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Abstract. The primary display technology utilized by today's printers is halftoning image, and 

among the various image halftoning methods that are currently being used, Direct Binary Search 

(DBS) is the method that produces the best image quality. However, one disadvantage of this 

method is the requirement that images be constantly iterated, as this places many limitations on 

the method with respect to processing speed. In view of this issue, this work proposes an 

effective hardware architecture design for the DBS method that would allow for image quality to 

be maintained and for real-time processing to be carried out. The study proposes the application 

of the line buffer method to the Very Large Scale Integration (VLSI) process, so as to reduce 

memory usage, enable the use of a parallel processing architecture. Thus, increase the speed of 

the process. As results, the DBS halftoning image method was used on a gray image, and it was 

found that, with respect to the image, the number of iterations used and the halftone image 

values generated by the hardware that was updated based on the visual model error table were 

consistent with the results generated by software algorithms. 

Keywords:  direct binary search, halftoning image, parallel processing architecture, very large 

scale integration 

1 Introduction 

A three-dimensional (3D) video sequence is composed of two or more videos captured by diverse view 

cameras Image digitization has led to constant advancements in multimedia storage and transmission. 

The display content of digital images is formed by millions of pixels, and the most common types of 

images used are gray and color images. Gray images consist only of data distinguished by varying levels 

of brightness and darkness, with the data being able to be quantified into 256 different continuous shades 

of gray, which means that 8 bits are required for a single pixel. Color images are formed from the colors 

red, green, and blue (RGB), with each color being able to be quantified into 256 shades, which means 

that 24 bits are required for a single color pixel. The multi-tone approach is currently used to render 

images because displays are now capable of displaying color depth. However, due to previous limitations 

imposed by hardware output devices and the characteristics associated with the display of a continuous 

color image, research into image halftoning techniques was conducted to explore ways to optimize the 

use of low-level hardware and equipment [1]. In halftone images, every pixel can either be black (0) or 

white (1) and thus requires only 1 bit for storage. In contrast, a binary image is binarized using threshold 

values, as shown in Fig. 1(a). In image halftoning, the difference in dot density is used to create gray 

images, and the dot density of a continuous gray image is higher when its tone is darker, and lower when 

its tone is lighter, and as a result, halftone images can lead to a significant reduction in data storage and 

transmission requirements, and express the characteristics of continuous gray images, as shown in Fig. 

1(b). 

Among the various image halftoning methods that are currently being used, Direct Binary Search, 
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called DBS, is the method that produces the best image quality. However, its algorithm requires an 

inputted image to be constantly iterated, which makes the method the slowest in terms of computing 

speed [2]. Previous work on the DBS method has mostly focused on raising image quality, and no studies 

have been conducted on VLSI hardware implementation with the aim of increasing the method's 

computing speed. In view of this issue, this study aimed to utilize an integrated circuit design for the 

DBS method, so as to allow for image quality to be maintained and to resolve the computing speed issue. 

The DBS method was first proposed by Allebach et al. in a 1992 study [1] that focused on examining 

DBS generated halftone images as target images or comparative targets. Despite the study's high research 

value, its commercial value was limited. Therefore, this work proposes a hardware approach to reduce 

internal memory usage (which allows for hardware sizes to be reduced) and increase computing speed, 

and thereby raise the applicability of the DBS method in the market. 

  

(a) Binarized image (b) Halftone image 

Fig. 1. Binary image representation 

The rest of this paper is organized as follows. Section 2 introduces the human visual system model and 

DBS method. Section 3 discussing software and hardware implementation and providing a description of 

the proposed VLSI architecture, the Section 4 detailing the study's hardware design simulation and 

verification,. Finally, Section 5 concludes this innovative method. 

2 Direct Binary Search 

2.1 Traditional Direct Binary Search Methods 

The Human Visual System (HVS) model plays an important role as the generated halftone images have 

to emulate the continuity of gray images [3]. The human eye is more sensitive to low-frequency images 

and less likely to detect high-frequency ones, acting like a low-pass filter with a cut-off frequency that 

decreases when the observation distance increases [7]. By taking advantage of these properties, a model 

suitable for the human eye can be designed, and the HVS model can serve as objective basis for judging 

image quality [4]. 

