
Journal of Computers Vol. 29 No. 1, 2018, pp. 112-131

doi:10.3966/199115992018012901010

112

A Membrane-based Evolution Algorithm with Time Classifier for

VRPTW

Yingying Duan1, Kang Zhou1*, Huaqing Qi2, Hui Zhang3, Xin Tong1

1 School of Math and Computer, Wuhan Polytechnic University, 430023 Wuhan, China

dybngduan@163.com, zhoukang65@whpu.edu.cn, tx895146920@sina.com

2 Department of Economics and Management, Wuhan Polytechnic University, 430023Wuhan, China

qihuaqing@sohu.com

3 School of Information and Intelligence Engineering, Ningbo City College of Vocational Technology,

315000 Ningbo, China

1094756649@qq.com

Received 1 August 2017; Revised 20 October 2017; Accepted 20 November 2017

Abstract. Vehicle routing problem with time window is of profound theoretical research

significance and broad practical application value.we propose a membrane algorithm with

genetic mechanism to improve the convergence speed or population diversity, because

traditional heuristics still have shortcomings in these two problems. In this algorithm, we

introduce membrane techniques to increase the diversity of population. We put forward time

classifier to further accelerate the evolving speed of each membrane. We propose a new

crossover operator in order to further improve the successful probability of crossover operator;

Beside,we can also designed an improved roulette mechanism so as to modify the quality of

solutions. For membrane algorithm, its most prominent advantage is that the distribution and the

parallelism can improve both he ability of local search and global search and the efficiency of

this algorithm. The experimental results shows that membrane algorithm with genetic

mechanism is competitive with other heuristics.

Keywords: improved crossover operator, membrane computing, time classifier, vehicle routing

problem with time window

1 Introduction

Vehicle routing problem (VRP) is an NP-hard combinatorial optimization problem [1]. Vehicle routing

problem with time windows (VRPTW) is an expand of VRP, which adds time windows to each client

and specifies that each vehicle must be visited within this window. VRPTW has important theoretical and

practical significance in logistic research area such as rail distribution system, the mail and newspaper

delivery system and so on. So far, the variant of VRPTW has been widely studied. For example, papers

[2-3] studied VRPTW with dynamic constraint and time-dependent, paper [4] studied the hard time

window VRPTW, papers [5-6] studied separately the soft time window problems. Because heuristic

algorithms has been proved that it could reduce computational complexity in solving optimization

problems by doing a lot of research in this aspect by scholars, many fields used heuristic algorithms to

solve some practical problems, for instance, papers [7-8] studied branch-and-price algorithm and

artificial bees algorithm are proposed to optimize VRPTW with different constraints, papers [9-11]

proposed some improved ant colony algorithms to solve this problem. However, further studying shows

that genetic algorithm is still of high computational cost in efficiency or precision, especially for the

large-scale problems. Therefore we introduce membrane thought to solve the problems encountered.

* Corresponding Author

Journal of Computers Vol. 29, No. 1, 2018

113

Membrane computing is a new and vigorous branch of natural computing. The computing models in

membrane computing are called membrane systems or P systems, which are parallel and distributed

systems. The theoretical study in membrane computing mainly concentrates in abstracting all kinds of

variants from the structure and functioning of cells and investigating the computational power of these

variants. According to the membrane structure, there are two main families of P systems: cell-like P

systems which have a hierarchy arrangement of membranes as in a cell [12]; and tissue-like P systems or

neural-like P systems (spiking neural P systems, SN P systems) as in a tissue inspired by cell

intercommunication in tissue [13] or in a neural net inspired by some way neurons communicate with

each other by means of electrical impulses of identical shape [14]. Many variants of P systems are

proposed by introducing other biological features into the system, such as P systems with active

membranes [15], P systems with string objects [16], axon P systems [17], SN P systems with structural

plasticity [18], SN P systems with request rules [19], SN P systems with anti-spikes [20-21], SN P

systems with weights [22-23], SN P systems with rules on synapses [24-25], SN P systems with white

whole neurons [26], cell-like SN P systems [27]. Many strategies of using rules are considered in

membrane computing, including minimal parallel [28], time-freeness [29], asynchronous [30], flat

maximal parallel [31], sequential [32]. Most of these variants of P systems working in different modes

are proved to be Turing universal [33-35]. P systems are able to solve computationally hard problems in a

feasible time [36]. Recently, P systems have been sused to solve NP-complete problems in a time-free

manner in the sense that the correctness of the solution does not depend on the precise timing of the

involved rules [37], such as to solve SAT problem [38], common algorithmic problem [47] and 3-

coloring problem [39]. P systems have been applied in many fields [40-41], such as biology, linguistics,

theoretical and applied computer science [42-45]. The recent applications in engineering can be found in

[46-48]. For the most up-to-date news and results, one can consult the P systems web page http://ppage.

psystems.eu.

Based on the advantages of P system above mentioned, some scholars proposed the combination

membrane computing and heuristics to solve some practical problems. Papers [49-50] applied membrane

algorithms with different heuristics such as tabu algorithm, particle swarm algorithm and so on to solve

traveling salesman problems. Paper [51] used membrane algorithm with genetic mechanism to solve

vehicle routing problem. Paper [52-54] optimizes solid waste transportation problem by using membrane

algorithm with a three-levels of hierarchical cell-like structure. Papers [55-57] analyzed the diversity and

convergence of membrane algorithms and its implementation on GPU, which produces the better

solutions by comparing with the heuristic by dividing a large problem into several sub-problems to

process. However, very few literature emphasize the effect on the experimental results of membrane

framework design. In this work, we propose a membrane algorithm owned a certain structure with

genetic mechanism. In this algorithm, we propose some strategies to enhance the performance of the

algorithm such as for efficiency we introduce time classifier and for precision we introduce an uncertain-

segment crossover and the segment-node insertion operation. These strategies can effectively improve

the efficiency or the quality of solutions on the basis of membranes thus improving the whole

performance of membrane algorithm. The paper is organized as follows: Section 2 describes the

definition and mathematical model; Section 3 is devoted to the object and evolution rules; Section 4

addresses the experimental design and presents computational results based on standard data sets. Finally,

conclusions are presented in Section 6.

2 Mathematical Formulation for VRPTW

The vehicle routing problem with time windows can be defined as a problem of finding a minimum cost

route for a number of homogeneous vehicles stationed at a depot, which have the task of delivering goods

to a number of customers under the premise of satisfying the following constraints such that:

‧ The route of each vehicle must start and end at a depot.

‧ Each customer must be serviced by only one vehicle.

‧ The demand of all customers must be delivered.

‧ The route of no vehicle should contain a customer demand sum greater than the vehicle capacity.

‧ Each vehicle must arrive at the customer delivery sites within the time horizons associated with them,

it may arrive earlier, but then must wait.

A Membrane-based Evolution Algorithm with Time Classifier for VRPTW

114

Mathematically, it can be described as: the problem is given by a set of customers V = {v1, v 2, ..., vn},

which each customer is associated with a physical location specified by x and y coordinates, where the

distance between customers is given by the Euclidean distance. Let v0 denote the location of the depot,

V′= V∪{v0} becomes the set of all locations considered in the problem, N ={1, 2, ..., n} becomes a

natural number set that represents the position of vi. Every pair of locations (i, j), where i, j∈N and i != j,

is associated with a cost of travelling dij and a travel time tij, where the travel time between two customers

is assumed to be equal to the distance. For each customer vi, there is a demand qi, a service time si, and a

service time window [ei, li] where ei describes the earliest time to start servicing and li describes the latest

time to start servicing. The demand qi of customer i is to be serviced by exactly one vehicle within its

time window. In addition, e0 describes the earliest time to depart depot and l0 describes the latest time to

arrive depot. The objective is to determine a feasible route schedule which primarily minimizes the total

travel distance.

1 0 0

Min

K n n

ij ijk

k i j

Z d x

= = =

=∑∑∑ (1)

Subject to:

0

1

1, 1,2,...,
n

jk

j

x k K

=

≤ =∑ (2)

i

1 0

1, 1,2,...,
K n

jk

k i

x j n
= =

= =∑∑ (3)

1 0

0, 1,2,..., ; 1,2,...,
n n

ijk jik

j j

x x i n k K

= =

− = = =∑ ∑ (4)

i

1 0

() , 1,2,...,
n n

i jk

i i

q x Q k K
= =

≤ =∑ ∑ (5)

i

1 ,

| | 1, ,2 | | 2
K

jk

k i j S

x S S N S n

= =

≤ − ⊆ ≤ ≤ −∑∑ (6)

 max{0, }, 1,2,...,
i i i

w e a i n= − = (7)

1 1

, 1,2,...,
n n

i ijk i i i ijk

j j

e x a w l x k K

= =

≤ + ≤ =∑ ∑ (8)

 {0,1}, , 1,2,..., ; 1,2,...,ijkx i j n k K∈ = = (9)

0

1

1, 1,2,...,
n

jk

j

x k K

=

≤ =∑ (10)

where the decision variable ai is denoted as the time of arriving at customer vi serviced by vehicle k

(k∈{1, 2, ..., K}); the decision variable wi is the time of waiting at customer vi; the decision variable xijk

is whether the route from vi to vj is serviced by vehicle k: if xijk = 1, then e ij is visited by vehicle k; else,

eij is visited by other vehicles; K is the number of vehicles.

