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Abstract. Activation functions map data in artificial neural network computation. In an 

application, the activation function and selection of its gradient and translation factors are 

directly related to the convergence of the network. Usually, the activation function parameters 

are determined by trial and error. In this work, a Cauchy distribution (Cauchy), Laplace 

distribution (Laplace), and Gaussian error function (Erf) were used as new activation functions 

for the back-propagation (BP) algorithm. In addition, this study compares the effects of the 

Sigmoid type function (Logsig), hyperbolic tangent function (Tansig), and normal distribution 

function (Normal). The XOR problem was used in simulation experiments to evaluate the 

effects of these six kinds of activation functions on network convergence and determine their 

optimal gradient and translation factors. The results show that the gradient factor and initial 

weights significantly impact the convergence of activation functions. The optimal gradient 

factors for Laplace, Erf-Logsig, Tansig-Logsig, Logsig, and Normal were 0.5, 0.5, 4, 2, and 1, 

respectively, and the best intervals were [0.5, 1], [0.5, 2], [2, 6], [1, 4], and [1, 2], respectively. 

Using optimal gradient factors, the order of convergence speed was Laplace, Erf-Logsig, 

Tansig-Logsig, Logsig, and Normal. The functions Logsig (gradient factor = 2), Tansig-Logsig 

(gradient factor = 4), Normal (translation factor = 0, gradient factor = 1), Erf-Logsig (gradient 

factor = 0.5) and Laplace (translation factor = 0, gradient factor = 0.5) were less sensitive to 

initial weights, and as a result, their convergence performances were less influenced. As the 

gradient of the curve of the activation functions increased, the convergence speed of the 

networks showed an accelerating trend. The conclusions obtained from the simulation analysis 

can be used as a reference for the selection of activation functions for BP algorithm-based 

feedforward neural networks. 

Keywords:  activation functions, back-propagation (BP) algorithm, convergence, gradient factor, 

initial weights 

1 Introduction  

The feedforward neural network (FNN) is a widely-used artificial neural network model [1-3], especially 

the multilayer perceptron learning algorithm trained with error back propagation (BP) [4-5]. Research on 

the BP algorithm-based FNN has made tremendous progress, but also has exposed some important issues 

[4, 6], such as (1) it is easy to fall into local minima, (2) the learning algorithm converges very slowly, (3) 

there is no conclusive scientific theory to guide the selection of network hidden nodes, and (4) the 

generalization of networks with good learning ability is poor. 
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To solve these problems, many scholars have proposed improvement strategies, which can be divided 

into the following categories. The first category is the use of heuristic techniques, such as the additional 

momentum [7], adaptive learning rate, and elastic feedback algorithms. The second is the use of 

numerical optimization techniques, such as the conjugate gradient, quasi-Newton, and Levenberg-

Marquardt [8] methods. Riedmiller and Braun proposed the resilient BP algorithm in 1993, which is a 

local adaptive learning method that implements supervised batch learning in multilayer perceptrons [9-

10]. The third category is the use of intelligent weight optimization. By utilizing a genetic algorithm to 

optimize the weights of a neural network, Whitley et al. [11] and Kuo et al. [12] accelerated the 

convergence speed of the network and reduced the probability of falling into a local minimum. The 

fourth category comprises the approaches that use new activation functions and their combinations [13-

15]. It is generally believed that an activation function should be continuous, differentiable, and 

monotonically increasing [16]. However, Hornik theoretically proved that any continuous, bounded, non-

constant function can be used as an activation function [17]. It has also been proven that the activation 

function plays an important role in network convergence. 

In this paper, the selection of new activation functions was premised on the selection criteria and based 

on the range and convergence speed of the function itself and its derivative. The following three 

functions were selected as new activation functions: Cauchy distribution (Cauchy), Laplace distribution 

(Laplace), and Gaussian error function (Erf). They were compared with the Sigmoid type (Logsig), 

hyperbolic tangent (Tansig), and normal distribution (Normal) functions in simulations experiments 

using the classic XOR problem. The network convergence for all six activation functions was analyzed 

under different gradient factor and initial weight conditions. The optimal activation function with optimal 

parameter values and ranges was determined.  

