
Journal of Computers Vol. 29 No. 1, 2018, pp. 21-39

doi:10.3966/199115992018012901003

21

Robot Navigation in Dynamic Environments Based on Fuzzy

Controller and the A* Algorithm

Cheng-Hsiung Chiang

Department of Information Management, Hsuan Chuang University, Hsinchu City 407, Taiwan

chchiang@hcu.edu.tw

Received 14 August 2016; Revised 7 February 2017;Accepted 7 February 2017

Abstract. Robot navigation guides a robot moving from a start position to a target position

without collision in an unknown environment. This paper proposes a robot navigation approach

in a dynamic environment with static and dynamic obstacles. The proposed navigation method

comprises static navigation and dynamic path planning (DPP). Static navigation guides the robot

to avoid static obstacles by using a fuzzy controller, which comprises four input and two output

variables. If the robot detects dynamic obstacles, a trajectory prediction table is generated to

predict their moving trajectories. If this table shows that the robot will collide with a dynamic

obstacle in the near future, DPP begins determining a safe and short path to avoid the obstacle

by using the waiting or detouring strategies. The detouring strategy employs the A* algorithm to

determine an optimal adaptable path to avoid a threatening obstacle. If the robot detects only

static obstacles, the fuzzy controller guides the robot to avoid them. Simulation and comparison

results showed that the proposed method is superior to static navigation.

Keywords: A* algorithm, dynamic path planning, fuzzy controller, robot navigation

1 Introduction

Path planning is essential for mobile robots, which determines an optimal collision-free path from a

starting position to a target position in a specific environment according to criteria such as distance, time,

or energy [1]. Two main categories of path planning exist: global path planning, which encompasses all

the acquired knowledge relating to the whole environment, and local navigation, which is the process of

using only the robot’s currently sensed information (entire environment information is unknown or

partially unknown) [2]. Numerous studies have used several techniques for global path planning, such as

particle swarm optimization [3-5], ant colony optimization [6-7], genetic algorithms [8-9], dynamic

programming [10], the visibility graph method [11], the free-space method, the artificial potential field

method [12], and the A* algorithm [13]. In addition, numerous studies have used techniques such as

neural networks [14] and fuzzy logic [15] for local navigation.

Two types of obstacle can be present in an environment: static and dynamic obstacles. To date, the

problem related to static obstacles has been thoroughly studied. Therefore, recent studies have focused on

dynamic obstacle avoidance [1-2, 16-21]. A mobile robot that performs a task in an indoor or outdoor

environment must navigate safely from one place to another; in addition, avoiding moving objects, such

as people, pets, and cars, is essential [20].

Phillips and Likhachev [20] developed the concept of safe intervals for path planning in dynamic

environments. A safe interval is a period without collisions. A configuration is a set that describes the

robot’s state such as position, heading, and joint angles. To avoid a moving obstacle, the robot uses the

A* algorithm and safe interval to arrange its path. The method reduces the number of states that must be

searched, and does not sacrifice the theoretical guarantees on optimality. They showed that their planner

could provide the same optimality and completeness guarantees as planning with time as an additional

dimension. Experimental results showed that the reduction in state space results in a planner that finds

solutions significantly faster than the standard approach.

Robot Navigation in Dynamic Environments Based on Fuzzy Controller and the A* Algorithm

22

Raja and Pugazhenthi [1] proposed algorithms for dynamic path planning (DPP), which can be

classified into two types: in the first type, static obstacles are avoided using the direction concept,

whereas in the second type, dynamic obstacles are avoided using the waiting time concept. The direction

concept identifies the maneuverable and nonmaneuverable obstacle edges by using the pass-through and

no-pass-through edge concepts. The waiting time concept investigates the required waiting time and stop

position for the robot when encountering dynamic obstacles. This method is intuitive and may be easy to

implement.

Faisal et al. [16] developed four fuzzy logic modules—goal seeking module, static and dynamic

obstacles avoidance module (SDOAM), emergency module (EM), and robot setting module—for robot

navigation in a dynamic and unknown indoor environment. The method is implemented using the

Powerbot robot. If the laser or ultrasonic sensors detect any obstacle movement near the robot, the EM

module is activated; otherwise, the SDOAM module is used. If the laser or ultrasonic sensors detect any

static or dynamic obstacle far from the robot, the SDOAM module is used to guide the robot.

In addition, Faisal et al. [22] conducted another related study that developed two fuzzy logic

controllers (FLCs)—tracking FLC (TFLC), for driving the robot moving toward its target position, and

obstacle-avoiding FLC (OAFLC) for avoiding obstacles—for robot navigation in unknown and dynamic

environments. If the robot does not sense any obstacle, the TFLC guides the robot moving toward its

target position; otherwise, the OAFLC helps the robot avoid the obstacle. They used the same method,

OAFLC, to avoid static and dynamic obstacles. Because OAFLC cannot predict the movement of a

dynamic obstacle, the robot is highly likely to collide with the obstacle, as indicated by our simulation

results (Section 5).

Kümmerle et al. [18] presented a navigation system for real mobile robots operating in crowded city

environments and pedestrian zones. The architecture of a path planner comprises three levels. The top

level considers the topology of the environment. The intermediate level applies Dijkstra’s algorithm on

local maps to calculate way-points, which serve as inputs of the low-level planner. The low-level planner

computes velocity commands for the robot and manages the dynamic objects that are present in the

robot’s vicinity. To detect moving obstacles in the vicinity of the robot, they employed a blob tracker

based on two-dimensional range scanner data and a common coordinate frame. The obtained information

is used to predict the obstacle’s position at a certain time in the planned trajectory. Planning a path from

the current location of the robot to a goal location is described as follows. Considering the robot and goal

nodes of the map, the high level planner uses the A* algorithm to obtain a list of waypoints toward the

goal. However, following the list may result in suboptimal paths. Thus, they used the Dijkstra algorithm

in the local map starting from the current location of the robot and selected way-points as intermediate

goals for the low-level planner. The proposed navigation system was implemented and demonstrated in a

large-scale public field test, and the robot navigated a path longer than 3 km through the crowded city

center of Freiburg in Germany.

An intuitive and effective method is to predict the moving trajectories of dynamic obstacles when the

robot detects them [2, 14, 18, 20]. The robot must plan short and safe paths to avoid these moving

obstacles. One approach [20] assumes that another system exists that tracks dynamic obstacles to predict

their future trajectories and formats them into a general representation. A trajectory is only a list of points,

where each point has state variables that specifies its configuration, time, and some measure of the

point’s uncertainty. Another method [14] uses a neural network to predict only the next movement of

dynamic obstacles, but the neural network does not predict the future several movements in a period.

Inspired by the method proposed by Phillips and Likhachev [20], we presented a trajectory prediction

(TP) table in our previous study [23], which provides information about the predicted trajectories of

dynamic obstacles and robot and collision judgment, for DPP to plan an optimal avoidance path.