A gray image is defined as f [m,n] while a halftone image is defined as g[m,n]. The original halftone 

image g[m,n] can be a random noise binary image and the HVS model can be defined as ( ),p x y� , as 

shown in Equs. (1)-(2). The objective of the DBS method is to select two images that look as close as 

possible to each other to the human eye, i.e. ( ) ( ), ,f x y g x y≈
�

� . The error detected by the human eye is 

expressed in Equ. (3). Traditional DBS methods define E as the sum of squared differences and, as 

shown in Equ. (4), refer to it as the cost function. 

As shown in Fig. 2, every pixel of a halftone image that is being iterated will be toggled and swapped, 

and therefore, 10 states (including the original state) must be considered for every pixel. As shown in 

Equ. (5), the cost functions are toggled or swapped, in the hope that the smallest cost function can be 

selected and updated, thus allowing the updated halftone image to more closely resemble the grayscale 

image. An iteration is complete after every pixel of an image has been considered, and the iteration 

process is repeated until the cost functions no longer decrease. 
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Fig. 2. Diagram showing toggling and swapping 
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2.2 Quick Direct Binary Search 

Some works [5-6] have proposed a simplified comparison method, in which the error between �( , )f x y  

and ( )yxg ,
~  can be redefined, as shown in Equ. (6). The error between the original image and the 

halftone image is defined as e[m,n], as shown in Equ. (7). The visual model error table is defined as 

pe
c ~~

[m,n]. This table serves as the autocorrelation of the HVS model ( )yxp ,
~  that masks the results 

obtained after 
pp

c ~~ [m,n] and e[m,n] are computed, as shown in Equ. (8). 

 [ ] [ ]∑=
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nmcnme

,

~~ ,,ε

 

(6) 

 

[ ] [ ] [ ]nmfnmgnme ,,, −=

 (7) 

 [ ] [ ] [ ]nmcnmenmc
pppe

,,, ~~~~ ∗∗=

 

(8) 

The utilization of the output device’s output discrete points by the autocorrelation function of the HVS 

model ( )yxp ,
~  is defined as 

pp
c ~~ [m,n]. 

pp
c ~~ [m,n] is treated as the mask for HVS model. In Equ. (9), the 

original 
pp

c ~~ (x,y), and the 
pp

c ~~ [m,n] that is derived is shown in Equ. (10), in which R and D are the 

output device resolution and human eye observation distance, respectively. 
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For the quick DBS method, each pixel must be toggled and swapped for the 10 states, and the updated 

error is then simplified, as shown in Equ. (11). If 0<Δε  after toggling or swapping is carried out, this 

means that the cost function has decreased, indicating that the halftone image must be corrected, in which 

case toggling and swapping are defined as follows: 
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The 13×13 mask is defined as 
pp

c ~~ [m,n]. For 
pe

c ~~ [m,n], a table equivalent in size to the original 

image is created in practice. A table lookup-like method is used to compute εΔ as the error e[m,n] will 

change when whenever the cost function decreases. Therefore, the 
pe

c ~~ [m,n] table has to be constantly 

updated during the process, and the update method is shown in Equ. (12). The quick DBS process 

consists of two stages, as shown in Fig. 3. 

 

(a) create a 
pe

c ~~ [m,n] table 

 

(b) iteration process 2 the process of depth intramode selection 

Fig. 3. Quick DBS process 
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3 Proposed VLSI Architecture 

3.1 Software Design 

The implementation of the DBS method proposed in this work is carried out primarily through a 

hardware architecture design. The main function of the software algorithm is to verify whether the 

hardware results are consistent with the software results. Software implementation is carried out using 

Borland's C++ Builder (BCB) software, and the design is created primarily through the use of hardware 

computing methods. With respect to hardware design, floating-point numbers are dealt with by 

converting the HVS model's autocorrelation masks to integers. As halftone pixels only carry values 

between 0 and 255 (no intermediate values), approximation cannot be used to compare the hardware and 

software output values. Therefore, the same simplification process must be carried out for the software in 

order to verify whether the output data is consistent. 