The goal of the objective function (1) is to minimize the total cost. Formula (2) ensures that there is at

most a vehicle from the depot v0 to a client vj. Formula (3) makes certain that each customer is visited by

exactly a vehicle. Formula (4) describes that a vehicle arriving to a customer is the same as that leaving it.

Formula (5) ensures that the sum of customer demands assigned to a specific vehicle does not exceed its

maximum capacity. Formula (6) ensures that each routes cannot exist ring. Formula (7) computes the

Journal of Computers Vol. 29, No. 1, 2018

115

wait time of this vehicle in customer vi. Formula (8) describes that the arrival time of the latter is less

than one of the former in the same route (M is a larger scalar). Formula (9) describes that the service

time of a client must be in its windows. Formula (10) guarantees the non-negativity of variables xijk and

define the Formulation as a binary integer linear programming model, where if i is equal to j, then xijk=0

3 Hybrid Evolution Mechanism Driven By Membrane Computing

In this section, we propose a membrane algorithm with genetic evolution mechanism (MGA), which is

the integrant of tissue P system and genetic algorithm. MGA introduces different evolution mechanisms

into membranes such as uniform order crossover or partially mapped crossover. Each individual in

genetic algorithm is mapped as an object. The evolution mechanism is regarded as the rules of each

membrane. There are some communications between membranes. In order to better introduce how

genetic algorithm is combined with P system and how to solve vehicle routing problem with time

window, the structure, objects and rules of membrane algorithm are introduced as follows.

3.1 Membrane Optimization Framework

Problem decomposition schemes have been in place for quite some time. The most popular and newest

method using this scheme is called membrane system, introduced by the professor Păun [15]. The system

works in the following manner.

‧ Break the problem into smaller sub-problems.

‧ Solve the sub-problem.

‧ Construct the global problem from the sub-problem.

‧ Repeat the above 3 steps.

The same strategy was used by Nishida in tabu search for the TSP in 2005 [58]. He partitioned a whole

membrane space into independent sub-space, optimized the objects, then joined them together to

construct the global solution, only to partition it again, into different area of sub-space. However,

different operations produces different membrane construct methods. The membrane structure was

extended in [45] with a cell-like mode which ensured different in each iteration. We have further

generalized this structure into the localized optimization framework. For MGA, we propose a

decomposition strategy based on different operators, which independently search to every neighborhood

space. A membrane system of degree 7 is a construct.

1 2 3 4 5 6 0

(O, , , , , , ,syn,)iσ σ σ σ σ σ∏ = (11)

where,

(1) O = {X0, X1, ..., XS−1}, Xi (i = 0, 1, ..., S−1) is a string (object), S is the number of objects;

(2) syn={(1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 2), (4, 2), (5, 2), (2, 6), (6, 2)};

(3) i0 =0 is an output membrane labeled as 0;

(4) σ1, ..., σ6, are cells, of the form

 σi = (Qi, si, 0, ωi, 0, Ri), 1 ≤ i ≤ 6, (12)

where:

(a) Qi = (si,0, si,1, ..., si,k, t_max), si,t is the tth iteration of the ith cell, t_max is a max iteration.

(b) ωt
k,li= {X tk,1, X

t
k,2, ..., X

t
k,l i } is an object multi-set of the kth membrane;

(c) Ri is a rule set containing evolution rules and communication rules;

According to the framework of Fig. 1, this system executes as follows: firstly, generate S objects using

the rule of cell 2; secondly, l1, l2 and l3 objects are separately selected with replacement sampling from

cell 2 and then sent to cell 3-5 using communication rules; l4 (l4 = S−l1−l2−l3) objects selected with

replacement sampling using roulette method are sent to cell 6 according to the same rules; finally, objects

of membranes begin to evolve before synchronously resenting to cell 2 after evolving, complete a state

transition, continue until reaching termination criterion, end.

A Membrane-based Evolution Algorithm with Time Classifier for VRPTW

116

Fig. 1. The framework of MGA

The above system introduces the framework of membrane system, objects and rules contained the

evolutionary rules and the transportation, where the framework makes the objects of each cell evolving

correctly in a closed and independent environment. In this system, membranes evolved expand the search

space of population due to the different operations of four membranes and the design of cell 1 deduces

the running time because of optimizing the computational complexity of the algorithm, compared with

heuristics in optimizing VRPTW. The system is beneficial to further improve the capacity of solving

problems, which shows the effectiveness of this framework.

3.2 Formulation of Object Encoding for the VRPTW Problem

An object is generated by choosing a random ordering of nodes, forming a list of length N where each

node appears once only (the depot is not included). a chromosome represents an order of customers

without route splitters, for example, Xi={xi1, xi2, ..., xiN}(i∈[0, S−1). Due to the limitations of carrying

capacity for each vehicle, it is usually impossible to complete all delivers using one truck, and therefore

several journeys, or routes are necessary. As this representation does not include the information on

where the list is broken by returns to the depot, or terminal points, an object for VRPTW is represented

as: Xi = {0, xi1, ..., xik, 0, ..., xiN, 0} where it is a route between depots visited by only one vehicle, and the

current state of each membrane is expressed as: ωi = (X0i, X1i, ..., X(n−1)i) (n∈[1, S]), where xij∈[1, N], Xki

(k∈[0, n−1]) is a code of kth object in cell i.This encoding method can not only directly express a

solution of VRPTW, but also intuitively select current client number xij, thus avoiding the operation of

decoding and further improving the efficiency.

3.3 Formation and Optimization of Internal Membranes

In order to ensure the feasibility of the objects of each membrane, some rules are designed to control the

evolution of objects. In MGA, the rules are divided two classes: (1) Evolution rules: cell 1 executes a

classed operation; cell 2 generates an initial population, cell 3 and cell 4 execute different crossover

operations, cell 5 executes mutation operation and cell 6 executes an optimum-recorded operation; (2)

Transportation rules: the communication of membranes. The detailed introduction is as 3.3.1-3.3.6.

3.3.1 Rules in Cell 1: Time Classifier

In order for further enhancing the computing efficiency of membranes, a classed set T (T = T + Tk, k =

0, 1, ..., 23) is computed using time classifier introduced by cell 1. This mechanism is described as: time

difference for the open and close time of depot is divided into twenty-four parts, where each partis

recorded using a set Tk and its time interval is [tk, tk+1), all clients are classedand stored in these sets T0,

T1, ..., T23 according to their time window, where if window [ei, li] of a client vi satisfies the conditions: tk

< ei and li < tk+l, then client vi is classed respectively in these sets from Tk to Tk+l. In order to further

research the nature of time classifier by combining with the characteristic for VRPTW, six kinds of

lemmas for this mechanism are introduced as follows:

Lemma 1. In time classifier, for time window [ei, li]: if li > ai−1, then u(x +vi, vi, y) → v(x, vi, y + vi); else,

vi is directly deleted.

Lemma 2. For crossover operator, execute the rules u1 (x+s1, s1, y) → u′
1(x1+s2, s2, y1) and u2 (x+s2, s2, y)

→ u′
2(x2+s1, s1, y2), that all segments in Time Classifier satisfy s1∈[ex2, ly2] and s2∈[e x1, ly1] can execute

crossover operator.

Journal of Computers Vol. 29, No. 1, 2018

117

Lemma 3. Initialize routing structure car_client, for arbitrary window [ei, li], [ei+1, li+1] and ei+1 > li : if

select tail insertion operation, then these clients of Time Classifier that latest service lk (k ∈[0, i]) is less

than e i+1 are directly deleted.

Lemma 4. For vi of set TN−1 (N is the number of set) in Time Classifier, if (li −ei)∩(li+1−ei+1) = φ or (li

−ei)∩(li+1−li+1) ≤ ε, then u(x+vi, vi, y) →u′ (x, vi, y+vi), promptly, the probability that vi is inserted to the

tail of each vehicle is larger than the clients of other sets.

Lemma 5. For an inserted position, that a node v i satisfied constraint conditions of inserting this

position must be between set Tk−1 and Tk+1 can ensure the feasibility of route after inserting vi, promptly,

and these nodes are directly excluded beyond time window.

Lemma 1 shows that the latest service time of a node must be larger than depart time of previous node

in the same path. Lemma 2 and Lemma 3 express that two objects can exchange as long as the windows

are met. Lemma 4 illustrates that the probability is very smaller which nodes of T i are inserted to the

back of these nodes belonged to Tk (k > i) in time classifier. Lemma 5 verifies that the probability of

inserting to route tail for this kind of nodes owned a greater latest service time is larger. Lemma 6

explains that vi to be inserted to position pi must exist between Tk and Tk+1.

