
Journal of Computers Vol. 29 No. 1, 2018, pp. 11-20

doi:10.3966/199115992018012901002

11

Forensic Analysis of LINE Messenger on Android

Ming Sang Chang1*, Chih Yen Chang

2

1 Department of Information Management, Central Police University, Taiwan

mschang@mail.cpu.edu.tw

2 Graduate Institute of Communication Engineering, National Taiwan University, Taiwan

gsmmcc@gmail.com

Received 14 August 2016; Revised 07 February 2017; Accepted 13 February 2017

Abstract. Instant messaging has changed the way people communicate with each other. It is used

by a wide range of age groups and backgrounds. Instant Messaging applications like LINE,

Whatsapp, and WeChat which facilitate users to send and receive chat messages, video, audio

and images via various end devices in real time. Its extensive use in everyday life provides

unique opportunities but means that it can also be used to commit crime such as cyber stalking,

cyber bullying or by becoming a medium for criminals’ communication. In order to identify

crimes, it is essentially required to retrieve these traces and evidences by using appropriate

forensic technique. This paper studies the artifacts left by LINE application with Android and

presents evidence gathering of Line messenger application. It proves beneficial for forensic

analysts and practitioners as it assists them in course of mapping and locating digital evidences

of Line messenger on Android.

Keywords: digital forensics, instant messaging, investigation, LINE

1 Introduction

Instant messaging (IM) is a type of online chat program which offers real-time text as well as audio,
video, and image files transmission over the Internet. IM allows effective and efficient communication,
allowing immediate receipt of acknowledgment or reply. Instant messenger applications such as LINE,
WhatsApp, WeChat, and Facebook Messenger are some of the most widely used applications. The smart
phones, tablet computers, personal computers, and the convenience of Internet made the use of such
applications very popular.

LINE is a proprietary instant messenger application on smartphones, tablet computers and personal
computers. LINE users can exchange texts, images, video and audio. They also can conduct free VoIP
conversations and video conferences. LINE first launched in Japan in 2011 [1]. It reaches 100 million
users within eighteen months and 200 million users only six months later [2]. LINE became Japan’s
largest social network in 2013. In October 2014 LINE announced that it had attracted 560 million users
worldwide with 170 million active user accounts [3-4]. In the second quarter of 2016 LINE announced
more than 220 million monthly active users [5].

LINE is a cross platform application with versions available for Windows, MAC, iOS, Android,
Windows Phone, etc. It is a widely used and universal application. As the use of LINE is increasing
rapidly, it is important to take measures in advance from forensic standpoint forecasting the potential use
of it in cybercrimes such as hacking, copyright infringement, cyber stalking, and cyber bullying. To solve
IM based cybercrimes, investigator need to perform forensic analysis of suspect device to find digital
evidences.

User devices and IM applications may hold the data that can provide evidence of the activities carried
out through them. The use environment of the IM applications can provide evidences. These evidences

* Corresponding Author

Forensic Analysis of LINE Messenger on Android

12

can be used to profile the behavior of its user and may even allow the investigator to anticipate the users’
actions [6-8]. Each device and application has its own acquisition requirements and potential sets of
evidence.

It challenges to forensic examiners for recovering digital evidences of a conversation under
investigation. In this work, we study and report the forensic analysis of an instant messaging namely
LINE on Android system. In this paper, we implement forensic analysis procedures on the LINE
messenger. It proves beneficial for forensic analysts and practitioners as it assists them in course of
mapping and locating digital evidences of Line messenger on Android. This paper has organized as
follows. In section 2 introduces the background and related works. In section 3, we outline the research
methodology. In section 4, results and analysis are discussed. In section 5, we discuss our research
findings. Finally, section 6 is a conclusion.

2 Related Works

The evidences were stored on three principle areas by using IM. They are hard drive, memory, and
network. Some IM services have the ability to log information on the user’s hard drive [9]. To use an IM,
an account must be established to create a screen name provided with user information. Some instant
messenger providers might assist the investigation with information of the account owner.

