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Abstract. Robot navigation guides a robot moving from a start position to a target position 

without collision in an unknown environment. This paper proposes a robot navigation approach 

in a dynamic environment with static and dynamic obstacles. The proposed navigation method 

comprises static navigation and dynamic path planning (DPP). Static navigation guides the robot 

to avoid static obstacles by using a fuzzy controller, which comprises four input and two output 

variables. If the robot detects dynamic obstacles, a trajectory prediction table is generated to 

predict their moving trajectories. If this table shows that the robot will collide with a dynamic 

obstacle in the near future, DPP begins determining a safe and short path to avoid the obstacle 

by using the waiting or detouring strategies. The detouring strategy employs the A* algorithm to 

determine an optimal adaptable path to avoid a threatening obstacle. If the robot detects only 

static obstacles, the fuzzy controller guides the robot to avoid them. Simulation and comparison 

results showed that the proposed method is superior to static navigation.  

Keywords: A* algorithm, dynamic path planning, fuzzy controller, robot navigation 

1 Introduction 

Path planning is essential for mobile robots, which determines an optimal collision-free path from a 

starting position to a target position in a specific environment according to criteria such as distance, time, 

or energy [1]. Two main categories of path planning exist: global path planning, which encompasses all 

the acquired knowledge relating to the whole environment, and local navigation, which is the process of 

using only the robot’s currently sensed information (entire environment information is unknown or 

partially unknown) [2]. Numerous studies have used several techniques for global path planning, such as 

particle swarm optimization [3-5], ant colony optimization [6-7], genetic algorithms [8-9], dynamic 

programming [10], the visibility graph method [11], the free-space method, the artificial potential field 

method [12], and the A* algorithm [13]. In addition, numerous studies have used techniques such as 

neural networks [14] and fuzzy logic [15] for local navigation. 

Two types of obstacle can be present in an environment: static and dynamic obstacles. To date, the 

problem related to static obstacles has been thoroughly studied. Therefore, recent studies have focused on 

dynamic obstacle avoidance [1-2, 16-21]. A mobile robot that performs a task in an indoor or outdoor 

environment must navigate safely from one place to another; in addition, avoiding moving objects, such 

as people, pets, and cars, is essential [20]. 

Phillips and Likhachev [20] developed the concept of safe intervals for path planning in dynamic 

environments. A safe interval is a period without collisions. A configuration is a set that describes the 

robot’s state such as position, heading, and joint angles. To avoid a moving obstacle, the robot uses the 

A* algorithm and safe interval to arrange its path. The method reduces the number of states that must be 

searched, and does not sacrifice the theoretical guarantees on optimality. They showed that their planner 

could provide the same optimality and completeness guarantees as planning with time as an additional 

dimension. Experimental results showed that the reduction in state space results in a planner that finds 

solutions significantly faster than the standard approach. 
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Raja and Pugazhenthi [1] proposed algorithms for dynamic path planning (DPP), which can be 

classified into two types: in the first type, static obstacles are avoided using the direction concept, 

whereas in the second type, dynamic obstacles are avoided using the waiting time concept. The direction 

concept identifies the maneuverable and nonmaneuverable obstacle edges by using the pass-through and 

no-pass-through edge concepts. The waiting time concept investigates the required waiting time and stop 

position for the robot when encountering dynamic obstacles. This method is intuitive and may be easy to 

implement. 

Faisal et al. [16] developed four fuzzy logic modules—goal seeking module, static and dynamic 

obstacles avoidance module (SDOAM), emergency module (EM), and robot setting module—for robot 

navigation in a dynamic and unknown indoor environment. The method is implemented using the 

Powerbot robot. If the laser or ultrasonic sensors detect any obstacle movement near the robot, the EM 

module is activated; otherwise, the SDOAM module is used. If the laser or ultrasonic sensors detect any 

static or dynamic obstacle far from the robot, the SDOAM module is used to guide the robot. 

In addition, Faisal et al. [22] conducted another related study that developed two fuzzy logic 

controllers (FLCs)—tracking FLC (TFLC), for driving the robot moving toward its target position, and 

obstacle-avoiding FLC (OAFLC) for avoiding obstacles—for robot navigation in unknown and dynamic 

environments. If the robot does not sense any obstacle, the TFLC guides the robot moving toward its 

target position; otherwise, the OAFLC helps the robot avoid the obstacle. They used the same method, 

OAFLC, to avoid static and dynamic obstacles. Because OAFLC cannot predict the movement of a 

dynamic obstacle, the robot is highly likely to collide with the obstacle, as indicated by our simulation 

results (Section 5). 

Kümmerle et al. [18] presented a navigation system for real mobile robots operating in crowded city 

environments and pedestrian zones. The architecture of a path planner comprises three levels. The top 

level considers the topology of the environment. The intermediate level applies Dijkstra’s algorithm on 

local maps to calculate way-points, which serve as inputs of the low-level planner. The low-level planner 

computes velocity commands for the robot and manages the dynamic objects that are present in the 

robot’s vicinity. To detect moving obstacles in the vicinity of the robot, they employed a blob tracker 

based on two-dimensional range scanner data and a common coordinate frame. The obtained information 

is used to predict the obstacle’s position at a certain time in the planned trajectory. Planning a path from 

the current location of the robot to a goal location is described as follows. Considering the robot and goal 

nodes of the map, the high level planner uses the A* algorithm to obtain a list of waypoints toward the 

goal. However, following the list may result in suboptimal paths. Thus, they used the Dijkstra algorithm 

in the local map starting from the current location of the robot and selected way-points as intermediate 

goals for the low-level planner. The proposed navigation system was implemented and demonstrated in a 

large-scale public field test, and the robot navigated a path longer than 3 km through the crowded city 

center of Freiburg in Germany. 

An intuitive and effective method is to predict the moving trajectories of dynamic obstacles when the 

robot detects them [2, 14, 18, 20]. The robot must plan short and safe paths to avoid these moving 

obstacles. One approach [20] assumes that another system exists that tracks dynamic obstacles to predict 

their future trajectories and formats them into a general representation. A trajectory is only a list of points, 

where each point has state variables that specifies its configuration, time, and some measure of the 

point’s uncertainty. Another method [14] uses a neural network to predict only the next movement of 

dynamic obstacles, but the neural network does not predict the future several movements in a period. 