This paper proposes dynamic navigation (DN) for a robot in a dynamic and unknown environment,

which is an extension of the method used in our previous study [23]. The proposed DN method includes

two parts: static navigation and DPP. Static navigation, inspired by Singh et al. [24], adopts a FLC to

avoid unknown and stationary obstacles. The DPP approach incorporated the A* algorithm to plan an

optimal adaptable path to avoid dynamic obstacles. Compared with our previous study [23], we made

four major improvements to the DPP method. (1) We added an additional objective function, the danger

degree, for each movement of the adaptive path such that the adaptive path can be relatively distant from

the obstacles. (2) We improved the original waiting strategy (the robot waits for the dynamic obstacle) so

that the robot considers different situations more carefully. (3) The direction and speed of each dynamic

Journal of Computers Vol. 29, No. 1, 2018

23

obstacle is changeable with a small probability. If the detected dynamic obstacle changes its moving way

and threatens the robot, the DPP method is restarted to generate another adaptive path. (4) We used more

precise mathematics to revise the DPP algorithm.

2 The Proposed Dynamic Navigation Method

This paper proposes a DN method including the robot navigation approach for avoiding static obstacles

and DPP for avoiding dynamic obstacles, as shown in Algorithm 1. The robot must move from a start

position to a target position without collision. We assumed that the static and dynamic obstacles are

unknown. In the simulated experiment of the robot navigation problem, we assumed that the robot had

two types of sensor. Sonar sensors with a maximum sensing range of 130 cm detect the stationary

obstacles on the left, front, and right sides of the robot, as shown in Fig. 1. A laser range finder with a

maximum sensing range of 250 cm is used to detect omnidirectional moving obstacles. We assumed that

the robot has a circular structure with a 10-cm radius.

Fig. 1. The illustration of the sensing range of sonar sensors

Algorithm 1: Algorithm for the DN Method

1: Set initial parameters: s, g, ε, and v; // s and g: start and target positions of the robot

2: t = 1; // initial time step

3: path(t) = s; // the robot’s initial location path(t) = (xt, yt) is at s

4: while Distance(path(t), g) > ε do

5: if dynamic obstacle is detected then

6: trajTable ← Generate the trajectory prediction table;

7: end if

8: if threatening dynamic obstacle is not detected around the robot then

9: Calculate θ; // included angle between robot’s current position and target position

10: if no static obstacle is detected around the robot then

11: Δθ = 0; // Δθ: the increment of the robot’s steering angle

12: else

13: [Δθ, v] = FuzzyController(Left, Front, Right, θ); // introduced in Section 3

14: end if

15: t = t + 1; // time step adds one

16: θ = θ + Δθ; // the robot turns by Δθ degrees

17: xt = xt-1 + v ⋅ cos(θ); // calculate the x coordinate of the robot’s next position

18: yt = yt-1 + v ⋅ sin(θ); // calculate the y coordinate of the robot’s next position

19: path(t) = (xt, yt); // add the new position to path

20: Move the robot to the path(t) location;

21: else

22: adaptedPath = DynamicPlanning(trajTable); //to DPP algorithm

23: path = path ∪ adaptedPath;

24: t = t + (the number of positions in adaptedPath);

25: end if

26: end while

In line 1 of Algorithm 1, we first set the initial parameters s, g, ε, and v, where ε is the tolerable error

between the robot’s current position (ε is set to 20 cm, twice as high as the robot’s radius) and target

Robot

Robot Navigation in Dynamic Environments Based on Fuzzy Controller and the A* Algorithm

24

position and v is the robot’s moving speed. The robot’s speed was within 20-30 cm/time-step in this

study. The initial time step t is set to 1 (line 2). The robot’s moving path is recorded using the variable

path, and its initial value is path(1) = s = (x1, y1). The (x, y) coordinate of the robot indicates its center.

The while loop (lines 4-26) is the primary part of Algorithm 1. In line 4, the condition for executing the

while loop is Distance(path(t), g), which indicates the distance between the robot’s current position at

time step t and target position.

In the while loop, the robot first detects whether any dynamic obstacle exists around it. If the robot

detects a dynamic obstacle within the sensing range of 250 cm, the TP table (Table 2) is generated to

predict moving trajectories of the dynamic obstacles (lines 5-7). Numerous studies have used the DPP

and predicted the movements of dynamic obstacles for planning a safe path [2, 14, 18, 20]. We assumed

that the robot can determine the moving direction and speed of the detected dynamic obstacle, and

therefore, we can directly show the moving positions of the dynamic obstacle in the TP table. For

example, Table 2 provides the predicted information for the future positions of the robot and detected

obstacles from the current time step (e.g., t) to the next several time steps (e.g., t + 9). In addition, it

evaluates whether the robot collides at each time step. This table was used for planning an adaptive path

to avoid the moving obstacle, as described in Section 4.

Lines 8-25 describe the steps for guiding the robot’s movement, and there are three types of movement:

(1) The robot moves directly toward the target position (lines 11 and 15-20).

(2) The fuzzy controller is used to guide the robot to avoid the static obstacles (lines 13 and 15-20).

(3) The DPP algorithm is used to obtain a safe and short adaptive path for avoiding the dynamic

obstacles (lines 22-24).

The threatening dynamic obstacle in line 8 means that the dynamic obstacle will collide with the robot

in the near future; the colliding information is present in the TP table. In line 9, θ is the included angle

between the robot’s current and target positions, and the robot’s orientation is set to θ. In line 11, Δθ is

the increment in the robot’s steering angle and Δθ = 0 indicates that the robot does not turn and directly

moves toward the target position. In line 13, [Δθ, v] = FuzzyController(Left, Front, Right, θ) obtains the

Δθ and v to guide the robot’s movement by using the fuzzy controller, as introduced in Section 3, where v

is the velocity of the robot. The input parameters, Left, Front, and Right, are the shortest distances

between the sensed static obstacle and the robot’s left, front, and right sides, respectively. Lines 15-19

calculate the robot’s next position denoted using path(t). We can then move the robot to the position

path(t).

In line 22, adaptedPath = DynamicPlanning(trajTable) obtains the adaptive path for avoiding

dynamic obstacles by using the DPP algorithm, as introduced in Algorithm 2. The number of positions in

adaptedPath is calculated using the minimal number of movements that the robot can make to exceed its

sensing range (250 cm) from its current position. The while loop is repeated; the robot can eventually

reach or approach the target position, and the robot’s trajectory is recorded using the path variable.

3 Fuzzy Controller for Static Navigation

Fig. 1 illustrates the sensing range of sonar sensors of the robot [25]. The sensing range is divided into

three sectors: left, front, and right. We applied the fuzzy controller presented in our previous study [23] to

guide the robot in avoiding the static obstacles. The input variables are the shortest distances between the

static obstacle and the left, front, and right sides of the robot (0-130 cm), and the included angle

between the robot and its target position (0°-180°) represented by θ. The output variables Δθ and ν

denote the increment in the robot’s steering angle (−120°-120°) and the velocity of the robot (10-40

cm/time-step).

The membership functions (Fig. 2) of the input variables Left, Front, and Right are the same. We can

use the crisp membership function for input variable θ (Fig. 3). If the value of the included angle θ is less

than 90°, it belongs to the right linguistic term; otherwise, it belongs to the left linguistic term. The

membership functions of ν and Δθ are shown in Figs. 4 and 5, respectively. The membership functions

shown in Fig. 2, Fig. 4, and Fig. 5 were first developed in our previous study [23]. We used the

MATLAB software, version R2013b, and its fuzzy logic toolbox to construct the Mamdani-type fuzzy

inference system [26]. The 28 proposed fuzzy rules are listed in Table 1 [23]. In the fourth column, from

rules 2-27, the linguistic terms of the variable θ are “-” which means it can be any value.