Evidence can be found in various internet file caches used by Internet Explorer for volatile IM and
each cache holds different pieces of data. Apart from the normal files, files left by instant messenger on a
hard drive can be in temp file format and will generally be deleted could be very difficult to retrieve once
the machine is power down. An operating system generally stores information of all the installed and
uninstalled applications in the system. The uninstalled application also leaves evidence. If a user has
deleted an instant messenger application, there is a chance that a record can be found in the registry to
prove that the instant messenger has once installed onto the system. Information is also stored within the
memory. Since every application requires memory to execute, it is logical to think that there evidence
could be left behind in the system’s memory. The analysis on live memory has allows us to extend the
possibility in providing additional contextual information for any cases. For any Windows based
operating system, it is important evidence can usually be found beneath the physical memory, hibernation
file and pagefile [10].

Artifacts of instant messaging have been of interest in many different digital forensic studies. Early
work focused on artifacts left behind by many instant messaging applications, such as MSN Messenger
[11], Yahoo Messenger [12], and AOL Instant Messenger [13]. In 2013 Mahajan et al. [14] performed
forensic analysis of Whatsapp and Viber on five android phones using UFED and manual analysis.
Cosimo Anglano [15] carried out Whatsapp forensics on Android in 2014 using YouWave virtualization
platform. Levendoski et al. [16] concluded that artifacts of the Yahoo Messenger client produced a
different directory structure on Windows Vista and 7. Wong et al. [17] and Al Mutawa et al. [18]
demonstrated that artifacts of the Facebook web-application could be recovered from memory dumps and
web browsing cache.

Said et al. [19] investigated Facebook and other IM applications, it was determined that only
BlackBerry Bold 9700 and iPhone 3G/3GS provided evidence of Facebook unencrypted. Sgaras et al. [20]
analyzed Skype and several other VoIP applications for iOS and Android platforms. It was concluded
that the Android apps store far less artifacts than of the iOS apps. Chu et al. [21] focused on live data
acquisition from personal computer and was able to identify distinct strings that will assist forensic
practitioners with reconstruction of the previous Facebook sessions. Iqbal et al. [22] studied the artifacts
left by the ChatON IM application. The analysis was conducted on an iPhone running iOS6 and a
Samsung Galaxy Note running Android 4.1. Walnycky et al. [23] added that artifacts of the Facebook
Messenger could vary depending on user settings, OS version, and manufacturer. Azfar et al. [24] adapt a
widely used adversary model from the cryptographic literature to formally capture a forensic
investigator’s capabilities during the collection and analysis of evidentiary materials from mobile devices.

To our knowledge, no detailed analysis of LINE artifacts on Android devices has been undertaken,
hence this research aims to fill the gap and provide a road map of LINE forensic artifacts. In this work,
we implement forensic analysis procedures on the LINE messenger. We study the artifacts left by LINE
application with Android and presents evidence gathering of Line messenger application.

Journal of Computers Vol. 29, No. 1, 2018

13

3 Methodology

In our research, we use virtual machines with a standard installation of Windows 10 OS. The BlueStacks
application was installed on Windows 10. Then we root the BlueStacks. The BlueStacks App Player is
designed to enable Android applications to run on Windows PCs and Macintosh computers. BlueStacks
emulates the Android OS within its own environment. The LINE application V5.8.1 was installed on the
BlueStacks. We set up 15 different configurations and analyze them. We don’t re-configure and copy
volatile memory and non-volatile memory. This allowed us to examine a variety of test in several
configurations and to facilitate forensic analysis of LINE Messenger. When conducting analysis with
message exchange of using LINE Messenger, one of the main issues is to identify where potential data
remnants resides. We focus on identifying data remnants of the activities of LINE on Android. This is
undertaken to determine the remnants an examiner should search for when Instant Messenger is
suspected. Our research also includes the circumstances of using anti-forensic methodology to hide
evidence, and whether remnants remain to identify the use of LINE Messenger.