2 Related Work 

An activation function maps the data in artificial neural network computation and is hence the most 

important function in neural network processing [18-20]. Currently, the linear, hard-limiting, hyperbolic 

tangent, and Sigmoid type functions are the most commonly used activation functions [21].In addition, 

the normal, exponential, periodic, translation, and wavelet functions can also be used as activation 

functions of neural networks. 

Previous works have proposed many new and effective activation functions and proven that changes in 

activation functions can increase the convergence speed of the network. For example, Kenue proposed a 

new activation function with its first derivative as �,2,1),(sec =nxh
n . Comparing it with the standard 

Sigmoid function, he found that the new activation function can significantly improve the convergence 

speed of the network [22]. Nambiar et al. proposed a novel and cost efficient sigmoid-like activation 

function for an evolvable block-based neural network, which executes up to 410 times faster than 

embedded software [15]. Miao et al. [23] proposed a new neuron model of an adjustable activation 

function.  

The main contributions of this paper lie in the following two aspects. 

Firstly, three new activation functions are proposed, which are well applied in the BP algorithm-based 

FNN and are superior to common activation functions. These new activation functions increase the 

convergence speed of the BP algorithm-based FNN. 

Secondly, activation functions map data in artificial neural network computation, but are usually 

determined by trial and error. In this work, the optimal gradient factors and their ranges for these six 

activation functions are determined, which provides a reference for designers of back-propagation 

feedforward neural networks. 

3 Materials and Methods  

3.1 Activation Functions and Their First Derivatives 

Normal, Cauchy, Laplace, and Erf satisfy the differentiable, bounded, and non-constant conditions, and 

can give a bounded output with bounded input. Thus, the above functions can all be used as a BP 

algorithm-based activation function for feedforward neural networks. Table 1 presents the expressions 
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for the above four activation functions, Logsig, Tansig, and their first derivatives. 

Table 1. Six activation functions and their first derivatives 
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. Additionally, λ is the gradient factor, 

and μ is the translation factor. 

3.2 Plots for Activation Functions and Their First Derivatives 

To present a more intuitive understanding of the characteristics of the six activation functions, they 

and their first derivatives are plotted for different gradient factors in Fig. 1. As shown in Figs. 1(a) and 

(b), the range of output values of Logsig is [0, 1]. The output values of Tansig are in the range [−1, 1]. As 

the gradient factors increase, the function curves become steeper, the peak values of the corresponding 

derivative near zero gradually narrow, and the maxima increase. However, Normal, Cauchy, Laplace, Erf, 

and their corresponding derivative curves show the opposite changes with respect to various gradient 

factors. Figs. 1(c), (d), (e), and (f) show that the range of output values of Erf is [−1, 1], and the output 

ranges of the other four functions are [0, 1]. As the gradient factors are increased, these four function 

curves gradually slow, the corresponding peaks in the vicinity of the zero derivative gradually widen, and 

the maximum values gradually decrease. 

3.3 Algorithms 

In this work, only the standard activation function for the BP algorithm was replaced with Normal, 

Cauchy, Laplace, Erf, and their corresponding derivatives, therefore, the algorithm remains relatively 

simple. Taking Normal as an example, the algorithm process is described as follows. The algorithm 

training process uses online learning, which is a learning method that updates network weights for each 

mode (sample) within the training set. This method is characterized by its requirement for less storage in 

the learning process, but sometimes increases the overall output error of the network. 

