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Abstract. This paper proposes a new version of support vector machine (SVM) for binary 

classification named mixed norm proximal support vector machine, MPSVM for short. By 

introducing the p-norm of the normal vector of the classification hyper-plane into the objective 

function of proximal SVM, we get the objective function of MPSVM. MPSVM is an adaptive 

learning procedure with p-norm (0 < p < 1), where p can be automatically chosen by data. By 

adjusting the parameter p, MPSVM can realize feature selection and classification 

simultaneously. Since the optimization problem of MBPSVM is neither convex nor 

differentiable, an iterative algorithm is used to solve it. Experiments carried out on several 

standard UCI datasets show a clear improvement over some popular methods.  

Keywords:  binary classification, feature selection, nonlinear classification, p-norm, proximal 

support vector machine 

1 Introduction 

It is well known that SVMs have superior performances in classification problem and attracts the 

researcher’s interest [1-4]. Recently, a lot of modifications of SVMs have been made to improve its 

performance. During those modifications, the lease square SVMs (LS-SVMs) and proximal SVMs 

received more attention [5-8]. Because LS-SVMs and proximal SVMs only solve a series linear 

equations while the SVMs have to solve a quadratic programming. And the classification results of LS-

SVMs and PSVM are comparable with the standard SVMs [7-11]. Our new method is based on PSVM, 

the adaptive penalty is introduced into the optimization problem of PSVM. Our new method inherits the 

advantage of PSVM and can realize feature selection and classification simultaneously. 

Feature selection based on support vector machine has been attracted more and more attention [12-18]. 

Because this kinds of methods have obvious benefits in terms of data storage, computational 

requirements, and cost of future data collection and they often provide better model understanding. There 

are several feature selection methods based on SVM. Such as l0 SVM which replaces the l2-norm of w by 

l0-norm. The optimization problem is hard to be solved due to its incontinuity. In order to overcome the 

shortcoming of l0-SVM, Li et al. [12] proposes l1-SVM which replaces the l2-norm of w by l1-norm. The 

optimization problem of l1-SVM can be converted to linear programming. Although l0-SVM and l1-SVM 

can realize feature selection and classification simultaneously, they use fixed norm for all kinds of data. 

Recently, p-norm (0 < p < 1) attracts great attention in the optimization community because using p-

norm can have more sparse solutions [7-8, 10]. In the proposed p-norm (0 < p < 1) SVMs, the 2-norm 

penalty in the standard linear SVM is replaced by the p-norm penalty. Compared with the standard SVMs, 

p-norm SVMs can realize feature selection and classification simultaneously by adjusting the value of p. 

The lp-norm is also used in regression problem. [19] proposed a lp-norm support vector regression (SVR), 

the l2-norm penalty is replaced by lp-norm penalty in the optimization problem of the standard l2-norm 

SVR. This paper proposes mixed-norm proximal SVM(MPSVM), for the linear situation, the p-norm of 
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w (0 < p < 1) is introduced into the objective function of the primal problem of the linear proximal SVM; 

for the unlinear situation, the p-norm of dual variable in introduced into the objective function of the dual 

problem of the unlinear proximal SVM. Our new model is an adaptive learning procedure with p-norm (0 

< p < 1), where the best p is automatically chosen by data. The same as other p-norm SVMs [20-28], 

MPSVM can not only realize feature selection but also improve the classification accuracy by adjusting 

the parameter p. Unfortunately, the optimization problem of MPSVM is neither convex nor differentiable 

[25-29]. So, it is different to be solved directly. We propose an algorithm to find its approximate solution 

via solving a series of systems of linear equations (LEs). And the lower bounds for the absolute value of 

non-zero components in every local optimal solution are established which are extremely helpful to 

eliminate the zero components in any numerical solution. 

Now, we describe our notation. All vectors are column vectors unless transposed to a row vector by a 

“T”. For a n-dimensional vector x, [x]i (i = 1, 2, ……, n) denotes the i-th element of x, |x| denotes a vector 

in Rn of absolute value of the components of x.||x||p denotes the value of x = (|[x]1|
p,……, |[x]n|

p)1/p (1 > p 

> 0).||x||0 denotes the number of the non-zero component of x. For two vector x = ([x]1,……,[x]n)
T∈Rn 

and y = ([y]1, ……, [y]n)
T∈Rn, <x•y> indicates the inner product of x and y, x Ⓧ y generates a new vector 

with the i-th element [x]i[y]i, (i = 1, 2, ……, n). α donates the l-dimensional vector, [α]i (i = 1, 2, …, l) 

donates the i-th element of α. 