Journal of Computers Vol. 29, No. 1, 2018

25

0 20 40 60 80 100 120

0

0.2

0.4

0.6

0.8

1
Near Medium Far

Fig. 2. The membership function of input variable Left, Front, and Right [23]

Fig. 3. The membership function of input variable θ

Fig. 4. The membership function of output variableν [23]

Fig. 5. The membership function of output variable Δθ [23]

(cm/ time step)

μ

Robot Navigation in Dynamic Environments Based on Fuzzy Controller and the A* Algorithm

26

Table 1. List of fuzzy rules for static robot navigation [23]

Input variable Output Variable

Left Front Right θ b Δθ a ν

Near Near Near Right NB Slow

Near Near Medium
− NS Slow

Near Near Far
− NB Slow

Near Medium Near
− ZE Slow

Near Medium Medium
− NS Medium

Near Medium Far
− NS Medium

Near Far Near
− ZE Medium

Near Far Medium
− ZE Medium

Near Far Far
− NS Medium

Medium Near Near
− PB Slow

Medium Near Medium
− NB Slow

Medium Near Far
− NB Slow

Medium Medium Near
− PS Medium

Medium Medium Medium
− ZE Slow

Medium Medium Far
− NS Medium

Medium Far Near
− ZE Medium

Medium Far Medium
− ZE Fast

Medium Far Far
− ZE Fast

Far Near Near
− PB Slow

Far Near Medium
− PB Slow

Far Near Far
− NB Slow

Far Medium Near
− PS Medium

Far Medium Medium
− PS Medium

Far Medium Far
− NS Medium

Far Far Near
− PS Medium

Far Far Medium
− ZE Fast

Far Far Far
− ZE Fast

Near Near Near Left PB Slow

Note. a. NB: Negative Big, NS: Negative Small, ZE: Zero, PS: Positive Small, PB: Positive Big.

The membership functions (Fig. 2) of the input variables Left, Front, and Right are same. We can use

the crisp membership function for input variable θ (Fig. 3). If the value of included angle θ is less than 90,

it belongs to ”Right” linguistic term; otherwise, it belongs to ”Left”. The membership functions of ν and

Δθ are shown in Fig. 4 and Fig. 5, respectively. Fig 2, Fig. 4, and Fig. 5 are proposed in the previous

work [23]. We use the MATLAB software with version R2013b and its Fuzzy Logic Toolbox to

construct the Mamdani-type fuzzy inference system [26]. The proposed 28 fuzzy rules are listed in Table

1 [23]. In the fourth column, from Rules 2 to 27, the linguistic terms of the variable θ are “−” which

means it can be any value.

For example, the sixth fuzzy rule shown in Table 1 is as follows.

 If Left is near, Front is medium, and Right is far, then Δθ is NS and ν is medium, (1)

where NS denotes negative small.

4 A* Algorithm for Dynamic Path Planning

The A* algorithm is a classic deterministic path-planning method, proposed by Hart et al. [27], which

relies on a best-first exploration of the motion graph to determine an optimal path from a starting node to

a target node [13]. The A* algorithm uses an evaluation function f(x, y), which is computed using the

sum of the cost of the path from the starting node to node x (g(x)), the current transition from node x to

node y (c(x, y)), and the estimated cost (h(y)) of the remaining path (from node y to the target node) [28].

 f(x, y) = g(x) + c(x, y) + h(y) . (2)

Journal of Computers Vol. 29, No. 1, 2018

27

The A* algorithm uses an ordered list called Open which contains all the nodes to be explored. For

each iteration, the first node x in Open is removed from the list and for each node y (a successor of the

node x in the path), f(x, y) is computed and the new y is added to Open. The algorithm stops if the top

node is a target node. The algorithm always terminates with an optimal path from the start to the target

nodes [28]. The proposed DPP algorithm is introduced in Section 4.1, and its procedure, FindNwPath,

which employs the A* algorithm to determine a safe and short path for avoiding obstacles, is described in

Section 4.2.

4.1 DPP Algorithm

We made four major improvements to the DPP method, which was first proposed in our previous study

[23], as described in Section 1. Furthermore, we revised some major parts of the DPP algorithm, as

shown in Algorithms 1, 2, and 3, to enhance its readability and replicability. The DPP algorithm has two

strategies, waiting or detouring around the dynamic obstacle, for avoiding dynamic obstacles.

The main procedure of the DPP algorithm is shown in Algorithm 2, and an illustration is shown in Fig.

6. As shown in the figure, the robot detects two dynamic obstacles at time step t = 1, and the

corresponding TP table (Table 2) is then generated to predict the obstacles’ future trajectories (lines 5-7,

Algorithm 1). In Fig. 6, the numbers inside the circles and rectangles indicate the time steps. Table 2

shows the predicted positions of the robot from time steps 1 to 9. The first position of the robot (rx, ry)
(1)

in Table 2 is its current position, and the robot first detects the dynamic obstacles in that position. For

convenience, we set the first time step in the TP table (Table 2) as time step 1. The number of time steps,

nTraj, is calculated according to the minimal movements that the robot can exceed in its detecting range

of (rx, ry)
(1), and it is the number of records in the TP table. In Table 2, nTraj = 9 because the table has

nine records (Distance((rx, ry)
(1), (rx, ry)

(9)) > 250 cm).

Table 2. An example of trajectory prediction table

(x, y) Coordinates Colliding Detection
Time Step

Robot Obstacle 1 Obstacle 2 Collision 1 a Collision 2 a

1 (rx, ry)
(1) (o1x, o1y)

(1) (o2x, o2y)
(1) No No

2 (rx, ry)
(2) (o1x, o1y)

(2) (o2x, o2y)
(2) No No

3 (rx, ry)
(3) (o1x, o1y)

(3) (o2x, o2y)
(3) No No

4 (rx, ry)
(4) (o1x, o1y)

(4) (o2x, o2y)
(4) No No

5 (rx, ry)
(5) (o1x, o1y)

(5) (o2x, o2y)
(5) Yes No

6 (rx, ry)
(6) (o1x, o1y)

(6) (o2x, o2y)
(6) Yes No

7 (rx, ry)
(7) (o1x, o1y)

(7) (o2x, o2y)
(7) No No

8 (rx, ry)
(8) (o1x, o1y)

(8) (o2x, o2y)
(8) No No

9 (rx, ry)
(9) (o1x, o1y)

(9) (o2x, o2y)
(9) No No

Note. a Collision 1(2) indicates whether a collision occurs with obstacle 1(2) at specific time step t.