From this we can obtain that the algorithm can quickly produce a new object by using the rules of

Lemma 1~5, that is, it can decrease computational complexity by directly excluding these clients not

stored in time range of this position thus selecting some feasible clients satisfied window constraints to

insert or swap, which proves that the design of time classifier is successful for further improving the

computing efficiency of MGA, compared with the evolved operations that a client is selected and

inserted to route Rt (t∈[0, |Rt|] where |Rt| expresses the number of all clients of the tth route), and then

adjust whether all clients of Rt satisfied time window: if meet, continue; else, deleted and select.

3.3.2 Rules in Cell 2: Initialization Objects

Because MGA is a multi-population algorithm, S objects need to be generated by applying the

corresponding technologies. For each object, the rule of coding decides that we have adopted the split

procedure, which works through the customer sequence embedded in the object. It evaluates all feasible

route sets that can be drawn from that customer sequence, and extracts the route set out of it, which has

the minimal cost. To fulfill this task, we use a tail insertion to produce a feasible solution. In order for

making the algorithm producing multiple objects in the closed and independent domain, cell 2 is used as

a computing device for obtaining objects and stores new object set after each iteration. The process of

generating objects is introduced as follows.

Tail-insertion Method. To fully apply the evolution rules for MGA, initial phrase, a randomly chosen

customer is taken out from time classifier and reinserted to the end of a randomly chosen route under

satisfying load and time windows of route.

The process of generating S objects. In initial phrase, set T(T ={T0, T1, ..., T23}) is obtained by using

time classifier, set Nd records all the information of each customer contained arrive time, service time,

and so on. Initial set G (G = G+{Xi})(i∈[0, S−1]) is an empty set, set F is used to store the customers of

set T in order to avoid the repeated insert of customers in the phrase. The process is described as the

following steps.

Input:

‧Time classifier: T

‧Node: Nd

‧C_list: G = G

Output: An object set G = {X0, X2, ..., XS−1}

Step 1) Set Nd = φ and F = φ ; let the number of objects be S, s = 0.

Step 2) Compute a classed set T (T = T ∪ Ti, i = 0, 1, ..., 23) using node classifier.

Step 3) Insertion the first n customers of set F to different routes.

Step 3.1) Compute the number of vehicles according to the requirement of full-load as formula:

/ , / int

/ 1, lse

Q q ifQ qis an eger
n

Q q e

⎧⎪
= ⎨

+⎡ ⎤⎪⎢ ⎥⎩

A Membrane-based Evolution Algorithm with Time Classifier for VRPTW

118

Step 3.2) n clients are randomly inserted to the first position of n routes and then delete these clients

from set F.

Step 4) Randomly insert client vi into a chosen route using a tail insertion:

Step 4.1) vi is selected from set F and then execute F = F − {vi}.

Step 4.2) Randomly select a route Rt (t < n).

Step 4.3) If vi can be inserted to the end of Rk: then insert and update Rk; else, turn Step 4.2; If any

route cannot be inserted, turn Step 4.4.

Step 4.4) Reopen a route Rt (t=n+1), and insert vi to Rt, continue until set F becomes an empty set,

obtain an object Xs and then execute G = G+{Xs}, s++.

Step 5) If reaching the stopping criteria, then stop and output G. Otherwise, go to Step 3.

In initialization, we use euclidean distance to compute arrival time of each customer. For the first n

nodes, they are randomly inserted to n different routes; Set K = {vj1, vj2, ..., vjk}(vjk ∈F, k ∈[1, n]), for

other nodes vjl (l ∈[n+1, N]), randomly select a route Rt (t∈[0, n−1]), if ajl < ljk (vjk ∈K) and ajk∈[ejk, ljk]

under satisfying max-load, then vjk is inserted to Rt, continue until N clients are inserted, end; obtain an

object Xs. According to the method above mentioned, S objects are generated. It can be seen that a tail

insertion can both avoid computing the windows behind current client and improve the crossover-

succeeded (mutation) rate, which ensures the effectiveness of this algorithm.

3.3.3 Rules in Cell 3: Crossover Operator

Because traditional crossover operator is executed by swapping two ordered segments of different

individuals, this operator can produce a plenty of unfeasible solutions due to the existence of time span in

solving VRPTW.According to the characteristic of VRPTW, we design an improved crossover operator

that is executed by calling an anterior operator or a tail operator so as to enhance the successful

probability of crossover operator. In the following section, we firstly introduce the definition of three

operators, secondly, we introduce the pseudo of three sub-algorithms, finally, according to the

evolutionary process of the crossover, we design evolution rules of this cell.

Definition for an improved crossover operator. Because we need to apply two techniques in defining

crossover operator, we firstly introduce the definitions of an anterior operator and a tail insertion before

introducing crossover. The detailed descriptions are listed as follows.

Definition 1 For an object X = (x1, x2, ..., xn) and an ordered segment s =<vi,vi+1>, if xk = vi and xj =

vi+1 (k < j), then (a) we called the operation Fn(X, s) = (x1, x2, ..., xk−1, xk+1,..., xk, xj, ..., xn) as Anterior

Insertion Operator; we called the operation Tn(X,s) = (x1, x2, ..., xk, xj,..., xj−1, x j+1, ..., xn) as Tail

Insertion Operator. (b) If an object Fn (X, s) or Tn (X, s) satisfies the constraints of vehicle surplus and

time window, then it is a feasible object.

Definition 2 For two objects Xi and Xj, two routes R1 and R2 are randomly selected from objects Xi

and Xj, and two ordered segments s1 =<vk, vk+1> and s2 =<vt, vt+1> are arbitrarily selected from routes

R1 and R2. For the objects of crossover, we need to adjust:

(a) If an object Fn(Xi, s2) or Tn(Xi, s2) is a feasible object, then it is the child of Xi after exchanging the

segments of Xi and Xi; else, Xi is the child of Xi generated after executing the crossover operator.

(b) If an object Fn(Xj, s1) or Tn(Xj, s1) is a feasible object, then it is the child of Xj after exchanging the

segments of Xi and Xj; else, Xj is the child of Xj generated after executing the crossover operator.

The above definition describes a new crossover operator, this operator can be not only easy to be

executed, but also inherit the excellent fragments of the previous individuals. The experimental results at

the later stage can be used for verifying that the computational results of this operator can be accepted.

The pseudo for the improved crossover. In order to clearly describes the computational process of

crossover factor,we give the following pseudo: where ALGORITHM 1 states the process of anterior insertion,

ALGORITHM 2 lists the process of tail insertion, ALGORITHM 3 shows the total process of the crossover. In

ALGORITHM 1 and ALGORITHM 2, car_client[i].route[j]. number is the number of a node in the jth route of the

ith objects, avt is the arrival time of a node vt, a route R1 (R2) is selected from an object X1 (X2).

Journal of Computers Vol. 29, No. 1, 2018

119

ALGORITHM 1 An anterior insertion

Input:X1,X2(two objects),R1,R2(two routes),s1,s2(two segments)
1: t = rand()/R2
2: for i = t ← t+1
3: s2 = s2 + {vi}
4: for i = 0 ← |X1|
5: for j = 0 ← |R1|
6: if car_client[i].route[j].number == vk+1
7: vt+1 = car_client[i].route[j].number
8: if (vt satisfies the condition of inserting the former of vt+1)
9: avt = car_client[i].route[j−1].arrive+C-Client(car_client[i].
 route[j−1].number, vt)

10: if(avt < lvt)
11: R1 = R1 + {vt}
Output: A new object X′1

ALGORITHM 2 Tail insertion

Input: X1, X2 (two objects), R1, R2 (two routes), s1, s2 (two segments)
1: t = rand()/R2
2: for i = t ← t + 1
3: s2 = s2+{vi}
4: for i = 0 ← |X1|
5: for j = 0 ← |R1|
6: if (car_client[i].route[j].number == vt)
7: vt= car_client[i].route[j].number
8: if(vt+1 satisfies the condition of inserting the back of vt)
9: avt+1 = avt + C_Client(vt,vt+1)
10: if(avt+1 < lvt+1)
11: R1 = R1 + {vt+1}
Output: A new object X′1

ALGORITHM 1 and ALGORITHM 2 introduce in detail that the process of the anterior or tail insertion. The

difference between two insertion methods is the insertion location such that ALGORITHM 1 is used for

inserting a node to the front of another node satisfying vehicle surplus and time windows as 6~9, and

ALGORITHM 2 is used for inserting a node to the back of another node satisfying above constraints as 6~9.