This research focuses on what data remnants on Android after a user log in, exchange message, and
keeps files of the use of LINE Messenger. We want to find username, password, text, and files. In
addition, we also create circumstances to simulate a user running CCleaner to remove evidences. There
are 15 virtual machines which replicate different circumstance of activities to gather the data in relation
to the use of LINE on Android. We make multiple scenarios to explore the use of LINE. The virtual
machines will be created for each different circumstance of LINE activities. This represents different
Android phones available for analysis, with different circumstances and data remnants available for
analysis on each VM. According to the activities of LINE, we create a base VM or base image file and 14
different VMs. The virtual machines reduce the costs of the study, since neither many real Android
phones are necessary to carry out the experiments.

The base image file is to compare the subsequent image files to determine the changes made. It is
possible to observe the changes of file systems. Our experimental test-bed consists of a set of virtual
machines. That is VMware Workstation V12.0.0. For each experiment, the BlueStacks was installed on
every virtual machine. The LINE Messenger V5.8.1 was installed on all virtual machines. In each
experiment, we assign a role to each virtual device. We use it to carry out the corresponding activities. At
the end of the experiment, we suspend the virtual device. We parse the file implementing the
corresponding volatile memory and non-volatile memory by means of WinHex 17.9.0.0 and EnCase
V7.04. Then we extract the files where LINE Messenger stores the data it generates. We also use Root
Explorer V3.3.7 to analyze the LINE database files.

According to the activities of LINE, we create seven sub-experiment systems. They are Base-VM,
Login-VM, Snd-VM, Rcv-VM, Keep-VM, Delete-VM, and Delete_Keep-VM. In all experiments, there
are 15 virtual machines to gather the data in relation to the activities of LINE as shown in Table 1.

Table 1. All virtual machines with LINE activity

Virtual Machine LINE activity

Base-VM No action

Login-VM Login (Email address)

Send text message
Send image file Snd-VM

Send video file

Receive text message
Receive image file
Receive video file

Rcv-VM

Receive Word file

Keep text message
Keep-VM

Keep Image file

Delete all data (sending and receiving)
Delete-VM

Delete all data with CCleaner (sending and receiving)

Delete all keeping data
Delete_Keep-VM

Delete all keeping data with CCleaner

Forensic Analysis of LINE Messenger on Android

14

The different actions undertaken are as follows. We divide them in seven cases.
‧ The first case was to install the LINE messenger into base virtual machine with Android.

‧ The second case was to make a copy of the base virtual machine. An account of LINE was created for

these experiments. We use email address to sign in LINE. We do nothing and sign out. Then we use
Root Explorer V3.3.7 to analyze LINE database files and use WinHex 17.9.0.0 and EnCase V7.04 to
analyze the data remnants to find the account and password.

‧ The third case was to make three copies of the base virtual machine for each scenario. There are three

scenarios for different actions such as sending text, image, and video. After sending action we sign out
and analyze LINE database files, volatile memory, and non-volatile memory to find the data remnants.

‧ The forth case was to make four copies of the base virtual machine for each scenario. There are four

scenarios for different actions such as receiving text, image, video, and word files. After receiving
action we sign out and analyze LINE database files, volatile memory, and non-volatile memory to find
the data remnants.

‧ The fifth case was to make two copies of the base virtual machine for each scenario. There are two

scenarios for different actions such as keeping text, and image. We use the keep feature of LINE to
save text message, and image in cloud storage. After keeping action we sign out and analyze LINE
database files, volatile memory, and non-volatile memory to find the data remnants.

‧ The sixth case was to make two copies of the base virtual machine for each scenario. We do the same

actions as case 3 and 4. Then we delete all the sending and receiving text, image, video, and files. We
log out and analyze LINE database files, volatile memory, and non-volatile memory to find the data
remnants. In the other scenario, after we delete all the sending and receiving text, image, video, and
files; we use CCleaner to remove LINE and delete temporary, history, cookies, recycle bin, memory
dumps, log files, etc. Then we analyze LINE database files, volatile memory, and non-volatile memory
to find the data remnants.