Fig. 6. An illustration of dynamic path planning

Robot Navigation in Dynamic Environments Based on Fuzzy Controller and the A* Algorithm

28

Lines 3-10 in Algorithm 2 determine the obstacle that collides with the robot and the time step that

causes the collision. According to Table 2 and Fig. 6, the robot collides with obstacle 1 at time steps 5

and 6. Therefore, in line 4 of Algorithm 2, i = 5. In line 5, tc = 5, and therefore we let the first time step

of path planning tS = 5 – 1 = 4. The final time step of collision te is 6. In line 7, tG = iff(tc < nTraj, te + 1,

tS) means

 if tc < nTraj, then tG = te + 1, else tG = tS . (3)

Algorithm 2: Dynamic Path Planning

Procedure adaptedPath = DynamicPlanning(trajTable)

1: adaptedPath ← null; // the initial adaptive path is set as empty

2: for i = 1 to nTraj, // nTraj: the number of time steps in the TP table

3: for each detected dynamic obstacle,

4: if the collisions begin from i then

5: tc = i and tS = tc – 1; // tS: the start time for path planning

6: te ← the final time step of these collisions

7: tG = iff(tc < nTraj, te + 1, tS);

8: plannedPath = FindNewPath(trajTable, tS, tG); // to Algorithm 3

9: break; // exit the inner for loop

10: end if

11: end for

12: end for

13: plannedPath ← 2 1 ()

1 (,)tS k

k x yr r
− −

=

∪ ∪ plannedPath;

14: for j = 2 to the number of positions in plannedPath,

15: adaptedPath ← adaptedPath ∪ plannedPath(j);

16: Move the robot to plannedPath(j);

17: if the detected obstacle changes its moving way and threatens the robot then

18: trajTable ← Generate the trajectory prediction table;

19: go to line 2;

20: end if

21: end for

22: return adaptedPath; // return the planned adaptive path

According to Table 2 and Fig. 6, tG = te + 1 = 6 + 1 = 7 because tc = 5 < nTraj and rS and rG are the

start and target positions at time steps tS and tG, respectively. To obtain a wider moving space for the

robot, we push the tS back by two time steps; in other words, tS’ (the modified tS) = tS – 2 = 4 – 2 = 2

(line 9, Algorithm 3). The purpose of DPP is to determine a short and safe path from rS’ to rG. In line 8,

plannedPath = FindNewPath(trajTable, tS, tG) uses trajTable (TP table), tS, and tG as input parameters

for the FindNewPath procedure to determine the optimal path, and stores this path in plannedPath. After

obtaining the adaptive path, the procedure exits the inner for loop and proceeds to line 12. In line 13,

plannedPath ← 2 1 ()

1 (,)tS k

k x yr r
− −

=

∪ ∪ plannedPath indicates a combination of the initial positions from (rx,

ry)
(1) to (rx, ry)

(tS–2–1) with the adaptive positions of plannedPath determined using the FindNewPath

procedure. For example, in Fig. 6, 2 1 ()

1 (,)tS k

k x yr r
− −

=

∪ = (rx, ry)
(1) because tS = 4, and plannedPath = {(rx,

ry)
(2), (r’x, r’y)

(3), (r’x, r’y)
(4), (r’x, r’y)

(5), (rx, ry)
(7)}, where (r’x, r’y)

(t) denotes the (x, y) coordinate of the

adaptive position of plannedPath at time step t. The (r’x, r’y)
(t) in plannedPath is labeled using the

flowchart symbol delay, as shown in Fig. 6.

Lines 12-17 denote the replanning process. If a detected dynamic obstacle, which is recorded in the TP

table, changes its moving direction or speed and threatens the robot, the DPP algorithm restarts and plans

another adaptive path to avoid a collision in the near future. In line 14, the index of for loop j starts from

2 because the robot initially stays at the first position of plannedPath.

Journal of Computers Vol. 29, No. 1, 2018

29

4.2 A* Algorithm for Determining the Optimal Path

The most crucial part of the DPP algorithm is the FindNewPath procedure, as shown in Algorithm 3.

First, the robot must select the avoiding strategy, waiting strategy (lines 3-8), or detouring strategy

(lines 9-29). For the waiting strategy, if tS = tG in line 3, the robot collides with a dynamic obstacle at the

final time step in the TP table (tS and tG are calculated in line 7 in Algorithm 2). In line 23, tWait = iff(tS

> 3, tS – 3, tS) is equivalent to

 if tS > 3, then tWait = tS – 3, else tWait = tS . (4)

Line 5 denotes that the robot moves from rTraj(1) to rTraj(tWait) and waits at rTraj(tWait) for three

time steps. For example, in Fig. 6, tWait = tS – 3 = 1 because tS = 4 > 3; plannedPath = {rTraj(1)}
3

1
(1)

i
rTraj

=

∪ = { rTraj(1), rTraj(1), rTraj(1), rTraj(1)}. In lines 6 and 7, if waitTime < hWait (a tolerable

threshold for waiting is hWait = 2 in this study) and there is no collision during waiting at rTraj(tS), the

robot moves from rTraj(1) to rTraj(tS) and waits at rTraj(tS) for waitTime time steps.

Lines 8-28 of Algorithm 3 determine the optimal path to avoid the dynamic obstacle. In line 10, the

variables rS’ and rG denote the starting and target positions, respectively. For example, in Table 2 and

Fig. 6, rS’ = (rx, ry)
(2) and rG = (rx, ry)

(7). The initial plannedPath is set to {rTraj(1), rTraj(2), …,

rTraj(tS’)}. By applying the A* algorithm, lines 13-27 (while loop) obtain an optimal path from rS’ to

rG without colliding with the obstacle according to the two objective functions f and D shown in Eq. (2).

According to the A* algorithm, the robot selects the next position rNext to move with minimal total cost

C.

Algorithm 3: FindNewPath Procedure

procedure plannedPath = FindNewPath(trajTable, tS, tG)

1: rTraj ← robot’s (x, y) coordinates in trajTable;

2: waitTime = tG – tS – 1; // number of time steps the robot should wait

3: if tS = tG then

4: tWait = iff(tS > 3, tS – 3, tS); // the time step for waiting

5: plannedPath = {rTraj(1), rTraj(2), …, rTraj(tWait)} 3

1
()

t
rTraj tWait

=

∪ ;

6: else if (waitTime < hWait) and (no collision during waiting at rTraj(tS)) then

7: plannedPath ={rTraj(1), rTraj(2), …, rTraj(tS)}
1

()waitTime

t
rTraj tS

=

∪ ;

8: else

9: if tS > 2 then tS’ = tS – 2; end if

10: rS’ = rTraj(tS’); rG = rTraj(tG);

11: tP = tS’; // the current time step

12: plannedPath = {rTraj(1), rTraj(2), …, rTraj(tS’)};

13: while Distance(plannedPath(tp), rG) > ε, // apply the A* algorithm

14: rNext = GetSuccessors(plannedPath(tp), rG);

15: for each rNext,

16: if a collision occurs when moving to rNext then

17: g(rNext) = ∞; f(rNext) = ∞;

18: else

19: g(rNext) ← distance from plannedPath(tp) to rNext;

20: h(rNext) ← distance from rNext to rG;

21: f(rNext) = g(rNext) + h(rNext);

22: end if

23: D(rNext) ← the danger degree of rNext; // use Eq. (7) to calculate

24: C(rNext) = f(rNext) ⋅
)(rNextD

e
⋅α

;

25: end for

26: tp =tp + 1; plannedPath(tp) ← the rNext with minimal C;

27: end while

28: end if

29: return plannedPath;

Robot Navigation in Dynamic Environments Based on Fuzzy Controller and the A* Algorithm

30

 C(rNext) = f(rNext) ⋅
)(rNextD

e
⋅α

, (5)

where f(rNext) = g(rNext) + h(rNext) is the objective function for path length, from initial position (rx,

ry)
(1) to target position rG, passing through rNext; α ≥ 0 is a coefficient of the danger degree; and D(rNext)

is the objective function of the danger degree of rNext, and it measures how dangerous the position rNext

is. Subsequently, D(rNext) is calculated according to the distances of the surrounding obstacles of rNext.