According to analysis, this method can not only in crease the probability of successful crossover, but also

reduce its computational efficiency because it forms a fragment of another chromosome by inserting a

single point using ALGORITHM 1 or ALGORITHM 2. ALGORITHM 3 describes the total process of crossover

operation. In this algorithm, the first step is to randomly two fragments s1 (s1⊆X1}) and s2 (s2⊆X2}); the

second one is to make the following operators: for the segment s1, the locations of nodes vk and vk+1 in a

route X2 are searched, if a selected node vk can insert the front of vk+1 by calling ALGORITHM 1, then insert

and form a segment s1 in X2; else, if vk+1 can be inserted the back of vk by calling ALGORITHM 2, then insert

and generate a segments 1 in X2. The theory analysis states that this method can only need to adjust the

inserted feasibility of a node, however traditional fragment trans-plantations can need to adjust the

feasibility of nodes and the span of time windows, therefore this operator is effective in generating

feasible solutions.

The proposition for the improved crossover. According to the definition of an improved crossover, the

paper analyses the following proposition.

Proposition 1: For crossover operator, if satisfy the rules u1(x1 +s1, s1, y1) →u′
1(x1+s2, s2, y1) and

u2(x2+s2, s2, y2) → u′
2(x2+s1, s1, y2), then all segments satisfying s1∈[ex2, ly2] and s2∈[ex1, ly1] in Time

Classifier can execute crossover operation.

Proof: Let R1 =x1s1y1 and R2 =x2s2y2 where R1 ⊆ Xi (i ∈[0,S − 1]) and R2 ⊆ Xj (j∈[0, S − 1] & i! = j),

s1 = {vm, ..., vm+l } and s2 = {vn, ..., vn+k}(m = n or m! = n). Under the premise of max-load of each vehicle,

for rule u1 (x1+s1, s1, y1) → u′
1 (x1+s2, s2, y1), if lm> an−1 or em+l−1 < dn+k+1, then the above rule can be

A Membrane-based Evolution Algorithm with Time Classifier for VRPTW

120

executed and s1 can be inserted to route R2 thus ensuring that arrive time of all clients in current route R1

is less than the latest service time; else, s1 can not be inserted to R2 because it can not satisfy time

windows of s2 in R2; for rule u2 (x2+s2, s2, y2) → u′
2 (x2 +s1, s1, y2), if ln > dm−1 or ln+k−1 < dm+l+1, then this

rule can execute and s2 can be inserted to route R1; else, s2 can not be inserted to R1, select a new segment

and continue. In summary, the premise of the exchange of s1 and s2 must satisfy time windows of the

exchanged route, if arrival time am of any node vm of the inserted route is larger than lm, then the rules can

not be used. □

ALGORITHM 3 Crossover Operation: Obtaining two objects

Input: X1, X2 (two objects), R1, R2 (two routes),
s1, s2 (two segments)
1: k = rand()/R1
2: t = rand()/R2
3: for i = k ← k + 1
4: s1 = s1 + {vi}
5: for i = t ← t + 1
6: s2 = s2 + {vi}
7: for i = 0 ← |X1|
8: if (vt can be inserted into the former of vt+1)
9: X′1 = Anterior_insertion(X1, s2);
10: else X′1 = Tail_insertion(X1, s1);
11: for i = 0 ← |X2|
12: if (vk can be inserted into the former of vk+1)
13: X′2 = Anterior_insertion(X2, s1);
14: else X′2 = Tail_insertion(X2, s1);
Output: A new object X′1, X

′
2

Rules for crossover mechanism. According to the previous introduction of the operator, we design the

following rule: where select two objects Xi and Xj (i, j∈[0, S−1]) where Xi = x1s1y1, Xj=x2s2y2, and execute

the following rules and obtain new objects X′
i and X′

j.

 r3 ≡ {(x1s1y1) ¬s2 → (x1s2y1)} (12)

 r4 ≡ {(x2s2y2) ¬s1 → (x2s1y2)} (13)

where Xi = {xi1, xi2, xi3, ..., xi(m−1), xim, xi(m+1), xi(m+2), ..., xi(m+k), ..., xiN}(s1={xim, xi(m+1)}), Xj={xj1, xj2, xj3, ...,

xjn, xj(n+1), ..., xj(n+p−1), xj(n+p), xj(n+p+1), ..., xj(n+p+t), xj(n+p+t+1), ..., x2N}(s2 ={xj(n+p), xj(n+p+1)}), s1(2) is inserted to an

object Xk (k∈{i, j}) by the form of the whole segment.

For formula (14), the example of crossover is as:

 r3 : {0 9 2 3 0 8 4 1 5 0 7 6 0} (8,4) → {0 9 6 2 3 0 8 4 1 5 0 7 0} (9,6) (14)

For formula (15), the example of crossover is as:

 r4 : {0 4 1 0 2 9 6 0 7 8 0 3 5 0} (9,6) → {0 1 0 2 9 6 0 7 8 4 0 3 5 0} (8,4) (15)

Formulas (14) and (15) show that new objects X′
i and X′j (i∈[0, S − 1]) are produced as ALGOGITHM 3: a

segment s1 (such as {8, 4}) is randomly selected from route Rk (Rk ⊆ Xi & k∈{1, 2}), a crossover

segment s2 ({9, 6}) is obtained as: (1) initially compute these vehicles R satisfied max-load such as

formula (5) where R = R + Rkl (Rkl ⊆ Xj), l∈[0, |K|] and kl ≤ k); (2) In time classifier, search the position

of a node of xi(n−1) (vn−1∈T)(8) and xl(j+2) (vj+2∈T)(4) and s0
2 (such as {8,4,1,5}) belonged to a chosen route

Rk obtained between the classed sets T1 and T2; (3) s1
2 (s1

2 ⊆ s0
2) is computed by adjusting whether

satisfies the minimum delay time window such as formula (8) and (9) of Rkl: if exist, then s2 = s1
2 is a

crossover segment of s1; else, go to (1), select; After two crossover segments, s1 and s2 are directly

exchanged and obtain new objects X′
i (0 → 9 → 6 → 2 → 3 → 0, 0 → 8 → 4 → 1 → 5 → 0, 0 → 7 →

0)(|K| = 3) and X′
j (0 → 1 → 0, 0 → 2 → 9 → 6 → 0, 0 → 7 → 8 → 4 → 0 → 3 → 5 →0)(|K| = 4).

Journal of Computers Vol. 29, No. 1, 2018

121

In summary, this method can pass some excellent segments of parents into the next generation in order

to make individuals evolve toward an optimal direction thus improving the precision for solutions on the

basis of multiple membranes.

ALGORITHM 4 Swap_po(car_client, vi)

Input: T, Xi(internal objects),vi(insert customer),U(a feasible set of

vi), R1(vi∈R1), d(vi ∈Td)
1: U ←
2: M ←
3: T ←
4: for i = 0 ← n do
5: if (car_client[i].remain > qi)
6: M ← M + Ri
7: end for
8: for i = d ← 24 do
9: T ← T + Ti
10: end for
11: for i = d ← 24 do

12: if Ti∈T
13: for j = R1 ← Rn do

14: if (Ri ∈M)
15: for k = 0 ← |Rj | do
16: vk ← car_client[j].route[k].number
17: if (ak−1 < lk)
18: ak ← ak−1 + sk−1 + t(k−1,k)
19: end if
20: if (ak < lk)
21: Fjk ← mini≤l<N {li − (Di +∑i≤p<l tp,p+1)}
22: end if
23: if (a′k+1 − ak+1 < Fjk)
24: U ← U + {vk}
25: end if
26: end for
27: end if
28: end for
29: end if
30: end for
Output: A feasible set

3.3.4 Rules in Cell 4: Mutation Operation

In subsection, the paper lists the pseudo code of IUOX in order to clearly describes this operation.

Because segment_point crossover need to a feasible set U storing all inserted position of a client in

executing IUOX, another function Swap_po such as ALGORITHM 4 is proposed.

Definition for mutation operator.

Definition 3: A node v1 is selected randomly from a route R1 obtained from objects Xi (Xi ⊆ G), and

then compute a swap set U by using a technique satisfying time windows, and randomly select another

node v2 (v2∈R2 & R2⊆Xi) from U, and then execute R1 = R1−{v1} and R2 = R2 − {v2}, R1 and R2 are

recomputed arrival time of each vi in these two routes after deleting nodes v1 and v2. Finally, execute two

operations R′
1 = R1 +{v2 } and R′

2 = R2 +{v1},obtaining a new object X′
i.

where i = 0, 1, 2, ..., S−1, let a route R1 denote R1 = (vk, ..., v1, ..., vlt), R1 = R1 − {v1} is that a node v1 is

deleted from current route R1, obtaining R1 = (vk,...,vlt), R
′
1 = R1 + {v2} is that a node v2 is respectively

reinserted to the position of v1 in route R1, obtaining R′
1 = (vk, ..., v2, ..., vlt), the operation of R2 is similar

to that of R1, vk is an initial node of R1 and lt is the length of a route

A Membrane-based Evolution Algorithm with Time Classifier for VRPTW

122

The pseudo codes for mutation operator. In executing mutation operation, we need to use function

swap_op to obtain an exchange-feasible set U of a node vk (k∈[1, N]). According to the mutated

characteristic of objects, the pseudo codes of computing U are as ALGORITHM 1.