Inspired by the method proposed by Phillips and Likhachev [20], we presented a trajectory prediction 

(TP) table in our previous study [23], which provides information about the predicted trajectories of 

dynamic obstacles and robot and collision judgment, for DPP to plan an optimal avoidance path. 

This paper proposes dynamic navigation (DN) for a robot in a dynamic and unknown environment, 

which is an extension of the method used in our previous study [23]. The proposed DN method includes 

two parts: static navigation and DPP. Static navigation, inspired by Singh et al. [24], adopts a FLC to 

avoid unknown and stationary obstacles. The DPP approach incorporated the A* algorithm to plan an 

optimal adaptable path to avoid dynamic obstacles. Compared with our previous study [23], we made 

four major improvements to the DPP method. (1) We added an additional objective function, the danger 

degree, for each movement of the adaptive path such that the adaptive path can be relatively distant from 

the obstacles. (2) We improved the original waiting strategy (the robot waits for the dynamic obstacle) so 

that the robot considers different situations more carefully. (3) The direction and speed of each dynamic 
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obstacle is changeable with a small probability. If the detected dynamic obstacle changes its moving way 

and threatens the robot, the DPP method is restarted to generate another adaptive path. (4) We used more 

precise mathematics to revise the DPP algorithm. 

2 The Proposed Dynamic Navigation Method 

This paper proposes a DN method including the robot navigation approach for avoiding static obstacles 

and DPP for avoiding dynamic obstacles, as shown in Algorithm 1. The robot must move from a start 

position to a target position without collision. We assumed that the static and dynamic obstacles are 

unknown. In the simulated experiment of the robot navigation problem, we assumed that the robot had 

two types of sensor. Sonar sensors with a maximum sensing range of 130 cm detect the stationary 

obstacles on the left, front, and right sides of the robot, as shown in Fig. 1. A laser range finder with a 

maximum sensing range of 250 cm is used to detect omnidirectional moving obstacles. We assumed that 

the robot has a circular structure with a 10-cm radius.  

 

Fig. 1. The illustration of the sensing range of sonar sensors 

Algorithm 1: Algorithm for the DN Method 

1: Set initial parameters: s, g, ε, and v; // s and g: start and target positions of the robot 

2: t = 1;  // initial time step 

3: path(t) = s;  // the robot’s initial location path(t) = (xt, yt) is at s 

4: while Distance(path(t), g) > ε do 

5: if dynamic obstacle is detected then 

6:  trajTable ← Generate the trajectory prediction table; 

7: end if 

8: if threatening dynamic obstacle is not detected around the robot then 

9:  Calculate θ; // included angle between robot’s current position and target position 

10:  if no static obstacle is detected around the robot then 

11:   Δθ = 0;  // Δθ: the increment of the robot’s steering angle 

12:  else 

13:   [Δθ, v] = FuzzyController(Left, Front, Right, θ); // introduced in Section 3 

14:               end if 

15:  t = t + 1;  // time step adds one 

16:  θ = θ + Δθ;  // the robot turns by Δθ degrees 

17:  xt = xt-1 + v ⋅ cos(θ);  // calculate the x coordinate of the robot’s next position 

18:  yt = yt-1 + v ⋅ sin(θ);  // calculate the y coordinate of the robot’s next position 

19:  path(t) = (xt, yt);  // add the new position to path 

20:  Move the robot to the path(t) location; 

21:          else 

22:  adaptedPath = DynamicPlanning(trajTable); //to DPP algorithm 

23:  path = path ∪ adaptedPath; 

24:  t = t + (the number of positions in adaptedPath); 

25:  end if 

26: end while 

 

In line 1 of Algorithm 1, we first set the initial parameters s, g, ε, and v, where ε is the tolerable error 

between the robot’s current position (ε is set to 20 cm, twice as high as the robot’s radius) and target 

 
Robot
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position and v is the robot’s moving speed. The robot’s speed was within 20-30 cm/time-step in this 

study. The initial time step t is set to 1 (line 2). The robot’s moving path is recorded using the variable 

path, and its initial value is path(1) = s = (x1, y1). The (x, y) coordinate of the robot indicates its center. 

The while loop (lines 4-26) is the primary part of Algorithm 1. In line 4, the condition for executing the 

while loop is Distance(path(t), g), which indicates the distance between the robot’s current position at 

time step t and target position. 

In the while loop, the robot first detects whether any dynamic obstacle exists around it. If the robot 

detects a dynamic obstacle within the sensing range of 250 cm, the TP table (Table 2) is generated to 

predict moving trajectories of the dynamic obstacles (lines 5-7). Numerous studies have used the DPP 

and predicted the movements of dynamic obstacles for planning a safe path [2, 14, 18, 20]. We assumed 

that the robot can determine the moving direction and speed of the detected dynamic obstacle, and 

therefore, we can directly show the moving positions of the dynamic obstacle in the TP table. For 

example, Table 2 provides the predicted information for the future positions of the robot and detected 

obstacles from the current time step (e.g., t) to the next several time steps (e.g., t + 9). In addition, it 

evaluates whether the robot collides at each time step. This table was used for planning an adaptive path 

to avoid the moving obstacle, as described in Section 4. 

Lines 8-25 describe the steps for guiding the robot’s movement, and there are three types of movement: 

(1) The robot moves directly toward the target position (lines 11 and 15-20).  

(2) The fuzzy controller is used to guide the robot to avoid the static obstacles (lines 13 and 15-20).  

(3) The DPP algorithm is used to obtain a safe and short adaptive path for avoiding the dynamic 

obstacles (lines 22-24). 

The threatening dynamic obstacle in line 8 means that the dynamic obstacle will collide with the robot 

in the near future; the colliding information is present in the TP table. In line 9, θ is the included angle 

between the robot’s current and target positions, and the robot’s orientation is set to θ. In line 11, Δθ is 

the increment in the robot’s steering angle and Δθ = 0 indicates that the robot does not turn and directly 

moves toward the target position. In line 13, [Δθ, v] = FuzzyController(Left, Front, Right, θ) obtains the 

Δθ and v to guide the robot’s movement by using the fuzzy controller, as introduced in Section 3, where v 

is the velocity of the robot. The input parameters, Left, Front, and Right, are the shortest distances 

between the sensed static obstacle and the robot’s left, front, and right sides, respectively. Lines 15-19 

calculate the robot’s next position denoted using path(t). We can then move the robot to the position 

path(t). 