We suggest that α is set to smaller than 3. If α = 0, C(rNext) = f(rNext), which is the same objective

function, which was presented in our previous study [23]. It only considers the path-length objective

function, and C(rNext) = f(rNext) is a special case (α = 0) of Eq. (5).

Gong et al. (2011) proposed a computing method for the danger degree of a path. We used this method

to calculate a position’s danger degree. The threatening degree of DSj to rNext, Tj, is calculated as

⎪
⎪

⎩

⎪
⎪

⎨

⎧

≥

<<

≤

=
−

−

−

max

maxmin

)()(

)()(

min

)()(,0

)()()(,

)()(,1

minmax

min

jj

jjj

DSdDSd

DSdDSd

jj

j

DSdDSd

DSdDSdDSde

DSdDSd

T
jj

jj
β

 . (6)

where DSj (j = 1, 2, …, NS) is the jth danger source; in other words, the static and dynamic obstacles

detected around the robot by using the laser range finder; d(DSj) represents the minimal distance between

rNext and DSj; and d(DSj)min and d(DSj)max are the lower and upper bounds for d(DSj), respectively. If

d(DSj) ≥ d(DSj)max, the position rNext is absolutely safe related to DSj. Conversely, if d(DSj) ≤ d(DSj)min,

the position rNext is highly dangerous related to DSj. The term β is a constant positive value. For all n

danger sources, the danger degree of rNext, D(rNext), is formulated as

 }{max)(
,...,2,1

j
nj
TrNextD

=

= . (7)

In this paper, d(DSj)min and d(DSj)max are set as the robot’s radius and 150 (five times the maximal

moving speed of 30 cm/time-step: 5 × 30 = 150), and β is 3 according to our prior experiments.

The initial position of the robot is rS’. For each iteration in the while loop (lines 13-27), the robot

determines the ideal next position, rNext, according to the objective function given in Eq. (5), which is

then stored in plannedPath. Repeat the procedure until the robot reaches or approaches the target position

rG. In line 14, rNext = GetSuccessors(plannedPath(tp), rG) indicates that the FindNewPath Procedure

applies the GetSuccessors procedure to calculate all possible next positions, considering the robot’s

current position plannedPath(tp) and the target position’s coordinate. The for loop (lines 15-25)

calculates the cost function C(rNext) of each rNext. In line 26, first, the tp value is incremented by one,

and then the rNext with minimal C(rNext) is determined and stored in plannedPath(tp). Line 29 returns

the produced path, plannedPath, to line 8 in Algorithm 2.

The GetSuccessors procedure is shown in Algorithm 4. Lines 3-7 obtain the φLow, which is the

smallest steering angle of the robot among all angles and is parallel to the orientation of the threatening

obstacle. Line 4 can be expressed as

 if θ < φ + 180°, then φLow = φ, else φLow = φ + 180° . (8)

In addition, line 6 can be expressed as

 if θ < φ, then φLow = φ − 180°, else φLow = φ . (9)

For example, in Fig. 6, the orientation of obstacle 1 is φ = 0°.

To obtain the robot’s next feasible position rNext, we first established the three possible velocities,

vSlow, vMedium, and vFast, which were set to 20, 30, and 40 cm/time-step, respectively, according to the

previous experiments. We then computed 19 steering angles {φLow, φLow + 10°, φLow + 20°, …, φLow + 180°}

of the robot. Different speeds combined with different steering angles can obtain different next positions.

There are 57 (3 × 19) combinations, and different next positions are calculated using lines 11-17 of

Algorithm 4. These 57 coordinates are stored in rNext and returned to line 14 of Algorithm 3.

In the next section, we present the results of two simulations to demonstrate the proposed DN method.

Journal of Computers Vol. 29, No. 1, 2018

31

Algorithm 4: GetSuccessors Procedure

procedure rNext = GetSuccessors(r, rG)

1: θ ← included angle between the robot’s current position r and the target position rG;

2: φ ← the orientation of the threatening obstacle;

3: if φ < 180° then

4: φLow = iff(θ < φ + 180°, φ, φ + 180°);

5: else

6: φLow = iff(θ < φ, φ − 180°, φ);

7: end if

8: vsuc = {vSlow, vMedium, vFast}; // robot’s different velocities

9: ϕ = {φLow, φLow + 10°, φLow + 20°, …, φLow + 180°}; // robot’s steering angle

10: rNext ← null; r = (rx, ry);

11: for i = 1 to 3,

12: for j = 1 to 19,

13: rx
’ = rx + vsuc(i)cos(ϕ (j)); // x coordinate of rNext

14: ry
’ = ry + vsuc(i)sin(ϕ (j)); // y coordinate of rNext

15: rNext = rNext ∪ (rx
’, ry

’);

16: end for

17: end for

18: return rNext;

5 Simulation Results

In this section, we first demonstrate our proposed DN method by presenting and analyzing the simulation

results of different coefficients of danger degree α. Next, we present the comparison results of the DN

method and static navigation. The proposed algorithms are programmed using MATLAB (version:

R2013b), and the fuzzy controller described in Section 3 is implemented using the Fuzzy Logic Toolbox

in MATLAB.

5.1 Simulation Analysis for the Proposed DN Method

The coefficient of the danger degree α is presented in Eq. (5), which is the cost function C(rNext) for

determining an adaptive path to avoid the threatening obstacle, has a high influence on C(rNext), such

that it affects the searching result of the adaptive path. The smaller the α is, the more crucial the path-

length objective f(rNext) is. Conversely, the greater the α is, the greater the emphasis placed on the

danger-degree objective D(rNext) is. Therefore, we investigated the influences of different α values.

Fig. 7 shows the simulation results of different α (α = 0, 1, and 2). In the figure, 10 static obstacles are

represented by black rectangles and six dynamic obstacles are represented by red squares. The start and

target positions are (1200, 100) and (300, 1300), respectively. The environment is square shaped with an

area of 1500 × 1500 cm. The dynamic obstacle moves back and forth along the dashed line. The

rectangular frames outside the obstacles denote the safe range, and they are used for attracting attention.

Figs. 7 (a) and (b) are the results of α = 0 (the DPP method only considers the path-length objective). Fig.

7 (a) shows that the robot detects a dynamic obstacle at time step 70, and thus the DPP method starts

determining the shortest path without collisions. The path without collision, comprising seven

movements from time steps 71 to 77, is then generated using the DPP method, as shown in Fig. 7 (b). On

this path, the robot first moves toward the target position and then left to avoid the dynamic obstacle. At

time step 77, the position of the dynamic obstacle locates behind the robot. After time step 78, the robot

moves toward the target position and reaches it at time step 80. The robot’s paths, from time steps 1 to 70,

shown in Figs. 7 (b)–(d) are the same, but the paths after time step 71 are different.