7. The seventh case was to make two copies of the base virtual machine for each scenario. We do the
same actions as case 5. Then we delete all the keeping text, and image. We log out and analyze LINE
database files, volatile memory, and non-volatile memory to find the data remnants. In the other
scenario, after we delete all the keeping text, and image; we use CCleaner to remove LINE and delete
temporary, history, cookies, recycle bin, memory dumps, log files, etc. Then we analyze LINE
database files, volatile memory, and non-volatile memory to find the data remnants.

4 Result and Analysis

4.1 Login-VM

Login with email address. We analyze VMEM file and find the email address (testabc2016@gmail.com)
but can’t find the password (justtest2016) as shown in Fig. 1. In VMDK file the remnant of password
can’t be found but email address was found on C\ProgramData\BlueStacks\Android\Data.sparsefs\Store.
The email address was also found in LINE database file naver_line on /data/data/jp.naver.line.android/
database as Fig. 2. We believe the password with a secure encryption method on LINE Messenger V5.8.1
so that we can’t find it. In this experiment, a search for the login password produced no matches in the
forensic image and memory dump.

Fig. 1. The remnants of email address on memory

Fig. 2. The remnants of email address on naver_line

Journal of Computers Vol. 29, No. 1, 2018

15

4.2 Snd-VM

Sending text message. In volatile memory the sending user’s name (Yaaichu) can’t be found, but
receiver’s name (HsinHsin), chat message (Send you a message), time stamp (1447732785173), and the
receiver ID (u300bc27d6c3e5fe3390861c4ae9f240d) are shown in Fig. 3. In VMDK files the remnant of
receiver’s name (HsinHsin) can only be found. The text message was also found on chat_history table in
naver_line database file as Fig. 4.

Fig. 3. The remnants of sending text message on memory

Fig. 4. The remnants of text on chat_history table

Sending image. The image file is found on memory as Fig. 5. In VMDK files the locations of remnants
of image file are found as Table 2. The remnants of image file are also found on chat_history table in
naver_line database file as Fig. 6.

Table 2. The locations of remnants of image file

C\ProgramData\BlueStacks\Logs\BlueStacksUsers.log

C\ProgramData\BlueStacks\UserData\SharedFolder
C\$Extend\$UsnJrnl·$J
C\$MFT
C\ProgramData\BlueStacks\Android\Data.sparsefs\Store

Fig. 5. The remnants of sending image file on memory

Fig. 6. The remnants of image on chat_history table

Sending video. The remnants of sending video file are the same as Sending image.

Forensic Analysis of LINE Messenger on Android

16

In these three experiments the remnants can be found in volatile memory and non-volatile memory.
When a user sends a file using the LINE app, there will be records remaining in BlueStacks application
and Windows system files such as $MFT, $UsnJrnl·$J to indicate the filenames, and directory paths for
the sending files. The remnants are also recorded in memory as Fig. 3 & 5.

4.3 Rcv-VM

Receiving text message. In volatile memory the sending user’s name (Yaaichu) can’t be found, but
receiver’s name (HsinHsin), chat message (Receive your messages.), time stamp (1448959859549), and
the receiver ID (u300bc27d6c3e5fe3390861c4ae9f240d) are shown in Fig. 7. The remnant of receiver’s
name (HsinHsin) can only be found on C\ProgramData\BlueStacks\Android\Data.sparsefs \Store in
VMDK files. The text message is also found on chat_history table in naver_line database file.

Fig. 7. The remnants of receiving text on memory

Receiving image. The image file is found on memory as Fig. 8. The location of remnants of image file is
found on C\ProgramData\BlueStacks\Android\Data.sparsefs\Store in non-volatile memory. The remnants
of image file are also found on chat_history table in naver_line database file

Fig. 8. The remnants of receiving image file on memory

Receiving video & Receiving word file. The remnants of receiving video file and word file are the same
as Receiving image.