In line 22, adaptedPath = DynamicPlanning(trajTable) obtains the adaptive path for avoiding 

dynamic obstacles by using the DPP algorithm, as introduced in Algorithm 2. The number of positions in 

adaptedPath is calculated using the minimal number of movements that the robot can make to exceed its 

sensing range (250 cm) from its current position. The while loop is repeated; the robot can eventually 

reach or approach the target position, and the robot’s trajectory is recorded using the path variable. 

3 Fuzzy Controller for Static Navigation 

Fig. 1 illustrates the sensing range of sonar sensors of the robot [25]. The sensing range is divided into 

three sectors: left, front, and right. We applied the fuzzy controller presented in our previous study [23] to 

guide the robot in avoiding the static obstacles. The input variables are the shortest distances between the 

static obstacle and the left, front, and right sides of the robot (0-130 cm), and the included angle 

between the robot and its target position (0°-180°) represented by θ. The output variables Δθ and ν 

denote the increment in the robot’s steering angle (−120°-120°) and the velocity of the robot (10-40 

cm/time-step). 

The membership functions (Fig. 2) of the input variables Left, Front, and Right are the same. We can 

use the crisp membership function for input variable θ (Fig. 3). If the value of the included angle θ is less 

than 90°, it belongs to the right linguistic term; otherwise, it belongs to the left linguistic term. The 

membership functions of ν and Δθ are shown in Figs. 4 and 5, respectively. The membership functions 

shown in Fig. 2, Fig. 4, and Fig. 5 were first developed in our previous study [23]. We used the 

MATLAB software, version R2013b, and its fuzzy logic toolbox to construct the Mamdani-type fuzzy 

inference system [26]. The 28 proposed fuzzy rules are listed in Table 1 [23]. In the fourth column, from 

rules 2-27, the linguistic terms of the variable θ are “-” which means it can be any value. 
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Fig. 2. The membership function of input variable Left, Front, and Right [23] 

 

Fig. 3. The membership function of input variable θ 

 

Fig. 4. The membership function of output variableν [23] 

 

Fig. 5. The membership function of output variable Δθ [23] 
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Table 1. List of fuzzy rules for static robot navigation [23] 

Input variable Output Variable 

Left Front Right θ b Δθ a ν 

Near Near Near Right NB Slow 

Near Near Medium 
− NS Slow 

Near Near Far 
− NB Slow 

Near Medium Near 
− ZE Slow 

Near Medium Medium 
− NS Medium 

Near Medium Far 
− NS Medium 

Near Far Near 
− ZE Medium 

Near Far Medium 
− ZE Medium 

Near Far Far 
− NS Medium 

Medium Near Near 
− PB Slow 

Medium Near Medium 
− NB Slow 

Medium Near Far 
− NB Slow 

Medium Medium Near 
− PS Medium 

Medium Medium Medium 
− ZE Slow 

Medium Medium Far 
− NS Medium 

Medium Far Near 
− ZE Medium 

Medium Far Medium 
− ZE Fast 

Medium Far Far 
− ZE Fast 

Far Near Near 
− PB Slow 

Far Near Medium 
− PB Slow 

Far Near Far 
− NB Slow 

Far Medium Near 
− PS Medium 

Far Medium Medium 
− PS Medium 

Far Medium Far 
− NS Medium 

Far Far Near 
− PS Medium 

Far Far Medium 
− ZE Fast 

Far Far Far 
− ZE Fast 

Near Near Near Left PB Slow 

Note. a. NB: Negative Big, NS: Negative Small, ZE: Zero, PS: Positive Small, PB: Positive Big. 

 

The membership functions (Fig. 2) of the input variables Left, Front, and Right are same. We can use 

the crisp membership function for input variable θ (Fig. 3). If the value of included angle θ is less than 90, 

it belongs to ”Right” linguistic term; otherwise, it belongs to ”Left”. The membership functions of ν and 

Δθ are shown in Fig. 4 and Fig. 5, respectively. Fig 2, Fig. 4, and Fig. 5 are proposed in the previous 

work [23]. We use the MATLAB software with version R2013b and its Fuzzy Logic Toolbox to 

construct the Mamdani-type fuzzy inference system [26]. The proposed 28 fuzzy rules are listed in Table 

1 [23]. In the fourth column, from Rules 2 to 27, the linguistic terms of the variable θ are “−” which 

means it can be any value. 

For example, the sixth fuzzy rule shown in Table 1 is as follows. 

 If Left is near, Front is medium, and Right is far, then Δθ is NS and ν is medium, (1) 

where NS denotes negative small. 

4 A* Algorithm for Dynamic Path Planning 

The A* algorithm is a classic deterministic path-planning method, proposed by Hart et al. [27], which 

relies on a best-first exploration of the motion graph to determine an optimal path from a starting node to 

a target node [13]. The A* algorithm uses an evaluation function f(x, y), which is computed using the 

sum of the cost of the path from the starting node to node x (g(x)), the current transition from node x to 

node y (c(x, y)), and the estimated cost (h(y)) of the remaining path (from node y to the target node) [28]. 

 f(x, y) = g(x) + c(x, y) + h(y) .  (2) 
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The A* algorithm uses an ordered list called Open which contains all the nodes to be explored. For 

each iteration, the first node x in Open is removed from the list and for each node y (a successor of the 

node x in the path), f(x, y) is computed and the new y is added to Open. The algorithm stops if the top 

node is a target node. The algorithm always terminates with an optimal path from the start to the target 

nodes [28]. The proposed DPP algorithm is introduced in Section 4.1, and its procedure, FindNwPath, 

which employs the A* algorithm to determine a safe and short path for avoiding obstacles, is described in 

Section 4.2. 

4.1 DPP Algorithm 

We made four major improvements to the DPP method, which was first proposed in our previous study 

[23], as described in Section 1. Furthermore, we revised some major parts of the DPP algorithm, as 

shown in Algorithms 1, 2, and 3, to enhance its readability and replicability. The DPP algorithm has two 

strategies, waiting or detouring around the dynamic obstacle, for avoiding dynamic obstacles. 

The main procedure of the DPP algorithm is shown in Algorithm 2, and an illustration is shown in Fig. 

