
Journal of Computers Vol. 29 No. 1, 2018, pp. 166-174

doi:10.3966/199115992018012901015

166

A Greedy Approach with New Cost Model for Intermediate

Datasets Storage Problem in General Workflows

Zimao Li1, Yingying Wang1*

1 College of Computer Science, South-Central University for Nationalities, Wuhan, China

lizm@mail.scuec.edu.cn, 2279457429@qq.com

Received 12 October 2016; Revised 6 March 2017; Accepted 30 March 2017

Abstract. Running a scientific workflow on the cloud will generate a large volume of

intermediate datasets and many of them have valuable information that can be used for further

study, but the cost of storing them all is unbelievably high for the enormous data size. A feasible

solution is to keep some of the intermediate datasets stored and re-compute the others when

needed, the intermediate dataset storage problem asks to find a tradeoff to minimize the total

cost of storing or re-generating each of the intermediate datasets. This paper focuses on a new

cost model for the problem with general workflow, which incorporates additional delay

tolerance, usage frequency and the transfer cost to make the cost model becoming more general.

Based on a directed acyclic graph describing the dependence relationship between datasets, a

greedy approach for the problem is proposed and implemented. Experimental results

demonstrate the effectiveness and efficiency of our algorithm.

Keywords: delay tolerance, greedy algorithm, intermediate datasets storage, transfer cost, usage

rate

1 Introduction

A large volume of intermediate datasets will be generated when we run a scientific workflow. Some

intermediate datasets may need to be stored for future use because scientists may need to re-analyze or

share the intermediate results with professionals all over the world. The scientific analyses are usually

execution intensive, hence taking a long time for execution, especially in fields such as astronomy [1],

high-energy physics [2] and bio-informatics [3], generally terabytes of data have to be analyzed.

Given the large sizes of the datasets, running scientific workflow applications usually require high-

performance computing resources and massive storage [4], thus grid systems [2] are good choices for

deploying scientific workflows for their high performance and massive storage. However, building a grid

system is extremely expensive and it is normally not an option for scientists all over the world.

As the latest computing paradigm in recent 10 years, the emergence of cloud computing technologies

[5] offers a new way to develop scientific workflow systems. Cloud computing provides redundant,

inexpensive and scalable resources on demands to users [6], and one major research topic of cloud

computing is cost-effective strategies for storing intermediate datasets.

Foster et al. made a comprehensive comparison of grid computing and cloud computing [7]. Cloud

computing systems provide high performance and massive storage required for scientific applications in

the same way as grid systems, but with a lower infrastructure construction cost because cloud computing

systems are composed of data centers which can be clusters of commodity hardware [5]. The work by

Deelman et al. [8] shows that cloud computing offers a cost-effective solution for data-intensive

applications, such as scientific workflows. Scientific cloud workflows are deployed in a cloud computing

environment, where use of all the resources need to be paid for. For a scientific cloud workflow system,

storing all the intermediate datasets generated during workflow executions may cause a high storage cost.

In contrast, if we delete all the intermediate datasets and re-generate them every time they are needed, the

* Corresponding Author

Journal of Computers Vol. 29, No. 1, 2018

167

computation cost of the system may well be very high too. A possible solution is to find a balance that

selectively stores some popular datasets and regenerates the rest of them when needed, the intermediate

dataset storage problem (IDSP for short) asks a decision for each intermediate dataset to be stored or re-

generated to minimize the total cost of storage and re-computation.

Some strategies have already been proposed for IDSP in one cloud or multiple clouds. When the usage

rate was taken into consideration in a single cloud, Yuan et al. introduced an intermediate datasets

dependency graph [9] according to the data provenance [10-11] and proposed the minimum benchmark

for the IDSP, an algorithm for linear IDSP with time complexity O(n4), as well as an algorithm for a

parallel IDSP which takes O(n9) time. When both of usage rate and delay tolerance were considered in

the cost model in a single cloud, Yuan et al. [12-13] presented dynamic strategies for the problem, which

are feasible but not optimal solutions for general IDSP. In [12] they only updated the cost model with the

additional delay tolerance in the foundation of [13]. Xu et al. [14] designed a feasible but not optimal

genetic algorithm for IDSP and they only took the usage rate into consideration in one cloud. In 2015,

Yuan et al. proposed the newest algorithm with time complexity O(m4n3) for the linear IDSP in multiple

clouds and gave an idea for the general workflow [6], they aimed to find the balance among the storage

cost, computation cost and transfer cost but failure to consider additional factors associated with the costs.