This paper is organized as follows. In section 2, the linear PSVM and nonlinear PSVM are introduced 

firstly, then we carry out linear MPSVM in detail, including solving and analyzing the involved 

optimization problem. Finally, the nonlinear MPSVM is carried out. In section 3, the numerical 

experiments on several UCI data sets are conducted to demonstrate the effectiveness of our methods. We 

conclude this paper in section 4. 

2 Methods 

In this section, we first introduce proximal support vector machine (PSVM). Then we describe our linear 

MPSVM and nonlinear MPSVM. 

Consider the supervised classification problem with the training sets T, 

 

1 1
{( , ),......, ( , )}

l l
T x y x y=  (1) 

Where xj∈Rn, j = 1, 2, ……, l. yj∈{-1, 1}, j = 1, 2, ……, l. Denote the inputs of all examples as X = 

{xi}
l
i=1∈Rl×n and each row xi∈Rn is the in the input of the i-th example. Y = {yi}

l
i=1∈Rl×n denotes the 

outputs of labeled examples. Our goal is to construct a classifier which can realize feature selection and 

get a better generalization performance. 

2.1 The Proximal Support Vector Machine (LPSVM) 

Instead of the standard support vector machine (SVM) that classifies the examples by assigning them to 

one of the two disjoint half spaces in input or feature space, PSVM assign examples to the closer one of 

the two parallel hyperplanes ((w•x) + b = 1 and (w•x) + b = -1). Its primal problem is:  
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The first term in (2) is the regularizer, which can maximize the margin between two boundary 

hyperplanes (( w·x ) + b = 1 and ( w·x )+ b = -1) and avoid over-fitting. The second term is used to 

minimize the empirical risk. It is clear that the optimization problem of PSVM is convex and it requires 

only solving a nonsingular system of linear equations.  

The dual problem of proximal SVM is: 

 ( )( ) 2

1 1 1 1

1 1
min , 1

2 2

l l l l

i j i j i j i
i j i i

y y x x
Cα

α α α α

= = = =

+ + −∑∑ ∑ ∑  (3) 

Where the α = [α1, α2,…, αl]
T is the dual variable, (xi, xj) is the inner product of xi and xj. 
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Generalize the inner product of xi and xj to the general kernel K(xi, xj), we get the nonlinear case of 

PSVM: 

 ( )( ) 2

1 1 1 1

1 1
min , 1

2 2

l l l l

i j i j i j i
i j i i

y y K x x
Cα

α α α α

= = = =

+ + −∑∑ ∑ ∑  (4) 

Where the K(xi, xj) is the nonlinear kernel function, α = [α1, α2,…, αl]
T is the dual variable. 

2.2 The Linear mixed-norm Proximal Support Vector Machine (LMPSVM) 

The proposed LMPSVM is introduced in detail in this section. Adding the p-norm of w to the primal 

problem of LPSVM, we get the optimization problem of LMPSVM (0 < p < 1): 
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Where C > 0 is the penalty parameter, p (0 < p < 1) is an adjustable parameter. 

Now we give the geometric interpretation of problem (5). The first term in the objective function of 

PSVM is the regularizer, minimizing ||w||p
p can get more sparse solution, minimizing ||w||2

2 can realize the 

maximum margin which makes the final classifier having better generalization performance. The second 

term is the squared loss function, minimizing it is to minimizing the classification error. The constraints 

means all positive samples should the closer to the hyper plane (w•x) + b = 1 and the negative samples 

should be closer to the hyper plane (w•x) + b = -1. 

Problem (5) can be rewritten as the following form by substituting the constraints into the objective 

function: 
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Notice that the objective function of (6) is neither convex nor differentiable. So, it is difficult to be 

solved. To overcome the issue of non differentiable, we approximate 
1

|| || | [ ] |
np p

p ii
w w

=

=∑ by 

1
([ ] )
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ii
w ε

=

+∑ , here 0ε >  is a very small number. Thus, problem (6) is approximated by 
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It’s clear that the objective function of (7) is differentiable, but still non-convex due to the term 

1
([ ] )

n p

ii
w ε

=

+∑  (0 < p < 1). To solve this issue, the convex term 21

22
|| ||wβ ⊗  is used to approximate the 

concave term 
1
(| [ ] | )

pn

ii
w ε

=

+∑ , here β is adjustable to fit the approximation. Then, we get the following 

convex quadratic program: 
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In this paper, β is adjusted iteratively for better approximation. Select an initial β(0) = (β1
(0), ...., βn

