power consumption of the 

server accurately. In this section, a large amount of factors that might influence the power consumption 

of the servers are analyzed by the Elman neural network, aiming to find out the major factors that 

determine the power consumption of the server in different working conditions. The major factors are 

finally used by the Elman neural network for power consumption prediction, with the purpose of 

reducing the dimension of the input vector without sacrificing the accuracy and efficiency of the 

prediction model. 

3.1 Initial Input Variables in Elman Neural Network  

As an integral part of the cloud data center, servers consist of motherboard, CPU, fan, memory, hard disk, 

network card as well as power supply unit. In the server run time, each component consumes a certain 

amount of electric consumption. For instance, when the server is in no load or idle state, electric is only 

consumed by the hardware units in the server. When the server is in load, besides the electric consumed 

by the hardware units, the server invokes CPU and memory for running processes. Moreover, since the 

server is located in the cloud data center, environmental factors affect the power consumption of the 

server to some degree. For example, if the air temperature in the cloud data center is high, the server will 

produce additional refrigeration power consumption. 

The server selected as tester in this study is NF5270M3 made from Inspur. The initial variables that 

used as input in the Elman neural network include the temperature of each component in the server, 

ambient temperature and humidity, and workload. The temperature of each component in the server is 

collected by Intelligent Platform Management Interface (IPMI). The workload of the server in different 

working conditions is collected by the monitoring and management platform in the cloud data center. The 

ambient temperature and humidity are measured by hygrothermograph. Above-mentioned parameters are 

listed in Table 2. The parameters are recorded in hours and used as raw input to predict the power 

consumption of the server. 

Table 2. Initial input variables in the Elman neural network 

Types of variables Target object Variable name 

Central processing unit_0 TCPU0 

Central processing unit_1 TCPU1 

Dual In-line memory module_0 TDIMM_0 

Dual In-line memory module_1 TDIMM_1 

Dual In-line memory module_2 TDIMM_2 

Dual In-line memory module_3 TDIMM_3 

PCI bus_0 TPCIE_0 

PCI bus_1 TPCIE_1 

South bridge chip TPCH 

Intel ME_0 TME_CPU0 

Intel ME_1 TME_CPU1 

Temperature 

Indoor temperature TIndoor 

Humidity Indoor humidity HIndoor 

CPU Utilization CPU
η  

Workload 
Memory utilization Mem

η  



An Elman Neural Network-based Prediction Model for the Power Consumption of Servers 

250 

3.2 Mean Impact Value of the Initial Input Variables 

Although the parameters listed in Table 2 can reflect the power consumption of the server in different 

aspects, the dimension of the input vector is too large if all the parameters are selected as input variables. 

Besides, there are some multiple correlations between these parameters. Involving all the parameters in 

the Elman neural network will decrease prediction efficiency without any improvement in the precision. 

Thus, the major factors that determine the power consumption of the server in different working 

conditions are required to be identified. 

In this study, a server is allowed to switch between the standby state, low power state and medium 

power state. If the running power of the server is less than ten percentage of its rated power, the server is 

in the standby state. If the running power of the server is larger than ten percentage of its rated power but 

less then fifty percentage of the rated power, the server is in the low power state. If the running power of 

the server is larger than fifty percentage of the rated power but less than seventy percentage of the rated 

power, the server is in the medium power state. The running power of server is not allowed to exceed 

seventy percentage of the rated power because high power state do harm to the hardware units in the 

server and increase the failure rate. In each working state, the major factors that influence the power 

consumption of the server is determined by an Elman neural network-based mean impact value (MIV) 

algorithm. The Elman neural network-based mean impact value (MIV) algorithm is able to evaluate the 

relevance of a certain input and the output of the Elman neural network. A large mean impact value 

indicates the corresponding input is of significance and should be retained. The steps of the Elman neural 

network-based MIV algorithm is as follows: 

 