ALGORITHM 5 mainly describes three parts: (1) sequences 4~7 record route set M satisfying max load of

vehicles; (2) sequences 8~10 computes a classed set T n of all clients according to their windows; (3)

sequences 11~30contained three loops: the first loop takes R1 (R1 ⊂ M)from 1 to 24, the second loop

takes T1 (T1 ⊂ Tn) from 1 to n, and the nested loop takes clients v1 from1 to car_client[Rt].route.size. For

the nested loop, firstly, adjust whether the latest service time lk is less than arrival time ak−1 of vk: if meet,

adjust whether increment of arrival time a′
k+1is less than delay time FRt: if less than, then add vk to set U;

else, discard and continue until all clients are explored, obtaining set U.

In the optimization phrase, we have used an improved mutation rule to increase the diversity of objects.

The single module of mutation operation be introduced as ALGORITHM 5.

ALGORITHM 5 Mutation: New solution generation

Input: Xi (an object), R1, R2 (two routes), v1,
v2, U (feasible sets)
1: F1 ←
2: a = rand()/|Xi|
3: v1 = rand()/|Ra|
4: U ← Swap_po(Xi,v1)
5: k = rand()/|U|
6: If (v2 satisfies the condition of inserting the
position of v1)
7: R1 = R1−v1
8: R2 = R2−v2
9: R′1 ← R1+{v2}
11: R′2← R2 + {v1}
12: dR1 = dR1 − dv1+dv2
13: dR2 = dR2 − dv2 + dv1
14: for i = 0 ← |R1| do
15: ai = ai−1+max(di−1, i, ei) + si
16: for i = 0 ← |R2 | do
17: aj = ai−1 + max(dj−1, i, ej) + sj
18: else v2 is selected from U
Output: A new object X′1

A LGORITHM 5 mainly introduces mutation process of objects. There are the following steps: (a) a node

v1 is randomly selected from an object Xi such as steps 2-3; (c) an exchanged set U of v1 is computed by

calling ALGORITHM 1 and randomly select a node v2(v2∈R2) from set U; (d) adjusting whether v2 satisfies

the condition of exchanging with v1: if meet, exchange v1 with v2 and update vehicle surplus and arrival

time of each node of two routes; else, return above steps until choosing a feasible node, obtaining a new

object X′
1;

Evolution rules of mutation operator in the cell. According to the above introduce of mutation

operation, the rule of executing is designed as the following:

 5 () (){() () | 1 2 1,2 }
m n n m
v ,v v ,v

r = x, y z,w m = , , ...,N; n = , ...,N
¬ ¬

→ (16)

where an object Xi = {xi1, xi2, ..., xi(m−1), xim, 0, ..., 0, xi(n−1), xin, ..., xiN, 0}, x = {xi1, xi2, xi3, ..., x i(k+1), ...,

xi(m−1), xim}(x ⊆ R1 & R1 ⊆ Xi & k < m), y = {xi(n−1), xin,..., xiN}(y ⊆ R2 & R1 ⊆ Xi)), z = {xi2,..., xi(m−1),

xin}, w = {xi(n−1), xim, ..., xiN}; vm is a client on xim, i = 1, 2, ..., N.

Executing a rule r5 needs to the following conditions: (1) the constraint of vehicle capacity:

node[vn].demand ≤ car_client[R1].remain; (2) the latest service time is greater than arrival time of

previous nodes of xim such as ln>node[vm−1].arrive_time; (3) the earliest time is less than the latest time

of a node behind xim, for example, en < node[vm+1].l_time; (4) the increment of arrival time △aopt (△aopt

Journal of Computers Vol. 29, No. 1, 2018

123

= a′′
m+1 − a′

m+1) is less than the minimum delay time Fnk such as △aopt ≤ Fnk where Fnk = minm≤l<N{lm−(Dm

+ ∑m≤p<l tp,p+1)}, a′′
m+1 is new arrival time of vm+1 after inserting vn, a

′
m+1 (a

′
m+1≤ a′′

m+1) is arrival time of vm+1

after deleting vm. In summary, under satisfying above constraints, this operation can increase the diversity

of population through gene mutation thus avoiding falling into local optimum and further improving the

quality of solutions.

3.3.5 Rules for the Copy in Cells 5 and 6: Elitism Selection Strategy

In this section, we mainly introduce the evolution mechanisms of cells 5 and 6, where cell 5 is used for

storing the global object and cell 6 is used for storing some excellent individuals. Because the operator of

cell 5 can only be stored, we mainly introduce the process of cell 6 as follows: In order to make some

excellent individuals copied directly into next generation, an improved elitism strategy is proposed. This

operator is to select an object by using a roulette method according to the following formula.

1

0

(1 () ())
S

i i- i i

i=

p = p + - fit X / fit X∑ (17)

0

() ()
i i

fit X = fit X p× (18)

where i∈[0, S−1]; pi is the probability of Xi (Xi ⊆ G) in the roulette, p0 (p0∈[0.85,0.99]) is a fair

competition coefficient, fit(Xi) is fitness computed by euclidean metric.

Formula (19) expresses a chromosome owned minimum fitness might be selected with greater

probability by using a roulette method instead of randomly selecting, which ensures that some optimal

chromosomes are pass on to next generation. In order to increase the differences of these individuals,

their fitness reduces using formula fit(Xi) ∗ (1−p0). For cell 6, l4 objects from cell 2 are selected using

sampling with replacement through formula (19) and (20) and send to cell 6. From this we can know, the

method can improve the precision of solutions by maintaining optimal individuals in the last generation.

All rules above studied express that they can operate the evolving direction of next generation in

searching thus playing a key role for the ordered and successful evolution of this algorithm and further

improving the efficiency for quickly searching a global optimum.

3.4 Communication Rules between Cells

Communication mechanisms enabling one cell to influence the behaviour of another one play a

fundamental role in multi-cellular organisms where cells have to be able to coordinate their own

behaviour for the benefit of the organism as a whole. The further work on rule set R(R = {r1, r2, ...,

rq}(|R|=q) where an evolving rule rt (t < q) is a matrix rule has been extended by considering four types of

design problems for communication as follows:

Type 1. Considering the generated conditions of objects, where each operation-produced membrane cell l

(l = 3,4,5) needs to a pre-computed a classed set T for accelerating the evolution of objects which is

obtained by calling time classifier. The transportation rule of this cell is designed as follows.

1 3 4 5

6 (| |) : () (,)
m m m m

r T T go→ (19)

where T = T+Ti, i = 0, 1, ..., 23; Ti= Ti + {vj}(vj ∈V), j = 1, 2, ..., N.

Type 2. Considering a family of objects, ωt
k,li= {Xt

k1, X
t
k2, ..., X

t
kli},where each membrane has designed

communication rules R which is obtained according to genetic mechanism. R is a rule set, of the form

2 3 4 5

7 (| |): () (,) , 2 6, 0 -1t t

k,i m k,i m m m
r ω ω go k i S→ ≤ ≤ ≤ ≤ (20)

where ωt
k,li stores an object set of the kth membrane at the tth iteration, R ={ωt

2,i → (ωt
2,i, go), ωt

3,i →

(ωt
3,i, go), ..., ωt

6,i→ (ωt
6,i, go)}, t∈[0, t_max].

Type 3. Considering the global update of object set, where a global optimum xt
gbest is updated by local

optimum xt
lbest which is computed by the rule of cell 1. This communication rule is as follows.

2 5

8
:() ()t t

lbest m lbest m
r x x ,go→ (21)

A Membrane-based Evolution Algorithm with Time Classifier for VRPTW

124

where xt
lbest= min{fit(X0), fit(X2), ..., fit(XS−1)}, t∈[0, t_max].

Type 4. Considering the output of optimum xt
gbest, where membrane system send global optimum to the

environment cell 0. The corresponding rule is designed as follows.

9
: ()t t

gbest gbestr x x ,out→ (22)

where xt
gbest= min{x0

lbest, x
1

lbest, ..., x
t
lbest}.

To take care of the priority relation we modify the first micro-step as follows:an object can be assigned

to a rule only if no object can be assigned to a rule of a higher priority. Hence we have a competition for

rule application and not a competition for choosing perhaps the same objects. In the paper, the

characteristics of evolution mechanism makes the rules owning the priority for types 1~4 such as r6 > r7,

r7 > r8, and r8> r9 where r7 contains different sub-rules r2_3, r2_4, r2_5 and r2_6 where four sub-rules have no

priority, which ensures that the whole system can orderly work and make objects evolve successfully.

3.5 Termination Condition and Output

In this subsection, the paper designs termination conditions of membrane computing and output domain.

The detailed introductions are as steps a. and b.

a. For MGA, in order to ensure the convergence of the algorithm, we design the following termination

criterions:

(a) The program has achieved termination states when xgbest = x0 where x0 is an optimum of database;

(b) The algorithm can stop when the difference ratio between xgbest and x0 remains unchanged in

multiple iterations where ratio = (xgbest − x0)/x0 %100.