(0))T, 

solve the problem (8) with β(0)and get solution (w(k), b(k)). In order to get a better approximation, the 

objective functions Fp and F2 are required to have the same steepest descent direction at the current (w(k), 

b(k)), i.e. 
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At the k-th iteration, problem (8) is rewritten as the following form:
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Note that (12) is an unconstrained quadratic program. Its’ KKT conditions lead to solving the 

following linear equations: 

 ( )T T

l l l l
B CX X w X Y+ =�  (13) 

The above system of linear equations can be effectively solved by conjugate gradient method (CG). 
T

l l
A B CX X= +  is a symmetric and positive definite matrix, and 

T

l l
b X Y=  is a vector. The equation 

(13) is then transformed to A w b⋅ =� and is solved by the Algorithm 1.
 

 

Algorithm 1: the conjugate gradient algorithm for problem (13) 

Input: the matrix A and vector b; the prescribed convergence constant ε0 (0 < ε0 < 1); the approximate 

initial solution 0
w� . 

Step 1: Compute the residue vector 0 0
r Aw b= −� and the search direction d0=－r0, the number of 

iterations k by k:=0. 

Step 2: If ||rk|| ≤ ε, stop the iteration and go to step 5; else go to step 3. 

Step 3: Set the step scalar 

T

k k

k T

k k

r r

d Ad
α = . Update the new solution 1k k k k

w w dα
+
= +� � . Renew residual 

vector 1k k k k
r r Adα
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1 1
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b

r r

+ +

= , the new search direction is 1 1k k k k
d r b d

+ +
= − + . 

Step 4: Increase iterator k: = k + 1, turn to step 2. 

Step 5: Output optimal solution ( , ) k
w b w

∗ ∗

= �  of the problem (13). 

 

As has been discussed above, we hope we can get the optimal solution of (6). But the feature selection 

is based on finding the nonzero components of w*. It’s hard to find and identify the real nonzero 

component of the solution. So we prove the following theorem which is able to identify nonzero 

components in any local optimal solutions from an approximate local optimal solution and is helpful for 

feature selection. 

Theorem 1 For any local optimal solution (w*, b*) to the problem (6), we have [w*]i = 0. if [w*]i∈(-Li, 

Li), where 
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Proof: Suppose ||w*||0 = k. Without loss of generality, let w
* = ([w*]1,......,[w

*]k, 0, ......, 0)T and z
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*]k)

T. Construct the new training set ) )(({ }1 1
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x x x x R= ∈� � , We consider the following optimization problem 
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λ1 ≥ 0, ...., λk ≥ 0 are the eigenvalues of semi-definite matrix T

l l
X X� �  and it is easy to know that (z*, b*) is a 

local optimal solution of (14), according to the KKT conditions, we have 
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Take the absolute value on both sides of (16), we have 
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Since λi ≥ 0, i = 1, ......, k. it is easy to have 
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Which is equivalent to 
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The inequality (19) is indeed |[z*]| ≥ Li, i = 1, ......, k. This means that for any nonzero component [w*]i 

of w*, it satisfies|[w*]i| ≥ Li, i = 1, 2, ......, n. Equivalently, for any local optimal solution (w*, b*) of (8), 

we have[w*]i∈(－Li, Li)⇒  [w*]i = 0, i = 1, 2, ......, n. 

Based on the discussion, the following algorithm is established. 
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Algorithm 2: linear mixed-norm proximal support vector machine (LMPSVM) 

Input: the training set (1), parameters C(C > 0), p(0 < p < 1); a specified maximum number of 

iterations K and a very small ε1 ≥ 0. 

Step 1: Given a random vector β0, generate the optimization problem (6).  

Step 2: Use Algorithm 1 to solve problem (13), get the solution (w*, b*) and update β(k+1) by the 

expression (11). 

Step 3: Terminate the operations and proceed to next step until ||β(k+1)-β(k)|| < ε1 or iterations k > K. Or 

let k = k+1and go to step 2. 

Step 4: Output the optimal solution (w*, b*) of the problem (6). Output classification hyperplane 

(w*·x)+b* = 0 and feature subset F’ = {i|[w*]i  > Li, i = 1, 2 …, n}; 

2.3 The Nonlinear mixed-norm Proximal Support Vector Machine (NMPSVM) 

By adding the p-norm of α to the dual problem of nonlinear PSVM, we get the optimization problem of 

NMPSVM: 
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Where the K(xi, xj) is the nonlinear kernel function. C > 0 is the parameter. 