Fig. 7 (c) shows the simulation result of α = 1 (the objective function of the DPP method is C(rNext) =

f(rNext)⋅)(rNextD
e , and it considers both path length and safety objectives). From time steps 71 to 76, the

robot first moves to the upper left (stopping at (251, 1239)) to avoid the dynamic obstacle, and then

Robot Navigation in Dynamic Environments Based on Fuzzy Controller and the A* Algorithm

32

(a) α = 0, at time step = 70 (b) α = 0, at time step = 80

(c) α = 1, at time step = 80 (d) α = 2, at time step = 81

Fig. 7. Comparison results of different coefficients of the danger degree, α = 0, 1, and 2. All subfigures

have the same path from time steps 1 to 70, but the adaptive paths from time steps 71 to 77 obtained

using the DPP algorithm with α = 0, 1, and 2 are different

moves back to the previous position (251, 1219) at time step 77. The leftward arc of the adaptive path of

the robot in Fig. 7 (c) is greater than that in Fig. 7 (b) because its α value is higher.

For the simulation result of α = 2, as shown in Fig. 7 (d), the adaptive path from time steps 71 to 77 is

similar to that shown in Fig. 7 (c). However, the leftward arc of the adaptive path in Fig. 7 (d) is greater

than that in Fig. 7 (c) because its α value is higher. After time step 78, the robot moves toward the target

position directly and reaches it at time step 81.

The results of numerical computation are summarized in Table 3. The number of movements of the

three adaptive paths with α = 0, 1, and 2 are the same (i.e., seven steps). The length of the adaptive path

with α = 0 is the shortest (because it only considers the objective of path length), that is, 130 cm, and α =

1 results in the longest adaptive path (i.e., 170 cm). The larger the α value is, the farther the obstacle is

from the adaptive path, and therefore the robot can move more safely. All three settings of the α values

allow the robot to reach the target position successfully. For α = 0 and 1, the distances between the final

Journal of Computers Vol. 29, No. 1, 2018

33

position of the adaptive path and the target position are approximately equal. According to Table 3, the

robot’s total path length for α = 0 is the shortest and for α = 2 is the longest (all path lengths before the

adaptive paths are identical).

In the simulation, if we do not consider the distance from the obstacle (not considering safety), α = 0 is

the ideal choice. If we consider safety (adopting a more conservative mode), α = 1 is the ideal choice.

Table 3. Computational results of adaptive paths under different coefficients of danger degree, α = 0, 1, and 2

Coefficient of Danger Degree α
Performance Measure

0 1 2

No.a of moving steps in adaptive path 7 7 7

Length of adaptive path (cm) 130 170 160

Distance between last position of adaptive path and target (cm) 102.8 102.78 136.23

Average moving speed in adaptive path (cm/time-step) 18.571 24.286 22.857

Note. a No. is an abbreviation of number.

5.2 Comparison Results

For avoiding dynamic obstacles, some studies have used static navigation methods, which regard the

dynamic obstacles as static obstacles. However, we proposed the DPP algorithm, which predicts the

future moving trajectories of dynamic obstacles for obtaining a more effective strategy for avoiding

moving obstacles. Several studies have adopted static navigation [16, 22, 25]. According to our

simulation results, static navigation is not suitable for avoiding dynamic obstacles.

To construct static navigation for comparison, we used only the fuzzy controller described in Section 3

to steer the robot. The robot has sonar sensors with a maximum sensing range of only 130 cm to detect

the static and dynamic obstacles, as shown in Fig. 1. If the robot does not detect any obstacle, it directly

moves toward the target position. Otherwise, the fuzzy controller is activated to control the robot’s

steering angle and moving speed to guide the robot’s movement. The fuzzy rules to infer the control

outputs are shown in Table 1. We introduce two comparison results as follows:

Case 1: Moving from (1400, 300) to (500, 1300). The setting of the simulation environment is similar to

that described in Section 5.1; however, the environment in this section adds two more static obstacles, as

shown in Fig. 8. The starting and target positions are (140, 300) and (500, 1300), respectively. The

simulation and numerical computation results are shown in Fig. 8 and Table 4, respectively. According to

Fig. 8, static navigation results in two collisions at time steps 39 and 40; however, the other three DN

methods with different settings for coefficients of the danger degree can successfully guide the robot to

reach the target position without collision. To facilitate the explanation of the simulation results, we used

the terms DNα=0, DNα=0.5, DNα=1, and DNα=2 to express the DN methods whose coefficients of the danger

degree are set to α = 0, 0.5, 1, and 2, respectively. In the simulation process, we first let the robot move

and then let the dynamic obstacles move. Therefore, in static navigation, the robot does not know the

position of a dynamic obstacle at the next time step. In addition, the robot controlled using static

navigation cannot predict the future path of a dynamic obstacle. Therefore, the robot has a higher

likelihood of colliding with dynamic obstacles when it is close to them.

Figs. 8 (c) and (d) show the simulation results of the DN method with different settings of α. Because

the time step is 34 (t = 34), the robot detects a dynamic obstacle at its lower-left corner. The DPP method

begins searching an adaptive path based on the objective function shown in Eq. (2). The paths of the

three robots are similar, as shown in Figs. 8 (c) and (d). According to Table 4, the DNα=0 method obtains

the shortest path (1545.8 cm), and static navigation results in the longest path (1576.9 cm). Therefore, the

setting of α = 0 can result in the shortest adaptive path (from time steps 34 to 41). Except for time steps

34 to 41, the rest of the robot’s paths in the different methods, as shown in Fig. 8, are highly similar. In

addition, the length of the adaptive path generated using the DNα=0 method is the shortest (158.6 cm), and

the DNα=2 method has the longest adaptive path (178.6 cm).

Robot Navigation in Dynamic Environments Based on Fuzzy Controller and the A* Algorithm

34

(a) Static navigation method, at t = 57 (b) DNα=0 method, at t = 58

(c) DNα=1 method, at t = 57 (d) DNα=2 method, at t = 58

Fig. 8. Comparison Results I: Comparison of static navigation and DN method with different settings of

α. The symbol “t” indicates the time step. Static navigation cannot successfully guide the robot to reach

the target position; however, the proposed DN method can guide the robot without collision

Table 4. Comparison results I for static navigation method and DN method with different settings of α

DN Method with Different Settings of α
a

Performance Measure
Static Navigation

Method 0 1 2

No. b of time steps to reach target 57 58 57 58

Path Length (cm) 1576.9 1545.8 1560.4 1569.2

Average moving speed (cm/time-step) 27.7 26.7 27.4 27.1

No. of collisions 2 0 0 0

No. of executions for dynamic path planning − 1 1 1

Total no. of moving steps for all adaptive paths − 8 7 8

Total length of all adaptive paths (cm) − 158.6 168.6 178.6

Note. a α is the coefficient of danger degree. b No. is an abbreviation of number.

Journal of Computers Vol. 29, No. 1, 2018

35

According to the preceding description, the DNα=0 method exhibits superior performance, and the

performance of static navigation is inferior.

Case 2: Moving from (750, 200) to (1200, 1300). The simulation environment of Case 2 is the same as

that in Case 1, but the starting and target positions are set to (750, 200) and (1200, 1300), respectively.