6. As shown in the figure, the robot detects two dynamic obstacles at time step t = 1, and the 

corresponding TP table (Table 2) is then generated to predict the obstacles’ future trajectories (lines 5-7, 

Algorithm 1). In Fig. 6, the numbers inside the circles and rectangles indicate the time steps. Table 2 

shows the predicted positions of the robot from time steps 1 to 9. The first position of the robot (rx, ry)
(1) 

in Table 2 is its current position, and the robot first detects the dynamic obstacles in that position. For 

convenience, we set the first time step in the TP table (Table 2) as time step 1. The number of time steps, 

nTraj, is calculated according to the minimal movements that the robot can exceed in its detecting range 

of (rx, ry)
(1), and it is the number of records in the TP table. In Table 2, nTraj = 9 because the table has 

nine records (Distance((rx, ry)
(1), (rx, ry)

(9)) > 250 cm). 

Table 2. An example of trajectory prediction table 

(x, y) Coordinates Colliding Detection 
Time Step 

Robot Obstacle 1 Obstacle 2 Collision 1 a Collision 2 a 

1 (rx, ry)
(1) (o1x, o1y)

(1) (o2x, o2y)
(1) No No 

2 (rx, ry)
(2) (o1x, o1y)

(2) (o2x, o2y)
(2) No No 

3 (rx, ry)
(3) (o1x, o1y)

(3) (o2x, o2y)
(3) No No 

4 (rx, ry)
(4) (o1x, o1y)

(4) (o2x, o2y)
(4) No No 

5 (rx, ry)
(5) (o1x, o1y)

(5) (o2x, o2y)
(5) Yes No 

6 (rx, ry)
(6) (o1x, o1y)

(6) (o2x, o2y)
(6) Yes No 

7 (rx, ry)
(7) (o1x, o1y)

(7) (o2x, o2y)
(7) No No 

8 (rx, ry)
(8) (o1x, o1y)

(8) (o2x, o2y)
(8) No No 

9 (rx, ry)
(9) (o1x, o1y)

(9) (o2x, o2y)
(9) No No 

Note. a Collision 1(2) indicates whether a collision occurs with obstacle 1(2) at specific time step t. 

 

Fig. 6. An illustration of dynamic path planning 
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Lines 3-10 in Algorithm 2 determine the obstacle that collides with the robot and the time step that 

causes the collision. According to Table 2 and Fig. 6, the robot collides with obstacle 1 at time steps 5 

and 6. Therefore, in line 4 of Algorithm 2, i = 5. In line 5, tc = 5, and therefore we let the first time step 

of path planning tS = 5 – 1 = 4. The final time step of collision te is 6. In line 7, tG = iff(tc < nTraj, te + 1, 

tS) means 

 if tc < nTraj, then tG = te + 1, else tG = tS . (3) 

 

Algorithm 2: Dynamic Path Planning  

Procedure adaptedPath = DynamicPlanning(trajTable) 

 

1:  adaptedPath ← null;  // the initial adaptive path is set as empty 

2:  for i = 1 to nTraj,  // nTraj: the number of time steps in the TP table 

3:         for each detected dynamic obstacle, 

4:  if the collisions begin from i then 

5:  tc = i and tS = tc – 1;  // tS: the start time for path planning 

6:  te ← the final time step of these collisions 

7:  tG = iff(tc < nTraj, te + 1, tS); 

8:  plannedPath = FindNewPath(trajTable, tS, tG); // to Algorithm 3 

9:  break;  // exit the inner for loop 

10:  end if 

11: end for 

12:  end for 

13:  plannedPath ← 2 1 ( )

1 ( , )tS k

k x yr r
− −

=

∪  ∪ plannedPath; 

14:  for j = 2 to the number of positions in plannedPath, 

15: adaptedPath ← adaptedPath ∪ plannedPath(j); 

16: Move the robot to plannedPath(j); 

17: if the detected obstacle changes its moving way and threatens the robot then 

18:               trajTable ← Generate the trajectory prediction table; 

19:  go to line 2; 

20: end if 

21:  end for 

22:  return adaptedPath;  // return the planned adaptive path 

 

According to Table 2 and Fig. 6, tG = te + 1 = 6 + 1 = 7 because tc = 5 < nTraj and rS and rG are the 

start and target positions at time steps tS and tG, respectively. To obtain a wider moving space for the 

robot, we push the tS back by two time steps; in other words, tS’ (the modified tS) = tS – 2 = 4 – 2 = 2 

(line 9, Algorithm 3). The purpose of DPP is to determine a short and safe path from rS’ to rG. In line 8, 

plannedPath = FindNewPath(trajTable, tS, tG) uses trajTable (TP table), tS, and tG as input parameters 

for the FindNewPath procedure to determine the optimal path, and stores this path in plannedPath. After 

obtaining the adaptive path, the procedure exits the inner for loop and proceeds to line 12. In line 13, 

plannedPath ← 2 1 ( )

1 ( , )tS k

k x yr r
− −

=

∪  ∪ plannedPath indicates a combination of the initial positions from (rx, 

ry)
(1) to (rx, ry)

(tS–2–1) with the adaptive positions of plannedPath determined using the FindNewPath 

procedure. For example, in Fig. 6, 2 1 ( )

1 ( , )tS k

k x yr r
− −

=

∪  = (rx, ry)
(1) because tS = 4, and plannedPath = {(rx, 

ry)
(2), (r’x, r’y)

(3), (r’x, r’y)
(4), (r’x, r’y)

(5), (rx, ry)
(7)}, where (r’x, r’y)

(t) denotes the (x, y) coordinate of the 

adaptive position of plannedPath at time step t. The (r’x, r’y)
(t) in plannedPath is labeled using the 

flowchart symbol delay, as shown in Fig. 6. 

Lines 12-17 denote the replanning process. If a detected dynamic obstacle, which is recorded in the TP 

table, changes its moving direction or speed and threatens the robot, the DPP algorithm restarts and plans 

another adaptive path to avoid a collision in the near future. In line 14, the index of for loop j starts from 

2 because the robot initially stays at the first position of plannedPath. 
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4.2 A* Algorithm for Determining the Optimal Path 

The most crucial part of the DPP algorithm is the FindNewPath procedure, as shown in Algorithm 3. 