Similar as the LMPSVM, the optimization problem of NMPSVM is neither convex nor differentiable 

because of the item 
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approximately as follows: 
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The matrix form of (21) can be shown as below: 
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By the KKT of the equation (22), we get the following equation: 
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The nonlinear classification is solved by the similar method to that used for linear classification. In the 

nonlinear KKT (23), A = ( ) 1 1
,

T T T

l l C C
LK X X L LL B+ + + , b = I. The equation (23) is then transformed to 

A·α = b and is solved by the Algorithm 1 and Algorithm 2. 

Finally the separation hyperplane obtained from nonlinear model is: 
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Where the α* is the solution of nonlinear model solved by Algorithm 1 and Algorithm 2. 
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3 Experiment and Result Analysis 

The accuracy Acc1 of the classifier is a measure of the merits of the algorithm. We compared MPSVM 

with others classifiers, including 1-norm SVM, p-norm SVM, and PSVM on several UCI data sets. The 

following is a brief introduction of them: 

‧ 1-norm SVM [29]: the 2-norm of normal vector in the standard SVM is replaced by its 1-norm. This 

simple modification can realize classification and feature selection simultaneously. 

‧ p-norm SVM [21]: the 2-norm of normal vector in the standard SVM is replaced by its p-norm 

( [0,1]p∈ . p-norm SVM performs better than 1-norm SVM because p-norm SVM has both more 

sparsity and better accuracy. 

‧ PSVM: The optimization problem of PSVM is an unconstrained quadratic program and can be easily 

solved by solving a series of linear equations. 

The experiments are conducted on UCI datasets and synthetic datasets. On UCI datasets, we compare 

the classification performance of MPSVM and the other three classifiers we mentioned above. On 

synthetic dataset, we analyze the impact of p on the feature selection performance of MPSVM. 

Our experiments are carried out on the platform of MATLAB 2010 on PC with an Intel Core I3 

processor and 2GB RAM. With regard to parameter selection, the 10-fold cross-validation technique is 

used in the training procedure. Parameter C and the kernel parameter sigma is all selected from the set 

{2i|i = -5, -4... 5}. The parameter p of MPSVM is selected from the set {0.1, 0.2, …, 0.9}. 

3.1 Comparison on UCI Datasets 

We use 10 UCI data sets which are frequently used in binary classification problem to compare four 

classifiers. The statistical characters of the data sets rare listed in Table 1. We can see that the number of 

features varies from 6 to 44 and the samples size ranges from 155 to 1473. 

Table 1. Summary of UCI datasets 

Datasets Size features 

Australian 690 14 

BUPA 345 6 

CMC 1473 9 

German 1000 20 

Hearstatlog 270 13 

hepatitis 155 19 

Hourse 300 26 

Ionosphere 351 33 

Spect 267 44 

wdbc 569 30 

 

Comparison LMPSVM vs. the other three classifiers. To avoid the disturbance brought by different 

magnitudes of datasets, all datasets are normalized into range of [-1, 1] before training. The 10-fold 

cross-validation accuracies of four methods are compared. Each dataset is randomly divided into ten 

parts, nine of them are used as the training set and the remaining one is used as the test set. The training 

set is used to build the classifiers and the test set is used to test the classification performance. We 

perform 10 times ten-fold cross validation and the average accuracy is used. The accuracy is more closed 

to 100, the classifier is more better. Table 2 shows experimental results, including the average accuracy, 

standard deviation of accuracy, the number of feature selected by different classifiers. The best result is 

marked by bold-face. 

                                                           
1 Accuracy (Acc) is utilized to evaluate the performance of classification and is defined as follow. Accuracy denotes the 

percentage of both positive points and negatives points correctly predicted and is defined as follows: 

 Acc=TP+TN/TP+TN+FP+FN, 

 Where TP, TN, FP and FN denotes the number of true positives, true negatives, false positives and false negatives, 

respectively. 
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From Table 2, it can be seen that the classification performance of MPSVM is better than other 

methods on all datasets. The average accuracy of MPSVM is 85.573% which is 2.4% higher than the 

other three methods. The average standard deviation of MPSVM is smallest, revealing the stable 

performance of MPSVM in classification. Meanwhile, the feature selection is accomplished. We can see 

that MPSVM select less features than the other three methods. In one words, MPSVM performs better on 

both classification and feature selection. 