(1) The output node algorithm expressions for the hidden node output )(k
y and node output )(k

O are as 

follows: 
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Fig. 1. Activation functions and their first derivatives: (a) Logsig, (b) Tansig, (c) Normal, (d) Cauchy, (e) 

Erf, and (f) Laplace. In all plots, □: λ=0.5, Δ: λ=2, solid lines indicate activation functions, and dashed 

lines indicate their first derivatives 
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where )(
X

k  represents the k-th mode, nk �,2,1= , IW is the connection weight between input and hidden 

layers (including the threshold), LW is the connection weight between hidden and output layers 

(including the threshold), and μ and λ are the parameters for Normal. 

(2) The error correction algorithm for the output layer (between the hidden and output nodes) uses the 
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formula 
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where )( k
δ represents the error correction for the k-th mode, and )( k

t is the expected output for the k-th 

mode. 

(3) The error correction algorithm for the hidden layer (between the input and hidden nodes) uses the 

formula 
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where 
)(k

h•
ϕ  is the error correction value for the h-th column of the k-th sample in the hidden layer, 

•hLW
'  is the transpose of the h-th row of the connection weights between the hidden and output layers 

(including the threshold), and h•
γ  is the h-th column of the integral of the k-th sample and IW . 

4 Experimental Simulations  

The classic XOR problem is used as an example to evaluate the convergence of the above-mentioned six 

activation functions. The same number of hidden layers, initial weights, learning rate, momentum factor, 

and training samples were used for these six activation functions. Ten groups of initial weights were 

randomly generated, ranging between [−1, 1]. This weight initialization was repeated ten times with 

different activation functions under different conditions and parameters. The initial weights of these ten 

groups are not presented here because of space limitations. The network structure includes a ratio of 

input, hidden, and output layers of 4:4:1; learning rate of 0.5; and momentum factor of 0.9. The network 

error performance function was set to 0.01 using sum of squared errors. In order to analyze the effect of 

the activation function gradient factor on the convergence rate and select an appropriate range, gradient 

factors of 0.1, 0.2, 0.3, 0.5, 1, 2, 4, and 6 were used. Zhou et al. [21] found in their experiments that the 

network oscillated and could not converge when the target value was within the range 0−1 when Tansig 

was used as the activation function for the output layer, which could be related to the range [−1, 1] for 

both the activation function and output value. Therefore, a combination of Tansig-Logsig and Erf-Logsig 

was used, with parameter λ =1 unchanged. 

The number of epochs to convergence, the difference between the maximum and minimum 

convergence epochs for various gradient factor conditions, and the epoch variation coefficient for all 

conditions are used as indicators to evaluate the convergence of the activation functions. When the 

convergence epochs are less in number, the activation function converges faster; when the difference 

between the maximum and minimum epochs as well as the variation coefficient are smaller, the 

activation function is less sensitive to the initial weights. Based on the margin between the minimum and 

maximum epochs, it can be inferred that the different initial weights have a significant impact on the 

convergence speed of the network. A greater margin indicates that the activation function is more 

sensitive to the initial weights. The F test was used to evaluate the significance of the effect of different 

gradient factors on the convergence of the activation function. 

5 Results and Discussion 

The number of epochs to convergence for each activation function under different gradient factor 

conditions are shown in Fig. 2. The F test showed a very significant effect (p < .01) on the convergence 

speed of the activation function, which provides theoretical support to the argument that an adjustable 

activation function gradient factor can accelerate the convergence speed of the network. In an application, 

the gradient factor can be continuously adjusted to accelerate network convergence. Different gradient  



Journal of Computers Vol. 29, No. 1, 2018 

81 

0

10000

20000

30000

40000

50000

60000

0.1 0.2 0.3 0.5 1 2 4 6

Slope parameter

E
p
o
ch
s

logsig(a )

 

0

10000

20000

30000

40000

50000

60000

70000

80000

0.1 0.2 0.3 0.5 1 2 4 6

Slope parameter

E
p
o
ch
s

tansig-logsig(b )

 