Algorithm 1: Mean impact value (MIV) algorithm 

1: Procedure: Determine the mean impact value of each variable in the input vector UT=[u1,u2,...,up] 

2: Input: initial input vector UT=[u1,u2,...,up], adjustment rate η ; 

3: For each ui∈UT 

4:    ui_increase = ui*(1+η ); 

5:    Replace ui with ui_increase in ui∈UT; 

6:    Use the Elman neural network to train the new vector UT; 

7:    The training result is yi_increase; 

8:    ui_dncrease = ui*(1-η ); 

9:    Replace ui with ui_dncrease in ui∈UT: 

10:   Use the Elman neural network to train the new vector UT; 

11:   The training result is yi_decrease; 

12:   MIV(ui) = abs(yi_increase-yi_decrease)/p;     

13: End For 

14: End Procedure 

 

Using all the parameters in Table 2 as the input, the Elman neural network is established to predict the 

power consumption of servers in the standby state, low power state and medium power state, respectively. 

In the process of sample training, 2250 groups of data were selected as training data and 55 groups of 

data were used to verify the accuracy of the prediction model. The time of training was 50. The learning 

rate was 0.03 and the error goal was 0.001. The adjustment rate ranged from 0.1 to 0.3 with a step of 0.05. 

The number of node in hidden layers is determined based on the optimal prediction. 

Fig. 2 depicts the prediction error obtained by the Elman neural network when the server is in the 

standby state. The optimal prediction can be obtained when the number of hidden nodes is 15. It can be 

observed that the prediction error had a margin of error of plus or minus 0.5. The maximum margin of 

error was of plus or minus 1.5. Thus, most of the prediction were within the range of the admissible error. 

The MIV of each variable is shown in Table 3. It can be observed that when the server was in the standby 

state, most energy were consumed to support the operation of each hardware in the server. Furthermore, 

south bridge, CPU and memory had little effect on the power consumption and because there was no 

process or thread running in the server. Therefore, the power consumption of the server in the standby 

state is mainly determined by the temperature of each hardware. 
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Fig. 2. The output result error when the server is in the standby state  

Table 3. MIV of each variable in the standby state 

Adjustment rate 
Input variables 

10% 15% 20% 25% 30% 

TCPU0 1.7862 0.7466 15.4868 4.8020 3.7344 

TCPU1 1.4535 12.0178 16.0246 5.3245 8.1504 

TDIMM_0 0.3225 2.2603 7.1362 2.4242 0.4191 

TDIMM_1 0.1128 1.6066 0.2274 1.6196 0.538 

TDIMM_2 1.2376 3.7133 2.3511 2.8195 3.5537 

TDIMM_3 1.3568 1.6357 4.5866 0.0305 3.1210 

TPCIE_0 2.2760 6.6248 34.0106 0.9798 44.3527 

TPCIE_1 21.8201 15.5274 32.1684 16.6366 4.4518 

TPCH 0 0 0 0 0 

TME_CPU0 0 0 0 0 0 

TME_CPU1 0 0 0 0 0 

CPU
η  0.0768 0.1958 0.7843 0.9994 0.1078 

Mem
η  0.0189 0.3711 0.3025 0.7467 0.8339 

 

Fig. 3 depicts the prediction error obtained by the Elman neural network when the server is in the low 

power state. The prediction is satisfying when the number of hidden nodes is 13 or 35. To reduce the 

complexity of the network, 13 hidden nodes is finally added in the hidden layer. It can be observed that 

the prediction error had a margin of error of plus or minus 3. The MIV of each variable in the low power 

state is shown in Table 4. It can be observed that the power consumption of the server was greatly 

influenced by both CPU utilization and memory utilization. This is because a number of processes and 

threads are running in the server while energy consumed by the hardware units of the server decreases. 