First, the robot must select the avoiding strategy, waiting strategy (lines 3-8), or detouring strategy 

(lines 9-29). For the waiting strategy, if tS = tG in line 3, the robot collides with a dynamic obstacle at the 

final time step in the TP table (tS and tG are calculated in line 7 in Algorithm 2). In line 23, tWait = iff(tS 

> 3, tS – 3, tS) is equivalent to 

 if tS > 3, then tWait = tS – 3, else tWait = tS . (4) 

Line 5 denotes that the robot moves from rTraj(1) to rTraj(tWait) and waits at rTraj(tWait) for three 

time steps. For example, in Fig. 6, tWait = tS – 3 = 1 because tS = 4 > 3; plannedPath = {rTraj(1)} 
3

1
(1)

i
rTraj

=

∪  = { rTraj(1), rTraj(1), rTraj(1), rTraj(1)}. In lines 6 and 7, if waitTime < hWait (a tolerable 

threshold for waiting is hWait = 2 in this study) and there is no collision during waiting at rTraj(tS), the 

robot moves from rTraj(1) to rTraj(tS) and waits at rTraj(tS) for waitTime time steps. 

Lines 8-28 of Algorithm 3 determine the optimal path to avoid the dynamic obstacle. In line 10, the 

variables rS’ and rG denote the starting and target positions, respectively. For example, in Table 2 and 

Fig. 6, rS’ = (rx, ry)
(2) and rG = (rx, ry)

(7). The initial plannedPath is set to {rTraj(1), rTraj(2), …, 

rTraj(tS’)}. By applying the A* algorithm, lines 13-27 (while loop) obtain an optimal path from rS’ to 

rG without colliding with the obstacle according to the two objective functions f and D shown in Eq. (2). 

According to the A* algorithm, the robot selects the next position rNext to move with minimal total cost 

C. 

 

Algorithm 3: FindNewPath Procedure 

procedure plannedPath = FindNewPath(trajTable, tS, tG) 

 

1:  rTraj ← robot’s (x, y) coordinates in trajTable; 

2:  waitTime = tG – tS – 1; // number of time steps the robot should wait 

3:  if tS = tG then 

4: tWait = iff(tS > 3, tS – 3, tS);  // the time step for waiting 

5: plannedPath = {rTraj(1), rTraj(2), …, rTraj(tWait)} 3

1
( )

t
rTraj tWait

=

∪ ; 

6: else if (waitTime < hWait) and (no collision during waiting at rTraj(tS)) then 

7:  plannedPath ={rTraj(1), rTraj(2), …, rTraj(tS)} 
1

( )waitTime

t
rTraj tS

=

∪ ; 

8: else 

9:  if tS > 2 then tS’ = tS – 2; end if 

10:  rS’ = rTraj(tS’); rG = rTraj(tG); 

11:  tP = tS’;  // the current time step  

12:  plannedPath = {rTraj(1), rTraj(2), …, rTraj(tS’)}; 

13:  while Distance(plannedPath(tp), rG) > ε, // apply the A* algorithm 

14:   rNext = GetSuccessors(plannedPath(tp), rG); 

15:   for each rNext, 

16:     if a collision occurs when moving to rNext then 

17:     g(rNext) = ∞; f(rNext) = ∞; 

18:    else 

19:     g(rNext) ← distance from plannedPath(tp) to rNext; 

20:     h(rNext) ← distance from rNext to rG; 

21:     f(rNext) = g(rNext) + h(rNext); 

22:    end if 

23:    D(rNext) ← the danger degree of rNext;  // use Eq. (7) to calculate  

24:    C(rNext) = f(rNext) ⋅ 
)(rNextD

e
⋅α

; 

25:   end for 

26:   tp =tp + 1; plannedPath(tp) ← the rNext with minimal C; 

27:  end while 

28:  end if 

29:  return plannedPath; 
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 C(rNext) = f(rNext) ⋅ 
)(rNextD

e
⋅α

, (5) 

where f(rNext) = g(rNext) + h(rNext) is the objective function for path length, from initial position (rx, 

ry)
(1) to target position rG, passing through rNext; α ≥ 0 is a coefficient of the danger degree; and D(rNext) 

is the objective function of the danger degree of rNext, and it measures how dangerous the position rNext 

is. Subsequently, D(rNext) is calculated according to the distances of the surrounding obstacles of rNext. 

We suggest that α is set to smaller than 3. If α = 0, C(rNext) = f(rNext), which is the same objective 

function, which was presented in our previous study [23]. It only considers the path-length objective 

function, and C(rNext) = f(rNext) is a special case (α = 0) of Eq. (5). 

Gong et al. (2011) proposed a computing method for the danger degree of a path. We used this method 

to calculate a position’s danger degree. The threatening degree of DSj to rNext, Tj, is calculated as 
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where DSj (j = 1, 2, …, NS) is the jth danger source; in other words, the static and dynamic obstacles 

detected around the robot by using the laser range finder; d(DSj) represents the minimal distance between 

rNext and DSj; and d(DSj)min and d(DSj)max are the lower and upper bounds for d(DSj), respectively. If 

d(DSj) ≥ d(DSj)max, the position rNext is absolutely safe related to DSj. Conversely, if d(DSj) ≤ d(DSj)min, 

the position rNext is highly dangerous related to DSj. The term β is a constant positive value. For all n 

danger sources, the danger degree of rNext, D(rNext), is formulated as 

 }{max)(
,...,2,1

j
nj
TrNextD

=

=  . (7) 

In this paper, d(DSj)min and d(DSj)max are set as the robot’s radius and 150 (five times the maximal 

moving speed of 30 cm/time-step: 5 × 30 = 150), and β is 3 according to our prior experiments. 

The initial position of the robot is rS’. For each iteration in the while loop (lines 13-27), the robot 

determines the ideal next position, rNext, according to the objective function given in Eq. (5), which is 

then stored in plannedPath. Repeat the procedure until the robot reaches or approaches the target position 

rG. In line 14, rNext = GetSuccessors(plannedPath(tp), rG) indicates that the FindNewPath Procedure 

applies the GetSuccessors procedure to calculate all possible next positions, considering the robot’s 

current position plannedPath(tp) and the target position’s coordinate. The for loop (lines 15-25) 

calculates the cost function C(rNext) of each rNext. In line 26, first, the tp value is incremented by one, 

and then the rNext with minimal C(rNext) is determined and stored in plannedPath(tp). Line 29 returns 

the produced path, plannedPath, to line 8 in Algorithm 2. 

The GetSuccessors procedure is shown in Algorithm 4. Lines 3-7 obtain the φLow, which is the 

smallest steering angle of the robot among all angles and is parallel to the orientation of the threatening 

obstacle. Line 4 can be expressed as 

 if θ < φ + 180°, then φLow = φ, else φLow = φ + 180° . (8) 

In addition, line 6 can be expressed as 

 if θ < φ, then φLow = φ − 180°, else φLow = φ . (9) 

For example, in Fig. 6, the orientation of obstacle 1 is φ = 0°. 