The algorithm terminated immediately just meeting any one of these two conditions.

b. Cell 0 is specified as an output domain receiving the best result xgbest.

4 Application of MGA in VRPTW

According to the characteristics of the model of VRPTW and the designed rules of membrane algorithm,

every optimal route is expressed by an evolved object which is computed by membrane algorithm. The

detailed steps in solving VRPTW are as follows.

Step 1: Construct membrane system; Initialize population; t=0;

Step 2: In cell 1, all clients are classed using the rule of this cell and stored in a classed set T;

Step 3: In tth iteration, cell 2 produces S objects by using the computational process of this cell, and

compute xlbest and xgbest.

Step 4: Cell 3 receives l1 objects of cell 2 selected by formula (19) using the rule r7, and then execute

rules r1 and r2, obtaining l1 crossover objects under the action of r6.

Step 5: Cell 4 receives l2 objects of cell 2 using the rule r7, and execute rules r3 and r4, obtaining l2

crossover objects under the rule r6.

Step 6: Cell 5 receives l3 objects using the rule r7, and execute rule r5, obtaining l3 objects under the

constraints of the rule r6.

Step 7: Cell 6 receives l4 objects selected by formulas (19)-(20) by using l1, obtaining l 4 optimal

objects under the rule r6.

Step 8: S produced objects of cell 2 are transported to outside environment, and cell 2 receives S new

objects from cell 3~6 again and update xgbest by using r8, t++.

Step 9: If t < t_max, then output xgbest using r9; else, turn Step 3.

5 Experiments and Results

We coded the above procedure using Visual C++, and ran the program 30times on different randomly

generated seeds for each data set. The data sets chosen were Solomon’s 50 and 100 customer problems,

which is the most population test bed for VRPTW created by Solomon in 1987. These are 6 types of

problems,C1, R1, RC1, C2, R2 and RC1. “C” problems are clustered problems, “R” problems are

randomly generated and ’RC’ problems are a combination of the two. The problems numbered “1” are

based on narrow time windows and problems numbered “2” are based on wide time windows. The

Journal of Computers Vol. 29, No. 1, 2018

125

computer used had 2.30GHzprocessors. For experimental results, Table 1 lists the range of parameters

tested and its values; Table 2 lists the parameter values of the algorithms to be compared; Table 3 list the

compared results of 100 clients; Table 4 gives the compared results between MGA and other heuristics.

The detailed design is described as follows.

Table 1. Nomenclature for parameters of membrane algorithm and differential evolution values used for

both the special and stochastic optimization trials

Parameter optimal values
Stage

Parameter

name

Tested

name C-50 R-50 RC50 C100 R100 RC100

Population size τ [50;2500] 1000 1000 1000 500 500 500

Iteration times σ0 [100;1000] 1500 1500 1500 1000 1000 1000

The classed sets c τ [0;24] 24 24 24 24 24 24

External membranes [0;7] 6 6 6 6 6 6
a Cell 3 cγ [0;0.6] 750 750 750 228 228 228
b Cell 4 cα [0;0.2] 50 50 50 122 122 122
c Cell 5 cβ [0;0.15] 150 150 150 125 125 125
d Cell 6 cκ [0;0.05] 50 50 50 25 25 25

Fair weight coefficient fφ [0;0.99] 0.90 0.90 0.90 0.99 0.99 0.99

Running times rρ [0;100] 50 50 50 30 30 30

Table 2. Tabu search, genetic algorithm with simulated annealing mechanism and particle swarm

optimization and differential evolution parameters used for both the special and stochastic

optimization trials

Parameter Value

Initial Tabu list length (ρ) 13

Candidate list length (Max_list) 23

Maximum number of iterations (σ1) 500

Number of population (τ) 500

Maximum number of iterations (σ2) 1000

Crossover probability-extraction customers (prob PC) 0.70

Mutation probability-exchange policy (prob PM) 0.25

Cloning probability-copy strategy (prob sel) 0.05

Annealing cooling iterations (T = 20) 3.0

Number of particles (Num) 500

Maximum number of iterations (σ3) 1000

Particle inertia (c1) 2.05

Particle best inertia (c2) 2.05

Inertia weight coefficient (wmax) -maximum value 0.9

Inertia weight coefficient (wmin) -minimum value 0.4

Table 3. The precision comparison for three algorithms under consideration for the proposed algorithm

MGA, standard database, and traditional GA specified in the text

Min Vehicles Average Best known Min
Instances

MGA GA n MGA GA n Optimum Dev%

C101 866 3731.12 11 866 4036.90 10 827.3 4.67

C102 1751 3386.32 12 1924.4 3459.10 10 827.3 111.65

C103 1932 3521.07 14 2212.6 3698.27 10 826.3 133.81

C104 1756 3613.07 15 2119.2 3780.31 10 822.9 113.39

C105 858 3292.40 10 884.8 3387.79 10 827.3 3.71

C201 1363 3013.13 10 1553 3103.10 3 589.1 131.16

C202 1911 3413.63 10 1911 3510.30 3 589.1 224.39

C203 2117 3521.36 11 2359.6 3591.41 3 588.7 259.6

C205 1452 2828.34 10 1578.2 3001.14 3 586.4 147.6

C206 1749 2939.88 10 1929.2 3117.05 3 586.0 198.46

C207 1851 3175.84 10 2077.8 3232.57 3 585.8 215.97

C208 1907 2978.21 10 2094.2 3130.34 3 586.4 252.2

A Membrane-based Evolution Algorithm with Time Classifier for VRPTW

126

Table 3. The precision comparison for three algorithms under consideration for the proposed algorithm

MGA, standard database, and traditional GA specified in the text (continu)

Min Vehicles Average Best known Min
Instances

MGA GA n MGA GA n Optimum Dev%

R101 1832 3341.71 20 1860 3987.41 20 1637.7 11.86

R102 1681 3287.19 18 1729.6 3758.19 18 1466.6 14.61

R103 1413 3103.31 15 1518.67 3151.90 14 1208.7 16.90

R104 1359 2896.46 14 1371.00 3125.61 11 971.5 39.88

R105 1548 2970.08 15 1569.4 3182.57 - - -

R106 1483 2904.71 14 1510 3020.57 13 1234.6 20.12

RC101 1844 4103.41 16 1870.8 4209.17 15 1619.8 13.84

RC102 1651 4038.25 14 1684.2 4137.06 14 1457.4 13.28

RC103 1589 3845.03 13 1637.4 3945.17 11 1258.0 26.3

RC104 1424 3590.48 13 1541.6 3658.93 - - -

RC105 1806 3920.08 16 1847.6 4152.23 15 1513.7 19.31

RC107 1447 3475.34 12 1553.2 3706.79 12 1207.8 19.80

RC108 1570 4985.97 14 1642 5028.14 11 1114.2 40.90

RC201 2211 2431.67 9 2234.8 2510.01 9 1261.8 75.22

RC202 2203 2985.04 10 2284.6 3128.69 8 1092.3 101.68

RC208 2040 3115.86 10 2101.6 3261.74 - - -

Average 1664.78 3371.74 12.71 9.68 912.58 78.93

Table 4. Performance comparisons for the distance computed by the MGA, Tabu search algorithm

(Tabu), genetic algorithm with simulated annealing mechanism (GSAG) and improved particle

swarm optimization algorithm (IPSO)

MGA Tabu GSAG IPSO
Instances

Distance Distance Dev% Distance Dev% Distance Dev%

C101 866 3643.32 320.71 3868.65 346.73 3812.22 340.21

C105 858 3759.63 338.19 2949.69 243.79 3845.36 348.18

C201 1363 2612.29 91.66 3643.63 167.32 3579.73 162.64

C205 1452 2851.42 96.38 3506.72 141.51 3553.40 144.72

C208 1907 2889.43 51.52 3638.57 90.80 3321.84 74.19

R101 1832 3420.68 86.72 3635.01 98.42 3661.92 99.89

R105 1548 3684.04 137.99 3569.93 130.62 3455.26 123.21

R201 1774 2253.78 27.05 3301.36 86.10 3188.65 79.74

RC101 1844 4352.64 136.04 4565.76 147.60 4773.66 158.88

RC105 1806 4369.73 141.96 4371.44 142.05 4888.14 170.66

RC108 1570 3988.22 154.03 4269.97 171.97 4672.68 197.62

RC201 2211 4255.40 92.46 4126.67 86.64 2222.06 0.50

RC208 2040 3626.45 77.77 4282.75 109.94 4222.38 106.98

Average 1620.85 134.81 151.04 3784.41 154.42

5.1 Results for Parameters Tuning

The following are the parameters of the MGA which were different from GA:

a. Population Generation: Random.

b. The total number of the objects(Population Size), such that:

 ‧The number of objects in cell3 is: cγ.

 ‧The number of objects in cell4 is: cα.