Cheng et al. proposed a binary-tree algorithm for the linear workflow in a cloud, which is the best

possible at present for dealing with linear IDSP [15]. They did a profound theoretical discussion. In this

paper, besides usage rate and delay tolerance, we introduce another factor called transfer cost into the

model since cloud service providers generally place high cost on data transfer in and out their data

centers [16] and propose a greedy algorithm for IDSP in multiple clouds with the more general cost

model.

The rest of the paper is organized as follows. Section 2 defines different notations, notions and factors

used in the general cost model. Section 3 describes the greedy algorithm and its analysis. The

implementation results are demonstrated in Section 4. Section 5 concludes and perspects future work.

2 New Cost Model

We simplify a scientific workflow as W = (D, L), where D = {d0, d1, d2, ..., dn} is the set of intermediate

datasets with input dataset d0 and L represents the set of dataset dependences in the form < di, dj >, di, dj

are two datasets in the workflow. di is called the direct predecessor of dj, and dj is the direct successor of

di. We can construct a directed acyclic graph (DAG for short) to describe W, where the vertexes and

directed arcs represent the datasets and the dependencies between them, respectively (See Fig. 1).

Given a cloud workflow, there are two options for a dataset di, stored and deleted. Generally, the

storage cost of a dataset di is proportional to its size and the stored time, and the computation cost is

proportional to its computation time. We use s(di), t1(di) and t2(di) to denote the size, the computing time

and the storing time of dataset di, respectively. Values of s(di), t1(di) and t2(di) are given for each dataset

di. We denote x(di) as di’s unit cost per unit size per unit time and y(di) as di’s unit cost per unit time. For

convenience of analysis, we consider there is no difference of unit cost of storing in different clouds.

If a dataset di is selected to be stored, the storage cost for di is the product of x(di), s(di) and t2(di), that

is,

2
() ()* ()* ()

i i i i
CostS d x d s d t d= (1)

If a dataset dj is selected to be computed, the computation cost dj is defined by formula (3).

It is natural to separate the set of dataset D into two sets D = (S, C), where S and C represents the set of

storage datasets and the set of computation datasets, respectively.

Definition 1. Given a computation dataset dj of a workflow DAG, we call dataset di is the storage-prior

of dj, if and only if in the path from di to dj, di is the only storage dataset and others are computation

datasets. We call the path from the direct successor of di to dj is the computation path of dj, denoted as

ap(dj). AP(dj) is used to denote the set of all computation paths of dj. We also use SP(dj) to denote the set

of all storage-priors of dj. It is easy to find that generally |SP(dj)| = |AP(dj)|.

A Greedy Approach with New Cost Model for Intermediate Datasets Storage Problem in General Workflows

168

Fig. 1. An example of a workflow

For example, in Fig. 1, SP(d5) = {d1, d2}, ap(d5)1 = {d3, d5}, ap(d5)2 = {d4, d5}, thus AP(d5) = {ap(d5)1,

ap(d5)2}. When we want to re-generate a computation dataset d5, we will have to find its computing paths

AP(d5) ={ap(d5)1, ap(d5)2}. Thus the computation cost of the d5 can be calculated as:

5 5

5 1 5 1 5

() ,

() ()* () () * ()
AP d d d d

CostC d y d t d y d t d
α α∈ ∈ ≠

= +∑ ∑

Generally, for a computation dataset dj, the generation cost of dj in the ap(dj)1 can be calculated as

1

1 1

()

() () * ()

j

i

d ap d

CostC d y d t d
∈

= ∑ (2)

 Since there may be more than one computing path of dj, thus the generation cost of dj is：

 1 1

() ,

() () * () () * ()

j j

j j j

AP d d d d

CostC d y d t d y d t d
α α∈ ∈ ≠

= +∑ ∑ (3)

For a dataset di, the cost of di is influenced by the usage frequency. It is a forecasting value from the

dataset’s usage history recorded in the system logs [16]. Here, we choose the peak usage times of

workflow execution in the system cloud. It is reasonable to use the rate of usage times of di and usages

times of all datasets at the peak times.