To obtain the robot’s next feasible position rNext, we first established the three possible velocities, 

vSlow, vMedium, and vFast, which were set to 20, 30, and 40 cm/time-step, respectively, according to the 

previous experiments. We then computed 19 steering angles {φLow, φLow + 10°, φLow + 20°, …, φLow + 180°} 

of the robot. Different speeds combined with different steering angles can obtain different next positions. 

There are 57 (3 × 19) combinations, and different next positions are calculated using lines 11-17 of 

Algorithm 4. These 57 coordinates are stored in rNext and returned to line 14 of Algorithm 3. 

In the next section, we present the results of two simulations to demonstrate the proposed DN method. 
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Algorithm 4: GetSuccessors Procedure 

procedure rNext = GetSuccessors(r, rG) 

 

1:  θ ← included angle between the robot’s current position r and the target position rG; 

2:  φ ← the orientation of the threatening obstacle; 

3:  if φ < 180° then 

4:     φLow = iff(θ < φ + 180°, φ, φ + 180°); 

5:  else 

6:     φLow = iff(θ < φ, φ − 180°, φ);                 

7:  end if 

8:  vsuc = {vSlow, vMedium, vFast}; // robot’s different velocities 

9:  ϕ = {φLow, φLow + 10°, φLow + 20°, …, φLow + 180°}; // robot’s steering angle 

10: rNext ← null; r = (rx, ry);  

11: for i = 1 to 3, 

12: for j = 1 to 19, 

13:  rx
’ = rx + vsuc(i)cos(ϕ (j)); // x coordinate of rNext 

14:  ry
’ = ry + vsuc(i)sin(ϕ (j)); // y coordinate of rNext 

15:  rNext = rNext ∪ (rx
’, ry

’); 

16: end for 

17: end for 

18: return rNext; 

5 Simulation Results 

In this section, we first demonstrate our proposed DN method by presenting and analyzing the simulation 

results of different coefficients of danger degree α. Next, we present the comparison results of the DN 

method and static navigation. The proposed algorithms are programmed using MATLAB (version: 

R2013b), and the fuzzy controller described in Section 3 is implemented using the Fuzzy Logic Toolbox 

in MATLAB. 

5.1 Simulation Analysis for the Proposed DN Method 

The coefficient of the danger degree α is presented in Eq. (5), which is the cost function C(rNext) for 

determining an adaptive path to avoid the threatening obstacle, has a high influence on C(rNext), such 

that it affects the searching result of the adaptive path. The smaller the α is, the more crucial the path-

length objective f(rNext) is. Conversely, the greater the α is, the greater the emphasis placed on the 

danger-degree objective D(rNext) is. Therefore, we investigated the influences of different α values. 

Fig. 7 shows the simulation results of different α (α = 0, 1, and 2). In the figure, 10 static obstacles are 

represented by black rectangles and six dynamic obstacles are represented by red squares. The start and 

target positions are (1200, 100) and (300, 1300), respectively. The environment is square shaped with an 

area of 1500 × 1500 cm. The dynamic obstacle moves back and forth along the dashed line. The 

rectangular frames outside the obstacles denote the safe range, and they are used for attracting attention. 

Figs. 7 (a) and (b) are the results of α = 0 (the DPP method only considers the path-length objective). Fig. 

7 (a) shows that the robot detects a dynamic obstacle at time step 70, and thus the DPP method starts 

determining the shortest path without collisions. The path without collision, comprising seven 

movements from time steps 71 to 77, is then generated using the DPP method, as shown in Fig. 7 (b). On 

this path, the robot first moves toward the target position and then left to avoid the dynamic obstacle. At 

time step 77, the position of the dynamic obstacle locates behind the robot. After time step 78, the robot 

moves toward the target position and reaches it at time step 80. The robot’s paths, from time steps 1 to 70, 

shown in Figs. 7 (b)–(d) are the same, but the paths after time step 71 are different. 

Fig. 7 (c) shows the simulation result of α = 1 (the objective function of the DPP method is C(rNext) = 

f(rNext)⋅ )(rNextD
e , and it considers both path length and safety objectives). From time steps 71 to 76, the 

robot first moves to the upper left (stopping at (251, 1239)) to avoid the dynamic obstacle, and then  
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(a) α = 0, at time step = 70 (b) α = 0, at time step = 80 

(c) α = 1, at time step = 80 (d) α = 2, at time step = 81 

Fig. 7. Comparison results of different coefficients of the danger degree, α = 0, 1, and 2. All subfigures 

have the same path from time steps 1 to 70, but the adaptive paths from time steps 71 to 77 obtained 

using the DPP algorithm with α = 0, 1, and 2 are different 

moves back to the previous position (251, 1219) at time step 77. The leftward arc of the adaptive path of 

the robot in Fig. 7 (c) is greater than that in Fig. 7 (b) because its α value is higher. 

For the simulation result of α = 2, as shown in Fig. 7 (d), the adaptive path from time steps 71 to 77 is 

similar to that shown in Fig. 7 (c). However, the leftward arc of the adaptive path in Fig. 7 (d) is greater 

than that in Fig. 7 (c) because its α value is higher. After time step 78, the robot moves toward the target 

position directly and reaches it at time step 81. 

The results of numerical computation are summarized in Table 3. The number of movements of the 

three adaptive paths with α = 0, 1, and 2 are the same (i.e., seven steps). The length of the adaptive path 

with α = 0 is the shortest (because it only considers the objective of path length), that is, 130 cm, and α = 

1 results in the longest adaptive path (i.e., 170 cm). The larger the α value is, the farther the obstacle is 

from the adaptive path, and therefore the robot can move more safely. All three settings of the α values 

allow the robot to reach the target position successfully. For α = 0 and 1, the distances between the final 
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position of the adaptive path and the target position are approximately equal. According to Table 3, the 

robot’s total path length for α = 0 is the shortest and for α = 2 is the longest (all path lengths before the 

adaptive paths are identical). 

In the simulation, if we do not consider the distance from the obstacle (not considering safety), α = 0 is 

the ideal choice. If we consider safety (adopting a more conservative mode), α = 1 is the ideal choice. 