0

10000

20000

30000

40000

50000

60000

0.1 0.2 0.3 0.5 1 2 4 6

Slope parameter

E
p
o
ch
s

normal(c )

 

0

30000

60000

90000

120000

150000

180000

0.1 0.2 0.3 0.5 1 2 4 6

Slope parameter

E
p
o
ch
s

cauchy(d )

 

0

5000

10000

15000

20000

25000

0.1 0.2 0.3 0.5 1 2 4 6

Slope parameter

E
p
o
ch
s

erf-logsig(e )

 

0

30000

60000

90000

120000

0.1 0.2 0.3 0.5 1 2 4 6

Slope parameter

E
p
o
ch
s

laplace(f )

 

Fig. 2. Epochs of each activation function under different gradient factor conditions 

factors caused the convergence speed of the activation functions to vary widely. As the gradient factor 

varied from 0.1 to 6, the convergence speed of the activation functions first reduced and then increased. 

Each activation function has its own optimal gradient factor and a reasonable range of values. Once the 

gradient factor exceeds a certain value, the convergence speed of the network will be very slow or the 

network may not converge at all. The optimal gradient factors for Logsig and Tansig-Logsig were greater 

than those for Normal, Cauchy, Erf-Logsig and Laplace. This is related to their unique characteristics. As 

shown in Fig. 1, the gradients of the Logsig and Tansig function curves increase with increasing gradient 

factor, while the other four activation functions show the opposite trend. Therefore, it is believed that 

within a certain range of gradient factors, the activation function converges faster if the gradient is higher, 

which may be caused by the fact that high gradient can speed up the initial weights when approaching the 

optimal weights. 



Effects of BP Algorithm-based Activation Functions on Neural Network Convergence 

82 

Under different gradient factor conditions, the variation coefficient of the convergence epochs are 

shown in Fig. 3. A larger variation coefficient indicates the activation function is more sensitive to the 

initial weights, but it does not indicate the convergence speed. As shown in Fig. 3, with different gradient 

factors, the variation coefficients significantly differ, namely, the activation function at different gradient 

factors has different levels of sensitivity to the initial weights. This can also be reflected as the margin 

between the maximum and minimum convergence epochs in Fig. 2. On the other hand, the initial weights 

can also affect the convergence rate of the activation function. Erf-Logsig is highly sensitive to the initial 

weights, while Logsig is less sensitive. The variation coefficient of activation function convergence 

epochs is low at its optimal gradient factor, indicating that an appropriate gradient factor could reduce the 

sensitivity of an activation function to the initial weights, thus ensuring convergence stability. On the 

contrary, if the initial weights are inappropriately chosen, it could result in a phenomenon where network 

training cannot converge or converges very slowly. The sensitivity of the activation function to the initial 

weights could indirectly prove that methods that adjust the initial weights, such as genetic algorithms and 

simulated annealing methods, effectively accelerate network convergence. In an application, the 

activation function gradient factor should first be selected within the proper range, then the initial weights 

can be optimized by intelligent optimization algorithms such as a genetic algorithm or simulated 

annealing method. 

0

50

100

150

200

250

300

0.1 0.2 0.3 0.5 1 2 4 6

Slope parameter

C
O
V
(%

)

logsig tansig-logsig

normal cauchy

erf-logsig laplace

 

Fig. 3. Epoch variation coefficients for activation functions for various gradient factors 

Fig. 4 shows the convergence epochs of the network for 10 repeated simulations of the Normal, 

Cauchy, and Laplace activation functions with translation factors µ = 0 (no shift) and µ  = 1 (a shift to 

the right by one unit). The results show that the translation factor has no significant effect on the 

convergence speed of the network. Hence, in an application, the translation factor is not needed. 