Table 2. Mean (%) and standard deviation (‰) of test accuracy. Ave.mean and Ave.std denotes the 

average mean and standard deviation accuracy of each algorithm over all datasets 

Dataset 

1-norm SVM 

Acc 

Std 

feature 

P-norm SVM 

Acc 

Std 

feature 

PSVM 

Acc 

Std 

feature 

MPSVM 

Acc 

Std 

feature 

Australian 

86.44 

6.1 

14 

86.11 

6.6 

14 

86.95 

7.7 

14 

88.96 

0.22 

12.6 

BUPA 

70.01 

4.5 

6 

65.31 

13.9 

6 

70.47 

20.3 

6 

74.52 

4.51 

6 

CMC 

77.74 

0.28 

8.5 

77.46 

0.55 

7.2 

77.66 

1.5 

9 

77.99 

0 

7.7 

German 

76.27 

3.7 

20 

75.27 

3.7 

20 

76.14 

6.0 

20 

78.26 

0.35 

18.6 

Heartstatlog 

84.85 

6.2 

13 

85.53 

5.0 

13 

85.52 

15.5 

13 

88.56 

0.11 

12.9 

hepatitis 

85.37 

6.0 

19 

84.76 

5.8 

18.9 

86.39 

8.2 

19 

90.41 

0.45 

17.5 

Ionosphere 

89.95 

25.9 

32.8 

88.93 

28.9 

33 

87.94 

10.3 

33 

90.83 

0.17 

30.2 

Hourse 

82.64 

8.7 

25.9 

83.41 

25.1 

24.2 

83.68 

35.8 

26 

86.63 

0.2 

21.8 

Spect 

80.78 

7.8 

44 

80.56 

5.3 

43.9 

79.74 

7.4 

44 

81.20 

0.17 

35.1 

wdbc 

97.41 

3.0 

29.7 

98.10 

1.2 

28.8 

96.49 

3.7 

30 

98.37 

0.07 

21.8 

Ave.mean 83.146 82.543 83.098 85.573 

Ave.std 9.888 9.605 10.87 0.625 

 

Comparison of LMPSVM vs. the RFE-LPSVM approach. Although the LMPSVM can realize feature 

selection and classification simultaneously and it performs better than other classifiers, how it compares 

with the methods that combine feature selection and classification? Thus, to evaluate the performance of 

MPSVM more reasonably, we compare LMPSVM with the methods that a preceding feature selection 

conducted and the selected features are used for the classifier. 

Because LMPSVM is based on PSVM, we compare LMPSVM with 2s-LPSVM. 2s-LPSVM is 

conducted as follows: firstly, a feature selection method is used to determine the features; secondly, the 

classification is carried out using the LPSVM on the selected features. The Support Vector Machine 

Recursive Feature Elimination (SVM-RFE) [3] is used for feature selection in 2s-LPSVM. So we change 

the name of 2s-LPSVM into RFE-LPSVM. The test results are shown in Table 3. It can be seen that, 

though the 2s-LPSVM has less selected features than the LMPSVM, but its performance is still worse 
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than that of MPSVM in terms of both accuracy and stability. 

Table 3. Mean (%)and standard deviation (‰) of test accuracy. Ave.mean and Ave.std denotes the 

average mean and standard deviation accuracy of RFE - PSVM and MPSVM over all datasets 

dataset 

RFE - LPSVM 

ACC 

std 

feature 

LMPSVM 

ACC 

std 

feature 

Australian 

86.35 

3.5 

2 

88.96 

0.22 

12.6 

BUPA 

68.65 

7.1 

5 

74.52 

4.51 

6 

CMC 

77.44 

0.57 

2 

77.99 

0 

7.7 

German 

76.67 

9.2 

16 

78.26 

0.35 

18.6 

Heartstatlog 

85.81 

5.3 

9 

88.56 

0.11 

12.9 

hepatitis 

86.12 

8.3 

7 

90.41 

0.45 

17.5 

Ionosphere 

88.34 

6.5 

17 

90.83 

0.17 

30.2 

Hourse 

82.97 

11.3 

2 

86.63 

0.2 

21.8 

Spect 

79.78 

2.8 

2 

81.20 

0.17 

35.1 

wdbc 

96.03 

1.7 

8 

98.37 

0.07 

21.8 

Ave.mean 82.816 85.573 

Ave.std 4.797 0.625 

 

Comparison of computational time. The computational time of classification time is used as a measure 

of the efficiency of the classifiers. For each dataset, 90% of the dataset is used for model training and 

10% of that is used for testing. The four classifiers, including 1-norm SVM, p-norm SVM, RFE-PSVM 

and LMPSVM, are trained with the same training datasets and tested with the same testing datasets. 