 

Fig. 3. The output result error when the server is in the low power state 
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Table 4. MIV of each variable in the low power state 

Adjustment rate 
Input variables 

10% 15% 20% 25% 30% 

TCPU0 0.6328 1.4656 2.7775 8.8467 2.4279 

TCPU1 0.7184 1.0868 4.1865 7.8862 3.0986 

TDIMM_0 0.7397 1.4778 0.4487 1.1569 7.4912 

TDIMM_1 0.8880 0.4902 0.7479 12.4641 2.7682 

TDIMM_2 0.3316 1.3490 0.2167 5.1266 12.1210 

TDIMM_3 1.6409 4.4449 4.3647 24.1407 21.1210 

TPCIE_0 25.3844 1.3345 10.8753 75.2558 14.8492 

TPCIE_1 4.7408 55.3875 57.0698 34.3933 122.9817 

TPCH 3.3025 3.5638 21.8603 73.9012 8.5510 

TME_CPU0 0.3592 0.5034 0.7313 0.3700 0.0198 

TME_CPU1 0.2505 0.9243 0.0098 0.1736 0.0840 

CPU
η  3.0893 5.5693 7.2032 5.6595 14.6525 

Mem
η  10.2381 1.7715 3.1657 1.5912 12.3486 

 

Fig. 4 depicts the prediction error obtained by the Elman neural network when the server is in the 

medium power state. The prediction is satisfying when the number of hidden nodes is 16. It can be 

observed that the prediction error had a margin of error of plus or minus 1. The maximum margin of error 

was of plus or minus 2. The MIV of each variable in the medium power state is shown in Table 5. 

Similar to the low power state, the power consumption of the server in the medium state is more 

controlled by both CPU utilization and memory utilization. This is because a number of processes and 

threads are running in the server while less energy is consumed by the hardware units of the server. 

 

Fig. 4. The output result error when the server is in the medium power state  

Table 5. MIV of each variable in the medium power state 

Adjustment rate 
Input variables 

10% 15% 20% 25% 30% 

TCPU0 0.5547 3.1698 3.3364 10.7987 3.5630 

TCPU1 0.4592 2.7597 3.4912 10.3994 5.5742 

TDIMM_0 1.3359 0.7795 0.6518 0.5511 2.4100 

TDIMM_1 3.2483 3.7632 7.0214 18.5359 14.8099 

TDIMM_2 0.6566 1.4828 1.4050 2.9420 3.6545 

TDIMM_3 2.9931 9.5700 30.4528 1.0494 18.4890 

TPCIE_0 52.6172 12.9500 53.3743 84.9625 10.008 

TPCIE_1 18.9635 33.9339 21.1260 88.9472 44.4697 

TPCH 0.9427 2.8123 8.9663 32.6140 9.7235 

TME_CPU0 0.4027 0.7378 0.6450 0.5244 0.4546 

TME_CPU1 0.2650 0.2422 0.2252 0.9348 0.7655 

CPU
η  10.5780 15.1423 24.8659 77.0669 26.0305 

Mem
η  1.7765 1.6898 1.1893 5.1859 12.0087 
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3.3 The Determination of the Recommended Input Variables 

Based on the above-mentioned results, the major factors that influence the power consumption of the 

server in different working states are summarized from Table 3 to Table 5. In case of the standby state, 

TPCH, TME_CPU0, TME_CPU1, 
CPU

η and 
memory

η can be removed from the raw input without 

decreasing the precision of the output. Thus, the recommended dimension of the input vector in the 

standby state is 8. Similarly, in case of the low power state or medium power state, T ME_CPU0, 

TME_CPU1 can be removed from the raw input to reduce the dimension of the input. The recommended 

input vector in the low power state and medium power state is the same and the dimension of the input 

vector is 11. However, the Elman neural network cannot use two groups of input to predict the power 

consumption of the server in different states because the working state of the server is unknown to the 

Elman neural network. The strategy proposed in this paper is to merge the two recommended input 

vectors into one vector and handle corresponding variables in the vector based on the judgment of the 

working state. It is noticed that the recommended input vector in the standby state is a subset of the 

recommended input vector in both the low power state and the medium power state. The union of the two 

recommended input vector is the the recommended11-dimensional input vector in both the low power 

state and the medium power state. Then, the server is assigned with the ability to judge whether it is in 

the standby state by inquiring the temperature of the south bridge as well as the cpu utilization. Only 

when the temperature of the south bridge as well as the cpu utilization are at a low level, the server 

determines that it is in the standby state and set the value of TPCH, 
CPU

η and 
memory

η  to 0 in the 11-

dimentional input vector. Otherwise, the true value of each variable is given in the input vector. 