3.2 VLSI Architecture Design 

Bit precision. The DBS method's computing process utilizes the HVS autocorrelation masks that are 

derived. The size of the masks is 13×13 [3], with the smallest value being 2.67471653922E-6 and the 

largest value being 0.042274635646005, and therefore, floating point numbers have to be computed. 

However, hardware computing can only handle 0 and 1 and not floating point numbers, and thus, this 

work proposes the level-shift method as a way to address this issue and to replace the hardware multiplier 

and thereby reduce hardware costs. Although there will be deviations in the results obtained using this 

approach when compared to the original results, these deviations may be ignored when there is a 

sufficient number of shifted bits. Furthermore, when too many bits are shifted, circuit area will increase 

alongside precision, hence data testing has to be carried out to determine the appropriate quantity of bits 

to shift and the optimal bit length [8]. After testing is carried out and hardware cost and precision issues 

are considered, it was decided that a 12 bit shift precision level will be implemented for the HVS 

autocorrelation masks examined in this study, as shown in Fig. 4. Additionally, 70 pixels will still carry a 

value of 0 after the autocorrelation mask values are shifted, thus computation loads can be reduced. 

  

(a) 10 bits (b) 11 bits (c) 12 bits (d) 13 bits 

Fig. 4. Hardware architecture for HVS mask bit shifting 

Hardware architecture. The DBS method is implemented in this study with the aim of addressing 

problems with overly slow computing speeds, and thus, parallel computation is carried out within the 

same clock tick for all the points of the autocorrelation masks. Parallel computation can also be carried 

out for updated visual model error tables and halftone images. Fig. 5 shows the hardware architecture 

diagram for the DBS method. 
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Fig. 5. Hardware architecture and flow process for the DBS method 

In Fig. 5, memory g indicates the storage of the halftone image (one pixel is 1 bit), while the f_Cep 

memory indicates the memory used for the shared storage of the gray image (f) and the visual model 

error table (Cep). Since the gray image is used only once at the start of the computation carried out to 

determine the error value, the visual model error table will be stored in the f_Cep memory after the error 

value has been computed, so as to reduce memory usage. As the visual model error table is the result 

obtained after the visual model autocorrelation mask is computed, and the values of the autocorrelation 

mask are shifted left by 12 bits, each of the pixels in the f_Cep memory must be expressed using a bit 

length of at least 25 bits. 

Output and input pin diagrams are presented in Fig. 6 and Table 1, in which the respective function of 

each pin is described. The data inputted for rb_Q is the result of the merging of the original halftone 

image and the gray image. The most significant bit is the value of the original halftone, while the 

remaining 8 bits are the values of the gray image. The merged bits diagram for rb_Q is shown in Fig. 7. 

 

Fig. 6. Signal input and output pins for the DBS method 

Table 1. Hardware pin functions for the DBS method 

Signal Name I/O Width Description 

clk input 1 bit posedge clk 

reset input 1 bit negedge reset 

rb_Q input 9 bits data(g and f) in 

in_en input 1 bit input enable 

finish output 1 bit DBS finish 

dataout_en output 1 bit data output enable 

data output 1 bit halftone pixel value 

 

Fig. 7. Merged bits diagram 

Use of a line buffer to create a visual model error table. Before the DBS method is carried out, the 

visual model error table is first created. This table is created by obtaining the convolution integrals of the 
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HVS autocorrelation mask (Cpp) and the error between the continuous color image and the original 

halftone image. After the convolution integral computations are completed for the autocorrelation mask 

and error value, the table can then be directly stored in f_Cep memory. The line buffer approach can be 

used to save on memory space, and each pixel of the storage error's line buffer will have a bit depth of 12 

bits. For the line buffer design, the size of the mask (the mask in this study is 13×13 [3]) has to match the 

image width (256) of the mask for which convolution integral computations are carried out. Therefore, a 

12×256 line buffer and a register measuring 12 bits in length can be designed, as shown in Fig. 8. As the 

range required for the mask is 13×13, and the side length of the line buffer architecture is 13 bits, the 

wide section is sufficiently long and only the bottommost register is 12 bits in length. This is because the 

read-in values can be directly computed when the line buffer is fully filled with data, which reduces the 

space needed by one register. 