In these four experiments the remnants can be found in volatile memory and non-volatile memory. When
a user receives a text message or a file using the LINE app, there will be records remaining in BlueStacks
application, Windows system files and LINE database files to indicate the contents, filenames, and
directory paths for the downloaded files.

4.4 Keep-VM

Keep text message. The remnants can’t be found in VMDK files. In volatile memory a keeping message
(test_test_550) is shown in Fig. 9. The contentItems database table on com_linecorp_linebox_ android
database file in /data/data/jp.naver.line.android/database was found. The text message, file size, and time
stamp can be found in contentItems database table as Fig. 10.

Fig. 9. The remnants of keeping text message on memory

Journal of Computers Vol. 29, No. 1, 2018

17

Fig. 10. The remnants of keeping text on contentItems table

Keep image. In non-volatile memory the locations of remnants of image file are shown in Table 3. In
volatile memory the remnants of image file are shown in Fig. 11. The image file, file size, directory, and
time stamp can be found in contentItems database table. The remnants can also be found on contents and
sourceInfo database table.

Table 3. The locations of remnants of image file

C\ProgramData\BlueStacks\Logs\BlueStacksUsers.log

C\$LogFile
C\ProgramData\BlueStacks\Android\Data.sparsefs\Store
C\$Extend\$UsnJrnl·$J
C\ProgramData\BlueStacks\UserData\SharedFolder
C\$MFT

Fig. 11. The remnants of keeping image on memory

4.5 Delete-VM

Delete all data. We do all the sending and receiving actions as above experiments. Then we delete all of
sending and receiving data. The locations of remnants are shown in Table 4. The contents of contacts and
chat_history database table have been deleted and can’t find remnants. The file name can be found in
memory dump except the text message.

Table 4. The locations of remnants of deleting all data

C\$Extend\$UsnJrnl·$J

C\ProgramData\BlueStacks\Android\Data.sparsefs\Store
C\$LogFile
C\$MFT
C\ProgramData\BlueStacks\Android\SDCard.sparsefs\Store

Delete all data with CCleaner. We do the same actions as Delete all data and use CCleaner to remove
LINE apps and delete temporary, history, cookies, recycle bin, memory dumps, log files, etc. The
locations of remnants are only on C\$Extend\$UsnJrnl·$J. The directory jp.naver.line.android has been
deleted and any remnants can’t be found in database files. In memory dump the file name can be found
except the text message.

4.6 Delete_Keep-VM

Delete all keeping data. We do all the keep actions as Keep-VM. Then we delete all of the keeping data.
The locations of remnants are shown in Table 5. The chat message can’t be found in database file. The
file name can be found in memory dump except the text message.
Delete all keeping data with CCleaner. We do the same actions as Delete all keeping data and use
CCleaner to remove LINE apps and delete temporary, history, cookies, recycle bin, memory dumps, log

Forensic Analysis of LINE Messenger on Android

18

files, etc. The locations of remnants are only on C\$Extend\$UsnJrnl·$J. The directory jp.naver.

line.android has been deleted and any remnants can’t be found in database files. The file name can be
found in memory dump except the text message.

Table 5. The locations of remnants of deleting all keeping data

C\$Extend\$UsnJrnl·$J

C\ProgramData\BlueStacks\Android\Data.sparsefs\Store
C\ProgramData\BlueStacks\Logs\BlueStacksUsers.log
C\$LogFile
C\$MFT
C\ProgramData\BlueStacks\UserData\SharedFolder
C\Lost Files\HD-LogRotatorService.exe
C\Lost Files\HD-Adb.exe

5 Discussions

In this research, we identified artifacts for LINE application. We focus on both the volatile memory and
non-volatile memory artifacts. Our experiments showed that the LINE apps on volatile memory has
proved that critical application data is present in the RAM and it can be extracted for further analysis.
Our non-volatile memory analysis has shown that LINE application activities remain some artifacts in
different locations. This indicated that when a user has used the LINE apps, there will be records
remaining in the application folder. While opening the LINE database files we know the LINE database
schema and find the remnants. The critical application data is present in the database tables.