Finally, the computational time of the four classifiers for each dataset are given logarithmically. 

Additionally, the average computational time for the 10 datasets for each classifier is shown in Fig. 1. 

It can be concluded that the computational time cost by LMPSVM is much less than other classifiers, 

indicating a higher efficiency of the LMPSVM. 

The performance comparison of NMPSVM and NPSVM. In this section, we compare the 

NMPSVM and nonlinear PSVM on UCI data sets. The Gausse kernel is used in two algorithms. The 

comparison results are shown in Table 4. 
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Fig. 1. The average computational time for different classifiers 

Table 4.  Mean (%) and standard deviation (‰) of test accuracy. Ave.mean and Ave.std denotes the 

average mean and standard deviation accuracy of the nonlinear of PSVM and MPSVM over all 

datasets 

dataset 

NMPSVM 

ACC 

std 

NPSVM 

ACC 

std 

Australian 
87.65 

0.30 

86.90 

0.53 

BUPA 
60.12 

0.66 

59.99 

0.74 

CMC 
77.45 

0.07 

77.39 

0.30 

German 
72.22 

0.19 

72.00 

0.78 

Heartstatlog 
85.70 

0.94 

85.67 

1.02 

hepatitis 
79.76 

0.24 

80.98 

0.38 

Ionosphere 
60.48 

0.10 

60.46 

0.13 

Hourse 
73.13 

8.7 

36.12 

0.22 

Spect 
79.99 

0.15 

79.91 

0.60 

wdbc 
63.33 

3.63 

37.37 

0.07 

Ave.mean 73.983 67.679 

Ave.std 1.498 0.477 

 

Table 4 shows that the classification accuracy of NMPSVM is higher than NPSVM in most cases. 

Especially on the datasets “Hourse” and “wdbc”, the accuracy is almost twice of NPSVM. The standard 

deviation of accuracy of algorithm is no more than 10. It means the classification of NMPSVM shows 

lower volatility. It can be seen the NMPSVM is more robust in terms of std. in general. Through the 

above analysis, the NMPSVM has better overall performance. 
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3.2 Comparison on Synthetic Datasets 

To analyze the impact of p on feature selection of MPSVM, the MPSVM is tested using a synthetic 

dataset and five UCI datasets. The synthetic dataset used here is the same with that in the reference [10]. 

It is randomly generated by the following steps: 

(1) The inputs xi∈Rn are stochastic vectors independently generated from the normal distribution 

N(0,1), i = 1, 2, ......, 100, and n is set equal to 40. 

(2) The outputs are determined by the hyper plane g(x) = 4[x]1+2[x]2+4[x]3-0.1, which means that the 

output of an input xi is ‘+1’ if g(xi) ≥ 0 and is ‘-1’ if g(xi) < 0. 

The impact of p on feature selection of LMPSVM. The synthetic datasets are randomly generated; 

each synthetic dataset and five UCI data sets are randomly divided into two subsets: 90% for training, 

10% for testing. For each experiment, we fix the parameter C = 10-5 and iteration K = 100, using the 

training set to learn the classifier and test it on the testing dataset. Each experiment is repeated 10 times. 

We selected the number of selected features in each experiment when p varies from 0.1 to 0.9. Fig. 2 

shows the impact of p on different datasets. It can be seen that MPSVM controls sparsity and the number 

of selected features by adjusting the value of p. 

 

Fig. 2. The impact of p on different datasets 

4 Conclusion 

This paper proposes two novel algorithms: linear mixed-norm proximal support vector machine 

(LMPSVM) and nonlinear mixed-norm proximal SVM (NMPSVM), which can realize the feature 

selection and classification simultaneously. We can adjust the norm and other parameters to balance 

feature selection and classification accuracy. The MPSVM can transform the original optimization 

problem into a differentiable and convex optimization problem, for which an approximate local optimal 

solution can be obtained by solving a series of linear equations. Experiments demonstrate that our 

approach performs better in terms of both classification accuracy and efficiency in comparison with other 

classifiers. Furthermore, the lower bounds of absolute of the approximate solution are constructed which 

are helpful for feature selection. All in all, the proposed method presents better classification and feature 

selection in the binary classification. 
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