 

Fig. 8. Line buffer architecture 

After every mask multiplication, the mask has to be shifted right in order for the next round of 

computation to occur. At this point, the value in the upper left corner of the previous masking range will 

no longer be used. Therefore, the values in the leftmost column are moved up by one cell after mask 

multiplication is completed. Following this, the bottommost register is shifted to the left by one cell, thus 

allowing new incoming values to be stored together. By doing so, the mask is continuously being 

computed in a rightward direction, and once mask multiplication has been completed for the rightmost 

side, the values in the entire mask range can be simultaneously moved upward by one cell, bringing them 

back to the leftmost side of the line buffer. Computations are repeated in this manner until the visual 

model error table is completed. With this architecture and time sequence design, masking can be carried 

out smoothly, and the architecture does not have to store the original image that indicates the error 

between the continuous color and original halftone images, which a reduction of 62452×12 bits in 

register usage. 

Core computation for DBS method. After the visual model error table is completed, the core 

computation for the DBS method can then be carried out. This process involves corrections being 

constantly made to the halftone image to make it more closely resemble the continuous gray image. After 

the halftone image is corrected, the 13×13 values surrounding the positions in the visual model error table 

that correspond to the shifted pixels in the halftone image must also be updated. The core architecture of 

the DBS method can be divided into five processes, as shown in Fig. 9. The original image has 256×256 

pixels, implying that the core architecture of the DBS method must be executed 65,536 times. Usually, 

iteration has to be carried out a dozen times or more for this method, making it impossible for execution 

to occur in real time. In the hardware architecture designed for this study, the updating of the visual 

model error table and halftone image occur simultaneously, the comparison results for the 10 states of the 

smallest determined dE are also computed simultaneously. Compared to the software approach, in which 

determination is carried out unit by unit and processing is executed line by line, the hardware approach 

utilizes a parallel architecture design that increases processing speeds. When the cost function stops 

decreasing, the iteration process is complete and the halftone image is outputted. 



An Efficient VLSI Architecture of Direct Binary Search for Halftoning Image 

150 

 

Fig. 9. Core architecture of DBS method 

4 Experimental Analysis and Comparison 

In this work, a 256×256 original gray image was simulated using Borland's C++ Builder (BCB) software, 

and the results indicate that the DBS method achieved an execution time of 125ms, required 14 rounds of 

iteration, and updated the Cep table 99,232 times. 

With respect to the hardware, the Verilog Hardware Description Language (HDL) was used to design 

the architecture and the ModelSim software was used to simulate the verification process. As shown in 

Fig. 10, the a 256×256 gray image was inputted and the results of the waveform simulation was outputted 

the hardware. In Fig. 10(a), the DBS process is completed when “finish” is indicated as “high”; 

“dataout_en” indicates whether the output value is effective; “data” indicates the halftone pixel values 

being outputted; “dbs_count” marks the pixels up to the 11,200th outputted pixel. In Fig. 10, the number 

of iterations is indicated as 14 and the updated visual model error table (Cep) was updated 99,232 times. 

 

(a) Hardware results 

 

(b) Software results 

Fig. 10. ModelSim simulated output waveform  
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5 Conclusion 

This work analyzed a new VLSI architecture design for the algorithms of the DBS halftone imaging 

method. The proposed hardware architecture addresses internal memory issues through the utilization of 

a line buffer with a memory usage of 62452×12 bits and the implementation of a parallel architecture 

design that enables the visual model error table and halftone image to be updated simultaneously. With 

respect to the smallest determined error (dE), the comparison results for the 10 states (nine determination 

formulas) are also computed simultaneously as the 65,536 (256×256) pixels of the original image must 

be determined and iterated 14 times. Therefore, the execution time for this approach is shorter by 

65536×14×8 clock ticks compared to most software algorithms and the processing speed for halftone 

images is also increased. Moreover, this hardware architecture can also effectively address some of the 

issues associated with halftone imaging technology, such as the number of required iterations and the 

updating of the visual model error table. 
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