 ‧The number of objects in cell5 is: cβ.

 ‧The number of objects in cell6 is: cκ.

c. Iteration times, where the number of iterations for membranes is the same.

All of the parameters used in MGA are the same as for 50 customers and 100customers, including two

crossover rates, mutation rate and their probabilities.When we finish a state transition and get an

optimized chromosome from the MGA, cell 2 accepts all objects of the above four membranes and then

sends them to each membrane under the premise of the above parameters after selecting by using the

Journal of Computers Vol. 29, No. 1, 2018

127

roulette method. However, in compared algorithm, there is only one crossover operation, mutation and

cloning. And for its parameters, they are obtained by using the parameter results of GA in literature [59]

such that population size is 1000, iteration size is 1500, crossover rate is 0.80, mutation rate is 0.15 and

copying rate is 0.05, all operations of traditional algorithm are doing in the same conditions as the above

parameters. The comparison between two algorithms are done based on the above parameters. In the

experimental phase, multiple combinations of parameters shown in Table 1 and Table 2 has been verified.

For MGA, the testing ranges of parameters, as listed in the above tables, have been set with necessary

margin and thoroughly analyzed using different instances.

Table 2 summarizes the parameters used for the tabu search algorithm, genetic algorithm with

annealing mechanism and particle swarm optimization. It is noted that these parameters are obtained by

constantly testing all algorithms of Table 4.

5.2 The Comparison of the Precision with Other Algorithms

In order to compare the precision of MGA with other algorithms using the same problems, we design a

series of the experiments. For the test of the in-stances, the paper divided into two types from the

windows. The results are shown in table 3. For this table, the first column is the problem name, and the

column 2 is the value of the best-obtained solution (MGA), along with the results (column 3) of the

tradition of the heuristic, that first computed these results. In column 4, n stands for vehicle number; The

column 5 and column 6, the comparison of the average between two algorithms. In columns 7-8, the

tested vehicle number and the obtained optimum of standard database. In the last column we have shown

the values attained from the form of Dev(%) = (Min MGA − Min GA)/Min MGA × 100%. The

experimental results are listed as tables 4 and 5.

The experimental results of Table 3 shows that MGA has attained better solutions compared with

traditional algorithm shown in column 2. For the best solutions, this is because the function of

membranes and node classifier plays a key role for improving the performance of the algorithm, where

the membranes expand the diversity of population and the communication between membranes makes it

evolving towards a optimal direction thus making the algorithm obtaining some better objects. In column

4, we list the required the number of vehicles, the comparative results shows that our algorithm can

service all customers by using a very lower the number of vehicles that have almost equaled to the best

values besides these instances C201 C208, for better results, this is because this improved crossover

operator obtains some feasible solutions by constantly inserting into a single node thus ensuring that the

vehicles reduces in the process of computing; for worse results, this is because the limitation of time

windows leads to the high vehicles in solving VRPTW. In the last column,we give a deviation ratio of the

minimum of MGA and standard database. For the computational values, we can know that, compared

with the best known of standard database, in twenty-eight instances, the ratios of two instances are

controlled within 10 percentage, those of five instances are within 15 percent-age, and that of five

instances can also be in 20%, other instances are controlled different percentage, these results shows that

the improved strategies plays a key role in improving the performance of the algorithm. According to

comprehensive analysis, the performance of the algorithm can get improved for solving VRPTW.

5.3 Performance Comparisons for the Distance Optimization Using the MGA and the Heuristic

Algorithms

In order to verify the performance of membrane algorithm, the paper gives different comparisons with

other algorithms in Table 4. The table mainly compares the precision of solutions of MGA, Tabu, GSAG

and IPSO algorithms. For four algorithms, their running parameters are listed as Table 2. Each algorithm

is executed under the conditions of tuning the best status. According to the solving method of four

algorithms, the experimental results of these heuristics are listed as Table 4.

It is apparent from Table 4 that the MGA algorithm consistently outperform the algorithms that uses

tabu search algorithm, GSGA and IPSO, with an average decrease in present value of 134.81%, 151.04%

and 115.42%, respectively. For better solutions of membrane algorithm, this is because we introduce

membrane structure in order to make the algorithm search towards different space thus increasing the

diversity of population and further enhancing the precision of solutions, and an improved roulette

mechanism to make the algorithm evolve towards the direction of the optimal solutions thus further

improving the precision of solutions; In order to make the algorithm enhance the successful probability

A Membrane-based Evolution Algorithm with Time Classifier for VRPTW

128

of generating feasible objects, the paper introduces an improve crossover opera-tor, according to the

computational results, these solutions can be accepted inthe case of improving this crossover operator. In

summary, these different improvements can really improve the quality of solutions in a certain extent,

which shows the effectiveness of designing through membrane algorithm.

6 Conclusions and Remarks

Considering the efficiency about NP-hard optimization problems, a recently proposed membrane

algorithm is used to try to solve this problem which is an optimization algorithm that genetic mechanism

is embedded in membrane computing based on bionic cell. In the algorithm, we introduce a node

classifier mechanism in a cell in order to improve the computational efficiency; we introduce an

improved crossover operator in a cell so as to increase the successful probability of crossover operator;

we introduce a mutation operator in a cell to expand the search space; The communication rule between

cells are designed in order to exchange information each other. The experimental results show that the

algorithm has some advantages in solving the optimization problems compared with other literature or

traditional one.

The paper incorporates the character of cell-like P systems and genetic operation to solve the VRPTW

problem. There are many kinds of membrane systems have been proposed and investigated, which can

also been considered to solve the VRPTW problem. Such as for the character of numerical, numerical P

systems [60-62] maybe have the potential convenience in optimizing the VRPTW.

Acknowledgments

The work was supported by National Natural Science Foundation of China (61179032, 61502012), the

Special Scientific Research Fund of Food Public Welfare Profession of China (201513004-3), the

Guiding Scientific Research Project of Hubei Provincial Education Department (2017078), the

Humanities and Social Sciences Fund Project of Hubei Provincial Education Department (17Y071).

References

[1] J. Lenstra, K.A. Rinnooy, Complexity of vehicle routing scheduling problems, Networks 11(1981) 221-227.

[2] A. Haghani, S. Jung, A dynamic vehicle routing problem with time-dependent travel times, Computers & Operations

Research 32(11)(2005) 2959-2986.

[3] A. Kok, E. Hans, J. Schutten, Vehicle routing under time-dependent travel times: the impact of congestion avoidance,

Computers & Operations Research 39(5)(2012) 910-918.

[4] J. Nalepa, M. Blocho, Adaptive memetic algorithm for minimizing distance inthe vehicle routing problem with time

windows, Applied Soft Computing 20(6)(2016) 2309-2327.

[5] B. Melián-Batista, A. Santiago, F. AngelBello, A bi-objective vehicle routing problem with time windows: a real case in

tenerife, Applied Soft Computing 17(2014) 140-152.

[6] D. Tas, N. Dellaert, T. Van, The time-dependent vehicle routing problem with soft time windows and stochastic travel times,

Transportation Research PartC: Emerging Technologies 48(2014) 66-83.

[7] H. Florent, F. Dominique, G. Rodolphe, N. Olivier, Branch-and-price algorithms for the solution of the multi-trip vehicle

routing problem with time windows, European Journal of Operational Research 2(2016) 551-559.

[8] L. Sumaiya, M. Kaykobad, M. Rahman, Solving the multi-objective vehicle routing problem with soft time windows with

the help of bees, Swarm and Evolutionary Computation 24(2015) 50-64.

[9] J. Brito, F. Martínez, J. Moreno, J. Verdegay, An ACO Hybrid metaheuristic forClose open vehicle routing problems with

Journal of Computers Vol. 29, No. 1, 2018

129

time windows and fuzzy constraints, Applied Soft Computing 32 (2015) 154-163.

[10] K. Ghoseiri, S. Ghannadpour, A hybrid genetic algorithm for multi-depot homogenous locomotive assignment with time

windows, Applied Soft Computing 10(1)(2010) 53-65.

[11] Z. Ursani, D. Essam, D. Cornforth, R. Stocker, Localized genetic algorithm for vehicle routing problem with time windows,

Applied Soft Computing 11(8)(2011) 5375-5390.

[12] Gh. Păun, Computing with membranes, Journal of Computer System Science 61(1)(2000) 108-143.

[13] C. Martín-Vide, Gh. Păun, J. Pazos, A. RodríGuez-Patón, Tissue P systems, Theoretical Computer Science 296(2)(2003)

295-326.

[14] M. Lonescu, Gh. Păun, T. Yokomori, Spiking neural P systems, Fundamenta Informaticae 71(2-3)(2006) 279-308.

[15] M.J. Pérez-Jiménez, A. Núnez, Solving The subset-sum problem by P systems with active membranes, New Generation

Computing 23(4)(2005) 339-356.