It should be noted that the significance and location of artifacts could be investigated. In our research,
it was determined that: (1) LINE apps maintain directories in the application folders. (2) LINE apps hold
the database schema for the application caches. (3) The LINE apps caches copies of the transferred and
downloaded files in the application folder.

Our examinations of the physical memory and database table captures indicated that the memory
dumps and database table can recover the application caches in plain text, with the exception of the login
password. The fact that there was no clear text password in the volatile memory and non-volatile memory
should perhaps be encrypted. We performed all our research inside a virtual machine which gave us an
advantage to download or run executable files without having to worry about any executable affecting
the host machine. Other than that all our forensic data was not leaked to the outside world and a separate
environment was provided to hold all our files in one place. We saw that data is stored in various forms
by the developer and each location can become a treasure for an investigator. The artifacts findings are
summary in Table 6.

Table 6. Summary of findings

Virtual Machine Volatile Memory Non-Volatile Memory Root Explorer

Login-VM Email addr Found Found Found

Text Content found Found Content found
Image file Found Found Found Snd-VM

Video file Found Found Found

Text Content found Found Content found
Image file Found Found Found
Video file Found Found Found

Rcv-VM

Word file Found Found Found

Text Content found Found Content found
Keep-VM

Image file Found Found Found

Delete Found Found Not found
Delete-VM Delete with

CCleaner
Found Found Not found

Delete Found Found Not found
Delete_Keep-VM Delete with

CCleaner
Found Found Not found

Journal of Computers Vol. 29, No. 1, 2018

19

6 Conclusions

Instant messaging is increasingly popular among individuals and business organizations. Applications
such as LINE, WhatsApp, WeChat, and Facebook Messenger are some of the commonly used
applications. With the tremendous use of such applications, it may be used to commit crimes. It is
important to identify the forensic artifacts left by these application. In this paper we have presented the
findings from our forensic examination of LINE instant messaging application with Android. The study
consists of installation, uninstallation, logins, conversations, transferred files, and other LINE activities.
The results indicated that use of the LINE for Android leave useful evidential material on the volatile
memory and non-volatile memory.

In this paper, we study and report the forensic analysis of an instant messaging namely LINE on
Android system. Because the limitation of experiment cost we use BlueStacks to emulate the Android OS
system. The implementation may vary between different end devices. In the future, we can use the real
different smart phone with Android to get the artifacts left by LINE application. The different operating
OS with LINE application can also be studied such as iOS and Windows 10.

References

[1] About LINE Corporation, ABOUT. <http://linecorp.com/en/company/info>, 2016 (accessed 16.08.08).

[2] E. Lukman, LINE hits 200 million users, adding 100 million in just 6 months. <https://www.techinasia.com/line-hits-200-

million-users-adding-100-million-users-6-months>, 2016 (accessed 16.07.08).

[3] H. Josh, LINE finally reveals it has 170 million monthly active users. <https://www.techinasia.com/line-japanese-messaging-

app-has-170-million-monthly-active-users>, 2016 (accessed 16.07.10).

[4] A. Akimoto, Looking at 2013’s Japanese social-media scene. <http://www.japantimes.co.jp/life/2013/12/17/digital/looking-

at-2013s-japanese-social-media-scene-3/#.V6rgbtR97RY>, 2016 (accessed 16.07.20).

[5] LINE: number of monthly active users 2014-2016. <http://www.statista.com/statistics/327292/number-of-monthly-active-

line-app-users/>, 2016 (accessed 16.08.01).