 

Fig. 4. Effects of the translation factor µ  on convergence speed 
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Based on the convergence number and variation coefficient (Fig. 2 and Fig. 3), the optimal gradient 

factor and a reasonable range of values for each activation function were selected (Table 2). Among these 

six activation functions, the best activation function was Erf-Logsig with an average convergence number 

of at least 110 (gradient factor = 0.5), followed by Tansig-Logsig (gradient factor = 4), Laplace, Logsig, 

Normal, and Cauchy in that order. In fact, the convergence performance of the network is not only 

related to the gradient factor of the activation function, but also is related to its hidden layer, neuron 

number, learning rate, momentum factor, and other network parameters. Only if these parameters have 

achieved an optimal combination will the result of the entire network be optimized. The hidden layer of 

the network and its neuron number is related to the properties of training data such as dimension size. 

Currently, there is no scientific method to determine such information, which is mostly obtained by trial 

and error. The learning rate and momentum factor also have an appropriate range, generally between 0.1 

and 0.9. In this study, under the same condition of other parameters, the choice of optimal gradient factor 

and a reasonable range for different activation functions was effective. When other parameters change, 

the conclusions derived from this study are still applicable. The only difference is that with different 

parameters, the convergence speed of the network will speed up or slow down. However, the trend of 

changes in the network convergence rate will not change with respect to changes in the activation 

function gradient factor. 

Table 2. Optimal gradient factor and reasonable ranges for each activation function 

Activation function Optimal Optimal range 

logsig 2 [1,4] 

tansig-logsig 4 [2,6] 

Normal 1 [1,2] 

Cauchy 0.2 [0.2,0.5] 

Erf-logsig 0.5 [0.5,2] 

Laplace 0.5 [0.5,1] 

6 Conclusions and Future Work 

In this paper, six kinds of BP algorithm-based activation functions and their convergence for different 

parameters were comparatively analyzed. Some conclusions and directions for follow-up work were 

obtained, as follows: 

(1) The network convergence rate is significantly different for an activation function under different 

gradient factor conditions, reflecting that the adjustable gradient factor algorithm affects the convergence 

performance of the network. The translation parameter showed no significant effect on the convergence 

speed of the network. Therefore, in applications, an appropriate gradient factor should be selected to train 

the network.  

(2) Different initial weights also showed a significant impact on the convergence speed of the network. 

If initial weights were inappropriately chosen, the network training did not converge or converged very 

slowly. This suggests an appropriate range of initial weights for network training should be selected. 

Considering the fast network convergence speed, a relatively small margin between the minimum and 

maximum convergence epochs, and a large number of convergence times, Logsig (λ = 2), Tansig-Logsig 

(λ = 2), Normal (μ = 0, λ = 2), Erf-Logsig (λ = 0.5), and Laplace (μ = 0, λ = 0.5) were less sensitive to 

initial weights. 

(3) Based on the convergence speed, Laplace (μ = 0, λ = 0.5), Erf-Logsig (λ = 0.5), Tansig-Logsig (λ = 

4), Logsig (λ = 2), and Normal (μ = 0, λ = 1) showed better performance with appropriate gradient 

factors. Combined with the plots of the activation functions, we conclude that an activation function 

converges faster with higher gradients. 

(4) There is a great uncertainty in the results of artificial neural networks because of the complexity of 

the algorithms. The results of this study were only based on one example of the XOR problem, and the 

simulation results may be dependent on the selected example. Other examples will need to be included to 

further verify the reliability of the results. 

(5) In this work, the effects of the gradient factor and initial weights of the activation function on the 

network convergence performance were analyzed based on the convergence speed of the network. In 

future studies, the impact of the activation function parameters on the generalization capability of the 
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network should be analyzed.  

(6) It was found that the network convergence speeds of activation functions with hidden and output 

layers using a combination of functions (Erf-Logsig and Tansig-Logsig) were superior to the those using 

the same function. Therefore, in a follow-up study, the convergence speed and generalization ability of 

the network will be comparatively analyzed using further pairs of these six activation functions. 
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