4 Simulations 

The final Elman neural network used for predicting the power consumption of the servers synthesizes the 

network structure applied for each working state in section 3. The number of hidden nodes was 15. The 

learning rate was 0.03 and the error goal was 0.001. The maximum time of training was 1000. The piece 

of the hidden layer was set to 15, 22, 33 and 44. In the process of sample training, 8650 groups of data 

were selected as training data and 55 groups of data were used to verify the accuracy of the prediction 

model. The Elman neural network used the raw input vector that contains 15 variables and the 

recommend input vector that contains 11 variables to predict the power consumption of a server, 

respectively. 

Fig. 5(a) and Fig. 5(b) show the worst and the best output of the Elman neural network, using the raw 

input vector. In either the worse or the best case, it can be observed that better prediction results can be 

obtained when the piece of the hidden layer was 15 or 44. Specifically, as shown in Fig. 6(a), in the 

worse case, the forecast error was less than 20 if the server held its working state. When the working 

state of server changed, a great error of prediction result existed. As shown in Fig. 6(b), in the best case, 

the forecast error was less than 10 if the server holds its working state and was no more than 30 when the 

server’s state changed. It can be concluded that after training with the raw input vector, the Elman neural 

network cannot provide the prediction results that match the expected outputs well.  

Fig. 7(a) and Fig. 7(b) show the worst and the best output of the Elman neural network, using the 

recommended input vector. In either the worse or the best case, it can be observed that better prediction 

results can be obtained when the piece of the hidden layer was 15 or 33. Specifically, as shown in Fig. 

8(a), in the worse case, the forecast error was less than 10 if the server held its working state. When the 

working state of server changed, the prediction error was still in the acceptable scope. as shown in Fig. 

8(b), in the best case, the forecast error was less than 5 if the server held its working state and was no 

more than 10 when the server’s state changed. It can be concluded that after training with the 

recommended input vector, the Elman neural network can provide the prediction results that has a high 

reliability. 
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(a) (b) 

Fig. 5. Target and predicted values for power consumption using the raw input vector 

  

(a) (b) 

Fig. 6. Forecast error induced by the raw input vector 

  

(a) (b) 

Fig. 7. Target and predicted values for power consumption using the recommended input vector  
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(a) (b) 

Fig. 8. Forecast error induced by the recommended input vector 

5 Conclusion 

Power consumption prediction for servers is of significance to optimize the management of the cloud 

data center. In this paper, the running process of the servers is modeled to be a nonlinear and time-

variation system with uncertainties. To fully exploit the massive data generated in the standby state, low 

power state and medium power state, an Elman neural network is established and analyze the mean 

impact value of each type of data, aiming to find out the major factors that influence the power 

consumption of the server in different working conditions. Using the major factors as input vector, the 

proposed Elman neural network correlate different kinds of performance data generated in the running of 

the server and transforms the data into energy information. The simulation results show that the Elman 

neural network can provide more accurate forecasting results with low dimensional input. The foresting 

results have referential value to inspecting and processing power consumption anomalies, speeding up 

the establishment of the green data center. 

Due to the difficulty of data acquisition, our work only selects the server NF5270M3 made from 

Inspur as a test object. However, in the future, different models of servers will be hopefully established as 

an unified network model. Then, the model number of a particular server can be identified using the 

model that is built during training. Using correspond feature vectors, the unified model is able to predict 

the energy consumption of different types of servers. 
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