According to Fig. 9, the robot’s path obtained using static navigation includes three collisions; however,

the robot’s paths obtained using the DN approach with different settings of α have no collisions.

According to Fig. 9 (a), the robot collides with the oncoming dynamic obstacle at time steps 64, 65, and

66 because static navigation does not predict the movement of dynamic obstacles. In Case 2, the robot’s

paths using these four methods are slightly different, where the DNα=0 method obtains the shortest and

smoothest path.

At time step 14, the robot detects a threatening dynamic obstacle. Thus, the DPP algorithm within the

DN method begins determining the optimal adaptive path. The adaptive paths of the three different

settings of α values (i.e., α = 0, 0.5, and 1) of DN methods have nine movements, from time steps 14 to

23; however, the three adaptive paths are not the same. The DNα=0 method steers the robot moving

behind the threatening obstacle. The DNα=0.5 and DNα=1 methods, as shown in Figs. 9 (c) and (d),

respectively, steer the robot moving in front of the threatening obstacle, and thus the robot has to move

farther and spend more time to detour around the obstacle.

After the robot moves according to the first adaptive path, it detects an extremely close threatening

dynamic obstacle at time step 23 (Figs. 9 (c) and (d)). Therefore, the DNα=0.5 and DNα=1 methods perform

the DPP algorithm for a second time to avoid the oncoming obstacle. Compared with the DNα=1 method,

the DNα=0.5 method can obtain a shorter adaptive path, from time steps 24 to 26. After performing the

DPP algorithm for a second time, the robot controlled using DNα=0.5 and DNα=1 methods continues to

move toward the target position, and eventually reaches the target position successfully.

At time step 14, the robot detects a threatening dynamic obstacle. Thus, the DPP algorithm within the

DN method begins determining the optimal adaptive path. The adaptive paths of the three different

settings of α values (i.e., α = 0, 0.5, and 1) of DN methods have nine movements, from time steps 14 to

23; however, the three adaptive paths are not the same. The DNα=0 method steers the robot moving

behind the threatening obstacle. The DNα=0.5 and DNα=1 methods, as shown in Figs. 9 (c) and (d),

respectively, steer the robot moving in front of the threatening obstacle, and thus the robot has to move

farther and spend more time to detour around the obstacle.

After the robot moves according to the first adaptive path, it detects an extremely close threatening

dynamic obstacle at time step 23 (Figs. 9 (c) and (d)). Therefore, the DNα=0.5 and DNα=1 methods perform

the DPP algorithm for a second time to avoid the oncoming obstacle. Compared with the DNα=1 method,

the DNα=0.5 method can obtain a shorter adaptive path, from time steps 24 to 26. After performing the

DPP algorithm for a second time, the robot controlled using DNα=0.5 and DNα=1 methods continues to

move toward the target position, and eventually reaches the target position successfully.

For the DNα=0 method, the robot detects a threatening dynamic obstacle near the target position at time

step 53, and therefore, it uses the DPP algorithm for a second time. There are six movements in the

second adaptive path, and the robot stops at (1204.05, 1235.17) from time steps 59 to 60 to wait for the

dynamic obstacle. At time step 60, the dynamic obstacle is extremely close to the robot, and the robot

waits from time steps 60 to 61. Similarly, at time step 62, the robot waits for the obstacle from time steps

62 to 63. After performing the DPP algorithm for a second time, the robot performs two successive DPP

algorithms at time steps 60 and 62. At time step 64, because the dynamic obstacle has moved away from

the target position, the robot moves toward the target position by using the fuzzy controller.

The numerical computation results are summarized in Table 5. The DNα=0 method spends the least

time, 66 time steps, to steer the robot to reach the target position without any collision, and the total path

length is the shortest at 1481.8 cm. Conversely, the DNα=1 method spends the most time, 72 time steps, to

steer the robot to reach the target position without any collision, and the entire path length is the longest

at 1689.6 cm. For the adaptive behavior of the DPP algorithm, the proposed DN methods, for example,

DNα=0, DNα=0.5, and DNα=1 in this simulation case, can successfully steer the robot to avoid the dynamic

obstacles. The DNα=0 method is used to determine the shortest adaptive path. However, the total length of

the adaptive paths of the DNα=0 method (432.4 cm) is not the shortest, because it contains an adaptive

path that is relatively long from time steps 53 to 60. The DNα=0 method performs the DPP algorithm four

times. For the DNα=0.5 method, the total number of movements for all adaptive paths is minimal (i.e., 12

Robot Navigation in Dynamic Environments Based on Fuzzy Controller and the A* Algorithm

36

(a) Static navigation method, at time step = 67 (b) DNα=0 method, at t = 66

(c) DNα=0.5 method, at t = 67 (d) DNα=1 method, at t = 67

Fig. 9. Comparison Results II: Comparison of static navigation method and dynamic navigation method

(DN method) with different settings of α. The symbol “t” indicates the time step. The proposed DN

method can successfully drive the robot to reach the target position without collision.

Table 5. Comparison results II for static navigation method and DN method with different settings of α

DN Method with Different Settings of α
Performance Measure

Static Navigation

Method 0 0.5 1

No.a of time steps to reach target 67 66 67 72

Path Length (cm) 1602.9 1481.8 1594.1 1689.6

Average moving speed (cm/time-step) 23.9 22.5 23.8 23.5

No. of collisions 3 0 0 0

No. of executions of dynamic path planning − 4 2 2

Total no. of moving steps for all adaptive paths − 15 12 17

Total no. time steps for waiting dynamic obstacle 5 0 1

Total length of all adaptive paths (cm) − 432.4 290.0 440.0

Note. a No. is an abbreviation of number.

Journal of Computers Vol. 29, No. 1, 2018

37

movements), and the total length of all adaptive paths is the shortest at 290 cm. In addition, the robot

controlled using the DNα=0.5 method does not wait for the dynamic obstacle. Conversely, the total number

of movements for the two adaptive paths of the DNα=1 method is the highest at 17 movements, and the

total length of the two adaptive paths is the longest at 440 cm.

According to the preceding description, the DNα=0 method exhibits the best performance because it

allows the robot to move to the target position by using the shortest path without any collision.

However, in some cases, the waiting strategy of the DPP algorithm fails. For example, in the DNα=0

method, the starting and target positions of the robot are set to (750, 280) and (1200, 1300), respectively.

When the time step is 45, the robot waits endlessly.

6 Conclusions

This paper presented a navigation method in the dynamic environment called the DN method with static

and dynamic obstacles. The proposed DN method comprises static navigation and DPP. When the robot

detects a dynamic obstacle that will collide with the robot in the near future, the DPP algorithm starts to

determine the optimal adaptive path to avoid the obstacle according to the two objective functions of the

path length and distances between the adaptive path and the surrounding obstacles. For the DPP

algorithm, two strategies are used to avoid dynamic obstacles: one is to detour around the obstacle, and

the other is to wait until the robot can move safely. If the robot only detects the static obstacles around it,

the fuzzy controller guides the robot’s movement to avoid these obstacles.