Table 3. Computational results of adaptive paths under different coefficients of danger degree, α = 0, 1, and 2 

Coefficient of Danger Degree α 
Performance Measure 

0 1 2 

No.a of moving steps in adaptive path 7 7 7 

Length of adaptive path (cm) 130 170 160 

Distance between last position of adaptive path and target (cm) 102.8 102.78 136.23 

Average moving speed in adaptive path (cm/time-step) 18.571 24.286 22.857 

Note. a No. is an abbreviation of number. 

5.2 Comparison Results 

For avoiding dynamic obstacles, some studies have used static navigation methods, which regard the 

dynamic obstacles as static obstacles. However, we proposed the DPP algorithm, which predicts the 

future moving trajectories of dynamic obstacles for obtaining a more effective strategy for avoiding 

moving obstacles. Several studies have adopted static navigation [16, 22, 25]. According to our 

simulation results, static navigation is not suitable for avoiding dynamic obstacles. 

To construct static navigation for comparison, we used only the fuzzy controller described in Section 3 

to steer the robot. The robot has sonar sensors with a maximum sensing range of only 130 cm to detect 

the static and dynamic obstacles, as shown in Fig. 1. If the robot does not detect any obstacle, it directly 

moves toward the target position. Otherwise, the fuzzy controller is activated to control the robot’s 

steering angle and moving speed to guide the robot’s movement. The fuzzy rules to infer the control 

outputs are shown in Table 1. We introduce two comparison results as follows: 

Case 1: Moving from (1400, 300) to (500, 1300). The setting of the simulation environment is similar to 

that described in Section 5.1; however, the environment in this section adds two more static obstacles, as 

shown in Fig. 8. The starting and target positions are (140, 300) and (500, 1300), respectively. The 

simulation and numerical computation results are shown in Fig. 8 and Table 4, respectively. According to 

Fig. 8, static navigation results in two collisions at time steps 39 and 40; however, the other three DN 

methods with different settings for coefficients of the danger degree can successfully guide the robot to 

reach the target position without collision. To facilitate the explanation of the simulation results, we used 

the terms DNα=0, DNα=0.5, DNα=1, and DNα=2 to express the DN methods whose coefficients of the danger 

degree are set to α = 0, 0.5, 1, and 2, respectively. In the simulation process, we first let the robot move 

and then let the dynamic obstacles move. Therefore, in static navigation, the robot does not know the 

position of a dynamic obstacle at the next time step. In addition, the robot controlled using static 

navigation cannot predict the future path of a dynamic obstacle. Therefore, the robot has a higher 

likelihood of colliding with dynamic obstacles when it is close to them. 

Figs. 8 (c) and (d) show the simulation results of the DN method with different settings of α. Because 

the time step is 34 (t = 34), the robot detects a dynamic obstacle at its lower-left corner. The DPP method 

begins searching an adaptive path based on the objective function shown in Eq. (2). The paths of the 

three robots are similar, as shown in Figs. 8 (c) and (d). According to Table 4, the DNα=0 method obtains 

the shortest path (1545.8 cm), and static navigation results in the longest path (1576.9 cm). Therefore, the 

setting of α = 0 can result in the shortest adaptive path (from time steps 34 to 41). Except for time steps 

34 to 41, the rest of the robot’s paths in the different methods, as shown in Fig. 8, are highly similar. In 

addition, the length of the adaptive path generated using the DNα=0 method is the shortest (158.6 cm), and 

the DNα=2 method has the longest adaptive path (178.6 cm). 
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(a) Static navigation method, at t = 57 (b) DNα=0 method, at t = 58 

(c) DNα=1 method, at t = 57 (d) DNα=2 method, at t = 58 

Fig. 8. Comparison Results I: Comparison of static navigation and DN method with different settings of 

α. The symbol “t” indicates the time step. Static navigation cannot successfully guide the robot to reach 

the target position; however, the proposed DN method can guide the robot without collision 

Table 4. Comparison results I for static navigation method and DN method with different settings of α  

DN Method with Different Settings of α 
a 

Performance Measure 
Static Navigation 

Method 0 1 2 

No. b of time steps to reach target 57 58 57 58 

Path Length (cm) 1576.9 1545.8 1560.4 1569.2 

Average moving speed (cm/time-step) 27.7 26.7 27.4 27.1 

No. of collisions 2 0 0 0 

No. of executions for dynamic path planning − 1 1 1 

Total no. of moving steps for all adaptive paths − 8 7 8 

Total length of all adaptive paths (cm) − 158.6 168.6 178.6 

Note. a α is the coefficient of danger degree. b No. is an abbreviation of number. 
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According to the preceding description, the DNα=0 method exhibits superior performance, and the 

performance of static navigation is inferior. 

Case 2: Moving from (750, 200) to (1200, 1300). The simulation environment of Case 2 is the same as 

that in Case 1, but the starting and target positions are set to (750, 200) and (1200, 1300), respectively. 

According to Fig. 9, the robot’s path obtained using static navigation includes three collisions; however, 

the robot’s paths obtained using the DN approach with different settings of α have no collisions. 

According to Fig. 9 (a), the robot collides with the oncoming dynamic obstacle at time steps 64, 65, and 

66 because static navigation does not predict the movement of dynamic obstacles. In Case 2, the robot’s 

paths using these four methods are slightly different, where the DNα=0 method obtains the shortest and 

smoothest path. 

At time step 14, the robot detects a threatening dynamic obstacle. Thus, the DPP algorithm within the 

DN method begins determining the optimal adaptive path. The adaptive paths of the three different 

settings of α values (i.e., α = 0, 0.5, and 1) of DN methods have nine movements, from time steps 14 to 

23; however, the three adaptive paths are not the same. The DNα=0 method steers the robot moving 

behind the threatening obstacle. The DNα=0.5 and DNα=1 methods, as shown in Figs. 9 (c) and (d), 

respectively, steer the robot moving in front of the threatening obstacle, and thus the robot has to move 

farther and spend more time to detour around the obstacle.  

After the robot moves according to the first adaptive path, it detects an extremely close threatening 

dynamic obstacle at time step 23 (Figs. 9 (c) and (d)). Therefore, the DNα=0.5 and DNα=1 methods perform 

the DPP algorithm for a second time to avoid the oncoming obstacle. Compared with the DNα=1 method, 

the DNα=0.5 method can obtain a shorter adaptive path, from time steps 24 to 26. After performing the 

DPP algorithm for a second time, the robot controlled using DNα=0.5 and DNα=1 methods continues to 

move toward the target position, and eventually reaches the target position successfully. 