[16] C. Ferretti, G. Mauri, Gh. Păun, On three variants of P systems with string-objects, in: Proc. Pre-Proceedings of Workshop

on Membrane Computing, 2001.

[17] X. Zhang, L. Pan, A. Păun, On universality of Axon P systems, IEEE Transactions on Neural Networks and Learning

Systems 26(11)(2015) 2816-2829.

[18] F. Cabarle, H. Adorna, M.J. Pérez-Jiménez, T. Song, Spiking neural P systems with structural plasticity, Neural Computing

and Applications 26(8)(2015) 1905-1917.

[19] T. Song, L. Pan, Spiking neural P systems with request rules, Neurocomputing 193(2016) 193-200.

[20] L. Pan, Gh. Păun, Spiking neural P systems with anti-spikes, International Journal of Computers Communications &

Control 4(3)(2009) 273-282.

[21] T. Song, L. Pan, J. Wang, I. Venkat, K. Subramanian, R. Abdullah, Normal forms of spiking neural P systems with anti-

spikes, IEEE Transactions on NanoBio-science 11(4)(2012) 352-359.

[22] X. Zeng, L. Xu, X. Liu, L. Pan, On languages generated by spiking neural P systems with weights, Information Sciences,

278(2014) 423-433.

[23] X. Zeng, X. Zhang, T. Song, L. Pan, Spiking neural P systems with thresholds, Neural computation, 26(7)(2014) 1340-

1361.

[24] T. Song, L. Pan, Gh. Păun, spiking neural P systems with rules on synapses, Theoretical Computer Science 529(2014) 82-

95.

[25] X. Zhang, X. Zeng, L. Pan, Weighted spiking neural P systems with rules on synapses, Fundamenta Informaticae

134(1)(2014) 201-218.

[26] T. Song, X. Liu, Y. Zhao, X. Zhang, Spiking neural P systems with white hole neurons, IEEE Trans on Nanobioscience

15(7)(2016) 666-673. DOI: 10.1109/TNB.2016.2598879

[27] T. Song, P. Zheng, D. Wong, X. Wang, Design of logic gates using spiking neural P systems with homoge-neous neurons

and astrocytes-like control, Information Sciences 372(2016) 380-391.

[28] T. Wu, Z. Zhang, Gh. Păun, L. Pan, Cell-like spiking neural P systems, Theoretical Computer Science 623(2016) 180-189.

[29] G. Ciobanu, L. Pan, Gh. Păun, M.J. Pérez-Jiménez, P systems with minimal parallelism, Theoretical Computer Science

378(1)(2007) 117-130.

[30] B. Song, L. Pan, Computational efficiency and universality of timed P systems with active membranes, Theoretical

Computer Science 567(2015) 74-86.

A Membrane-based Evolution Algorithm with Time Classifier for VRPTW

130

[31] B. Song, M.J. Pérez-Jiménez, L. Pan, An efficient time-free solution to sat problem by P systems with pro-teins on

membranes. Journal of Computer and System Sciences 82(2016) 1090-1099.

[32] T. Song, L. Pan, Gh. Păun, Asynchronous spiking neural P systems with local synchronization, Information Sciences

219(2013) 197-207.

[33] B. Song, L. Pan, Flat maximal parallelism in P systems with promoters, Theoretical Computer Science 623(2016) 83-91.

[34] T. Song, L. Pan, K. Jiang, B. Song, W. Chen, Normal forms for some classes of sequential spiking neural P systems, IEEE

Transactions on NanoBioscience 12(3)(2013) 255-264.

[35] T. Song, L. Pan, Spiking neural P systems with request rules, Neurocomputing 193(2016) 193-200.

[36] B. Song, L. Pan, The computational power of tissue-like P systems with promoters, Theoretical Computer Science

641(2016) 43-52.

[37] B. Song, L. Pan, M.J. Pérez-Jiménez, Tissue P systems with protein on cells, Fundamenta Informaticae 144(2016) 77-107.

[38] T. Song, P. Zheng, D. Wong, X. Wang, Design of logic gates using spiking neural P systems with homogeneous neurons

and astrocytes-like control, Information Sciences 372(2016) 380-391.

[39] B. Song, M.J. Pérez-Jiménez, L. Pan, Efficient solutions to hard computational problems by P systems with sym-

port/antiport rules and membrane division, BioSystems 130(2015) 51-58.

[40] B. Song, M.J. Pérez-Jiménez, L. Pan, Computational efficiency and universality of timed P systems with membrane

creation, Applied Soft Computing 19(11)(2015) 3043-3053.

[41] B. Song, M.J. Pérez-Jiménez, L. Pan, An efficient time-free solution to sat problem by P systems with proteins on

membranes, Journal of Computer and System Sciences 82(2016) 1090-1099.

[42] Y. Niu, I. Venkat, A. Khader, K. Subramanian, Uniform solution to common algorithmic problem by P systems working in

the minimally parallel mode, Fundamenta Informaticae 136(3)(2015) 285-296.

[43] Y. Niu, J. Xiao, Y. Jiang, Solving 3-coloring problem with time-free tissue P systems, Chinese Journal of Electronics

25(3)(2016) 407-412.

[44] G. Ciobanu, Gh. Păun, M.J. Pérez-Jiménez (eds.), Applications of Membrane Computing, Springer, Berlin, 2006.

[45] G. Zhang, J. Cheng, T. Wang, X. Wang, J. Zhu, Membrane Computing: Theory and Applications, Science Press, Beijing,

China, 2015.

[46] D. Díaz-Pernil, A. Berciano, F. Peña-Cantillana, M. Gutiérrez-Naranjo, Segmenting images with gradient-based edge

detection using membrane computing, Pattern Recognition Letters 34(8)(2013) 846-855.

[47] D. Díaz-Pernil, F. Peña-Cantillana, M. Gutiérrez-Naranjo, A parallel algorithm for skeletonizing images by using spiking

neural P systems, Neurocomputing 115(2013) 81-91.

[48] X. Liu, Z. Li, J. Liu, L. Liu, X. Zeng, Implementation of arithmetic operations with time-free spiking neural P systems,

IEEE Transactions on NanoBioscience 14(6)(2015) 617-624.

[49] G. Zhang, H. Rong, Z. Ou, M.J. Pérez-Jiménez, M. Gheorghe, Automatic design of deterministic and non-halting

membrane systems by tuning syntactical ingredients, IEEE Transactions on NanoBioscience 13(3)(2014) 363-371.

[50] H. Peng, J. Wang, M.J. Pérez-Jiménez, H. Wang, J. Shao, T. Wang, Fuzzy reasoning spiking neural P system for fault

diagnosis, Information Sciences 235(2013) 106-116.

[51] J. Wang, P. Shi, H. Peng, Membrane computing model for IIR filter design, Information Sciences 329(2016) 164-176.

[52] T. Wang, G. Zhang, J. Zhao, Z. He, J. Wang, M.J. Pérez-Jiménez, Fault diagnosis of electric power systems based on fuzzy

reasoning spiking neural P systems, IEEE Transactions on Power Systems 30(3)(2015) 1182-1194.

Journal of Computers Vol. 29, No. 1, 2018

131

[53] G. Zhang, J. Cheng, M. Gheorghe, A membrane-inspired approximate algorithm for traveling salesman problems,

Romanian Journal of Information Science and Technology 14(1)(2011) 3-19.

[54] Y. Niu, S. Wang, J. He, J. Xiao, A novel membrane algorithm for capacitated vehicle routing problem, Applied Soft

Computing 19(2)(2015) 471-482.

[55] J. He, J. Xiao, X. Liu, T. Wu, T. Song, A novel membrane-inspired algorithm for optimizing solid waste transportation,

Optik- International Journal for Light and Electron Optics 126(23)(2015) 3883-3888.

[56] G. Zhang, C. Liu, M. Gheorghe, Diversity and convergence analysis of membrane algorithm, in: Proc. Bio-Inspired

Computing: Theories and Applications (BIC-TA), 2010 IEEE Fifth International Conference, 2010.

[57] X. Zhang, B. Wang, Z. Ding, Implementation of membrane algorithms on GPU, Journal of Applied Mathematics (2014),

DOI: 10.1155/2014.307617

[58] T. Nishida, An application of P-system: a new algorithm for NP-complete optimization problems, Cybernetics and

Informatics 5(2004) 109-112.

[59] Y. Duan, K. Zhou, W. Dong, Improved genetic algorithm to optimization pattern in traffic network layout problem,

Communications in Computer and Information Science 562(2015) 138-149.

[60] Z. Zhang, L. Pan, Numerical P systems with thresholds, International Journal of Computers Communications & Control,

11(2)(2016) 292-304.

[61] Z. Zhang, T. Wu, L. Pan, Gh. Păun, On string languages generated by sequential numerical P systems, Fun-damenta

Informaticae 145(4)(2016) 485-509.

[62] Z. Zhang, T. Wu, A. Păun, L. Pan, Numerical P systems with migrating variables, Theoretical Computer Science. 641(2016)

85-108.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