[6] A. Orebaugh, J. Allnutt, Data mining instant messaging communications to perform author identification for cybercrime

investigations, in: S. Goel (Ed.), Digital Forensics and Cyber Crime, Lecture Notes of the Institute for Computer Sciences,

Social Informatics and Telecommunications Engineering, 2010, pp. 99-110.

[7] A. Iqbal, H. Al Obaidli, A. Marrington, A. Jones, Windows surface RT tablet forensics, Digital Investigation 11(2014) S87-

S93.

[8] The United Nations Office on Drugs and Crime, Comprehensive study on cybercrime. <https://www.unodc.org/documents/

organized-crime/UNODC_CCPCJ_EG.4_2013/CYBERCRIME_STUDY_210213.pdf>, 2016 (accessed 16.08.06).

[9] A.R. Gonzales, R.B. Schofield, D.W. Hagy, Investigations involving the internet and computer networks, National Institute

of Justice, Washington, DC, 2007.

[10] Y. Gao, T. Cao, Memory forensics for QQ from a live system, Journal of Computers 5(4)(2010) 541-548.

[11] M. Dickson, An examination into MSN Messenger 7.5 contact identification, Digital Investigation 3(2)(2006) 79-83.

[12] M. Dickson, An examination into Yahoo Messenger 7.0 contact identification, Digital Investigation 3(3)(2006) 159-165.

[13] J. Reust, Case study: AOL instant messenger trace evidence, Digital Investigation 3(4)(2006) 238-243.

[14] A. Mahajan, M.S. Dahiya, H.P. Sanghvi, Forensic analysis of instant messenger applications on android devices,

International Journal of Computer Applications 68(8)(2013) 38-44.

[15] C. Anglano, Forensic analysis of WhatsApp Messenger on Android smartphones, Digital Investigation 11(2014) 201-213.

Forensic Analysis of LINE Messenger on Android

20

[16] M. Levendoski, T. Datar, M. Rogers, Yahoo! Messenger Forensics on Windows Vista and Windows 7, Digital Forensics

and Cyber Crime, vol. 88, Springer Berlin Heidelberg, Berlin, Germany, 2012.

[17] K. Wong, A.C.T. Lai, J.C.K. Yeung, W.L. Lee, P.H. Chan, Facebook forensics. <https://www.fbiic.gov/public/2011/jul/

facebook_forensics-finalized.pdf>, 2011 (accessed 16.08.01).

[18] N. Al Mutawa, I. Al Awadhi, I. Baggili, A. Marrington, Forensic artifacts of Facebook’s instant messaging service, in: Proc.

International Conference for Internet Technology and Secured Transactions (ICITST), 2011.

[19] H. Said, A. Yousif, H. Humaid, IPhone forensics techniques and crime investigation, in Proc: International Conference and

Workshop on Current Trends in Information Technology, 2011.

[20] C. Sgaras, M.-T. Kechadi, N.-A. Le-Khac, Forensics Acquisition and Analysis of Instant Messaging and VoIP Applications,

Computational Forensics, vol. 895, Springer International Publishing, Cham, Switzerland, 2015.

[21] H.-C. Chu, D.-J. Deng, J.H. Park, Live data mining concerning social networking forensics based on a Facebook session

through aggregation of social data, IEEE Journal on Selected Areas in Communications 29(7)(2011) 1368-1376.

[22] A. Iqbal, A. Marrington, I. Baggili, Forensic artifacts of the ChatON instant messaging application, in: Proc. 2013 Eighth

International Workshop on Systematic Approaches to Digital Forensic Engineering (SADFE), 2013.

[23] D. Walnycky, I. Baggili, A. Marrington, J. Moore, F. Breitinger, Network and device forensic analysis of Android social-

messaging applications, Digital Investigation 14(Supplement 1)(2015) S77-84.

[24] A. Azfar, K-K.R. Choo, L. Liu, An android social App forensics adversary model, in: Proc. Annual Hawaii International

Conference on System Sciences (HICSS 2016), 2016.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