At time step 14, the robot detects a threatening dynamic obstacle. Thus, the DPP algorithm within the 

DN method begins determining the optimal adaptive path. The adaptive paths of the three different 

settings of α values (i.e., α = 0, 0.5, and 1) of DN methods have nine movements, from time steps 14 to 

23; however, the three adaptive paths are not the same. The DNα=0 method steers the robot moving 

behind the threatening obstacle. The DNα=0.5 and DNα=1 methods, as shown in Figs. 9 (c) and (d), 

respectively, steer the robot moving in front of the threatening obstacle, and thus the robot has to move 

farther and spend more time to detour around the obstacle.  

After the robot moves according to the first adaptive path, it detects an extremely close threatening 

dynamic obstacle at time step 23 (Figs. 9 (c) and (d)). Therefore, the DNα=0.5 and DNα=1 methods perform 

the DPP algorithm for a second time to avoid the oncoming obstacle. Compared with the DNα=1 method, 

the DNα=0.5 method can obtain a shorter adaptive path, from time steps 24 to 26. After performing the 

DPP algorithm for a second time, the robot controlled using DNα=0.5 and DNα=1 methods continues to 

move toward the target position, and eventually reaches the target position successfully. 

For the DNα=0 method, the robot detects a threatening dynamic obstacle near the target position at time 

step 53, and therefore, it uses the DPP algorithm for a second time. There are six movements in the 

second adaptive path, and the robot stops at (1204.05, 1235.17) from time steps 59 to 60 to wait for the 

dynamic obstacle. At time step 60, the dynamic obstacle is extremely close to the robot, and the robot 

waits from time steps 60 to 61. Similarly, at time step 62, the robot waits for the obstacle from time steps 

62 to 63. After performing the DPP algorithm for a second time, the robot performs two successive DPP 

algorithms at time steps 60 and 62. At time step 64, because the dynamic obstacle has moved away from 

the target position, the robot moves toward the target position by using the fuzzy controller. 

The numerical computation results are summarized in Table 5. The DNα=0 method spends the least 

time, 66 time steps, to steer the robot to reach the target position without any collision, and the total path 

length is the shortest at 1481.8 cm. Conversely, the DNα=1 method spends the most time, 72 time steps, to 

steer the robot to reach the target position without any collision, and the entire path length is the longest 

at 1689.6 cm. For the adaptive behavior of the DPP algorithm, the proposed DN methods, for example, 

DNα=0, DNα=0.5, and DNα=1 in this simulation case, can successfully steer the robot to avoid the dynamic 

obstacles. The DNα=0 method is used to determine the shortest adaptive path. However, the total length of 

the adaptive paths of the DNα=0 method (432.4 cm) is not the shortest, because it contains an adaptive 

path that is relatively long from time steps 53 to 60. The DNα=0 method performs the DPP algorithm four 

times. For the DNα=0.5 method, the total number of movements for all adaptive paths is minimal (i.e., 12  
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(a) Static navigation method, at time step = 67 (b) DNα=0 method, at t = 66 

(c) DNα=0.5 method, at t = 67 (d) DNα=1 method, at t = 67 

Fig. 9. Comparison Results II: Comparison of static navigation method and dynamic navigation method 

(DN method) with different settings of α. The symbol “t” indicates the time step. The proposed DN 

method can successfully drive the robot to reach the target position without collision. 

Table 5. Comparison results II for static navigation method and DN method with different settings of α 

DN Method with Different Settings of α 
Performance Measure 

Static Navigation 

Method 0 0.5 1 

No.a of time steps to reach target 67 66 67 72 

Path Length (cm) 1602.9 1481.8 1594.1 1689.6 

Average moving speed (cm/time-step) 23.9 22.5 23.8 23.5 

No. of collisions 3 0 0 0 

No. of executions of dynamic path planning − 4 2 2 

Total no. of moving steps for all adaptive paths − 15 12 17 

Total no. time steps for waiting dynamic obstacle  5 0 1 

Total length of all adaptive paths (cm) − 432.4 290.0 440.0 

Note. a No. is an abbreviation of number. 
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movements), and the total length of all adaptive paths is the shortest at 290 cm. In addition, the robot 

controlled using the DNα=0.5 method does not wait for the dynamic obstacle. Conversely, the total number 

of movements for the two adaptive paths of the DNα=1 method is the highest at 17 movements, and the 

total length of the two adaptive paths is the longest at 440 cm. 

According to the preceding description, the DNα=0 method exhibits the best performance because it 

allows the robot to move to the target position by using the shortest path without any collision.  

However, in some cases, the waiting strategy of the DPP algorithm fails. For example, in the DNα=0 

method, the starting and target positions of the robot are set to (750, 280) and (1200, 1300), respectively. 

When the time step is 45, the robot waits endlessly. 

6 Conclusions 

This paper presented a navigation method in the dynamic environment called the DN method with static 

and dynamic obstacles. The proposed DN method comprises static navigation and DPP. When the robot 

detects a dynamic obstacle that will collide with the robot in the near future, the DPP algorithm starts to 

determine the optimal adaptive path to avoid the obstacle according to the two objective functions of the 

path length and distances between the adaptive path and the surrounding obstacles. For the DPP 

algorithm, two strategies are used to avoid dynamic obstacles: one is to detour around the obstacle, and 

the other is to wait until the robot can move safely. If the robot only detects the static obstacles around it, 

the fuzzy controller guides the robot’s movement to avoid these obstacles. 

This study is an extension of our previous study [23]; we made four major improvements to the DPP 

algorithm. In particular, we added another objective function, the danger degree of each movement in the 

adaptive path, and improved the waiting strategy for considering more situations. Moreover, the 

movements of dynamic obstacles are modified so that they are changeable. If a dynamic obstacle in the 

sensing range changes its moving way, the DPP algorithm restarts to determine the optimal adaptable 

path. Moreover, we revised the DPP algorithm by using mathematics that is more precise. For the two 

simulation cases, we compared static navigation (which treats dynamic obstacles as static obstacles) with 

the proposed DN method by using different settings of α. Static navigation fails to avoid the dynamic 

obstacles in both cases. The proposed DNα=0 method exhibits the best performance because it can obtain 

the shortest path from the start to the target positions without collision. 
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