This study is an extension of our previous study [23]; we made four major improvements to the DPP

algorithm. In particular, we added another objective function, the danger degree of each movement in the

adaptive path, and improved the waiting strategy for considering more situations. Moreover, the

movements of dynamic obstacles are modified so that they are changeable. If a dynamic obstacle in the

sensing range changes its moving way, the DPP algorithm restarts to determine the optimal adaptable

path. Moreover, we revised the DPP algorithm by using mathematics that is more precise. For the two

simulation cases, we compared static navigation (which treats dynamic obstacles as static obstacles) with

the proposed DN method by using different settings of α. Static navigation fails to avoid the dynamic

obstacles in both cases. The proposed DNα=0 method exhibits the best performance because it can obtain

the shortest path from the start to the target positions without collision.

Acknowledgments

The author would like to thank Chiehyi Ding for his valuable suggestions to this paper, e.g. adding the

additional safety objective function for dynamic path planning. The author also wants to thank Wallace

Academic Editing for editing the English of this paper. This work was supported by Hsuan Chuang

University in Taiwan, Republic of China, with Grant Number HCU-102-B1-07.

References

[1] P. Raja, S. Pugazhenthi, Path planning for a mobile robot in dynamic environments, International Journal of the Physical

Sciences 6(20)(2011) 4721-4731.

[2] Z. Wu, L. Feng, Obstacle prediction-based dynamic path planning for a mobile robot, International Journal of Advancements

in Computing Technology 4(3)(2012) 118-124.

[3] D.-W. Gong, J.-H. Zhang, Y. Zhang, Multi-objective particle swarm optimization for robot path planning in environment

with danger sources, Journal of Computers 6(8)(2011) 1554-1561.

[4] A. Kaplan, P. Uhing, N. Kingry, R.D. Adam, Integrated path planning and power management for solar-powered unmanned

ground vehicles, in: Proc. 2015 IEEE International Conference on Robotics and Automation (ICRA), 2015.

[5] M. Yarmohamadi, H.H.S. Javadi, H. Erfani, Improvement of robot path planning using particle swarm optimization in

Robot Navigation in Dynamic Environments Based on Fuzzy Controller and the A* Algorithm

38

dynamic environments with mobile obstacles and target, Advanced Studies in Biology 3(1)(2011) 43-53.

[6] N. Buniyamin, N. Sariff, W.A.J. Wan Ngah, Z. Mohamad, Robot global path planning overview and a variation of ant

colony system algorithm, International Journal of Mathematics and Computers in Simulation 5(1)(2011) 9-16.

[7] X. Deng, L. Zhang, L. Luo, An improved ant colony optimization applied in robot path planning problem, Journal of

Computers 8(3)(2013) 585-593.

[8] F. Ahmed, K. Deb, Multi-objective optimal path planning using elitist non-dominated sorting genetic algorithms, Soft

Computing 17(7)(2013) 1283-1299, 2013.

[9] A. Tuncer, M. Yildirim, Chromosome coding methods in genetic algorithm for path planning of mobile robots, in: E.

Gelenbe, R. Lent, G. Sakellari, A. Sacan, H. Toroslu, A. Yazici (Eds.), Computer and Information Sciences II, Springer,

London, UK, 2012, pp. 377-383.

[10] M. Roozegar, M.J. Mahjoob, M. Jahromi, DP-based path planning of a spherical mobile robot in an environment with

obstacles, Journal of The Franklin Institute 351(10)(2014) 4923-4938.

[11] J.H. Zhou, H.Y. Lin, A self-localization and path planning technique for mobile robot navigation, in: Proc. 2011 9th World

Congress on Intelligent Control and Automation, 2011.

[12] G. Li, Y. Tamura, A. Yamashita, H. Asama, An effective improved artificial potential field-based regression search method

for autonomous mobile robot path planning, International Journal of Mechatronics and Automation 3(3)(2013) 141-170.

[13] S.M. Persson, I. Sharf, Sampling-based A* algorithm for robot path-planning, The International Journal of Robotics

Research 33(13)(2014) 1683-1708.

[14] L. Sun, Y. Luo, X. Ding, L. Wu, Path planning and obstacle avoidance for mobile robots in a dynamic environment, The

Open Automation and Control Systems Journal 6(2014) 77-83.

[15] P. Benavidez, M. Jamshidi, Mobile robot navigation and target tracking system, in: Proc. 2011 6th International Conference

on System of Systems Engineering, 2011.

[16] M. Faisal, K, Al-Mutib, R. Hedjar, H. Mathkour, M. Alsulaiman, E. Mattar, Multi modules fuzzy logic for mobile robots

navigation and obstacle avoidance in unknown indoor dynamic environment, in: Proc. 2013 International Conference on

Systems, Control and Informatics, 2013.

[17] R. Kala, A. Shukla, R. Tiwari, Dynamic environment robot path planning using hierarchical evolutionary algorithms,

Cybernetics and Systems: An International Journal 41(6)(2010) 435-454.

[18] R. Kümmerle, M. Ruhnke, B. Steder, C. Stachniss, W. Burgard, Autonomous robot navigation in highly populated

pedestrian zones, Journal of Field Robotics 32(4)(2015) 565-589.

[19] Y. Lu, X. Huo, O. Arslan, P. Tsiotras, Incremental multi-scale search algorithm for dynamic path planning with low worst-

case complexity, IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics 41(6)(2011) 1556-1570.

[20] M. Phillips, M. Likhachev, SIPP: Safe interval path planning for dynamic environments, in: Proc. 2011 IEEE International

Conference on Robotics and Automation (ICRA), 2011.

[21] N.T. Thanh, N.V. Afzulpurkar, Dynamic path planning for a mobile robot using image processing, Journal of Computer

Science and Cybernetics 24(4)(2008) 358-373.

[22] M. Faisal, R. Hedjar, M. Al Sulaiman, K. Al-Mutib, Fuzzy logic navigation and obstacle avoidance by a mobile robot in an

unknown dynamic environment, International Journal of Advanced Robotic Systems 10(37)(2013) 1-7.

[23] C.-H. Chiang, C. Ding, Robot navigation in dynamic environments using fuzzy logic and trajectory prediction table, in:

Proc. 2014 International Conference on Fuzzy Theory and its Applications, 2014.

Journal of Computers Vol. 29, No. 1, 2018

39

[24] M.K. Singh, D.R. Parhi, S. Bhowmik, S.K. Kashyap, Intelligent controller for mobile robot: Fuzzy logic approach, in Proc.

12th International Conference of International Association for Computer Methods and Advances in Geomechanics, 2008.

[25] M. Wang, J.N.K. Liu, Fuzzy logic-based real-time robot navigation in unknown environment with dead ends, Robotics and

Autonomous Systems 56(2008) 625-643.

[26] S.N. Sivanandam, S. Sumathi, S.N. Deepa, Introduction to Fuzzy Logic Using MATLAB, Springer, Berlin, Germany, 2007.

[27] P.E. Hart, N.J. Nilsson, B. Raphael, A formal basis for the heuristic determination of minimum cost paths, IEEE

Transactions on Systems Science and Cybernetics 4(2)(1968) 100-107.

[28] P. Nocera, G. Linares, D. Massonié, L. Lefort, Phoneme lattice based A* search algorithm for speech recognition, in: P.

Sojka, I. Kopeček, K. Pala (Eds.), TSD 2002, Lecture Notes in Artificial Intelligence 2448, Springer, London, UK, 2002, pp.

301-308.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