Definition 2. Let counti denote the peak usage times of di in the past workflow executions, the usage

frequency f (di) of dataset di can be defined as:

1

() i

i n

k

k

count
f d

count
=

=

∑

 (4)

Users delay tolerance influences the cost of a dataset and the users’ tolerance of accessing delay may

differ dramatically. Sometimes users may want the data to be available immediately, and sometimes they

may not care about waiting for it to become available [17]. One user may have different degrees of delay

tolerance for different datasets and different users may also have different degrees of delay tolerance for

one dataset, and one user may even have different degrees of delay tolerance for a dataset in different

time phases. Hence, a parameter to indicate users’ delay tolerance should be considered and be set

flexibly by the system manager based on users’ preferences.

Let m denote the number of the users and uik (k =1, 2, ..., m) the delay tolerance of the kth user to the

ith dataset. When the kth user does not need the ith dataset, the uik is set to the infinite. The others are

values about delay time according to preferences of the users to the dataset or the practical experiences.

uik is a forecasting value which is decided according to the personal experiences and the analysis of the

user’s historical records. The higher uik is, the more tolerant the users are.

Definition 3. The users’ delay tolerance g(di) is defined as:

1 2
() min{ , , , }

i i i im
g d u u u= � (5)

In the practical applications, if the computing time is larger than g(di), then di has to be stored no

Journal of Computers Vol. 29, No. 1, 2018

169

matter how large di’ s cost is. By comparison with Dong Yuan’s definition in [12], the users’ tolerance

with more than one user is more common.

Now we can define the relative generation cost, which is used partly to decide whether to store or

compute di.

Definition 4. The relative generation cost, G_Cost(di) of di is defined as below:

2 1

2 1

1 1

() ,

()
* ()* () () () //

()

()
* ()* () () () //_ ()

()
min

()* () ()* () //

i i

i

i i i i

i

i

i i i i
i

i

i i

AP d d d d

x d
s d t d if t d g d Store

f d

x d
s d t d if t d g d StoreG Cost d

f d

y d t d y d t d Compute
α α∈ ∈ ≠

⎧
>⎪

⎪
⎪ ⎧⎪ >= ⎪⎨

⎪⎪
⎨⎪
⎪ +⎪
⎪⎪ ⎩⎩
∑ ∑

 (6)

The formula above is the cost of the dataset di in different status. It can be used to verify whether the

dataset should be stored or computed. When the storage cost is lower than the regeneration cost for one

dataset, the intermediate dataset di is to be stored, otherwise the dataset di is to be computed. An

exception is that if the computing time of some dataset is larger than its delay tolerance, then the dataset

is stored directly.

As cloud computing is growing so fast, different cloud service providers are appearing. Cloud service

providers place high cost on data transfer in and out their data centers [16]. In contrast, data transfer

within one cloud service provider’s data centers are usually free. In the past since we generally store data

in a specified location or different data centers of the same cloud due to the limitations of hardware

facility and limited size of datasets, almost no data transfer was required to consider [8, 16]. However,

scientific applications in recent days have to be stored and run in a distributed manner for the increasing

data sizes and to facilitate data sharing [18-19], data transfer is inevitable since some datasets are

required to store in fixed locations.

Definition 5. For a dataset di and different cloud service providers, the transfer cost introduced by dataset

di, CostT(di) is defined as:

() () ,

_ [][]

() _ [][]

_ [][]

i i i

i i i

n

i i i

AP d SP d d is in a d d

i i

transfer cost d present d next if d S

CostT d transfer cost d present d next

transfer cost d present d next

α∈ ≠

⎧ ⋅ ⋅ ∈
⎪
⎪

= ⋅ ⋅⎨
⎪
⎪ + ⋅ ⋅⎩

∑ ∑
∪

 (7)

Here, di.present means current location of di and di.next means the next location of di during the

execution. The dynamical present and next are from the placement strategies. D. Yuan et al. proposed an

effective placement strategy [20]. Because we don’t discuss the placement strategy in this paper, we

think they are given values during the execution. For example, the transfer_cost[i][j] means the transfer

cost of a dataset from ith cloud to jth cloud, where i or j is the cloud service providers. When i = j,

transfer_cost[i][j] = 0 which means the dataset is kept in ith cloud and will not move into others. CostT

can be used to determine the location (cloud) of each dataset that should be stored.

Definition 6. The total cost of all the datasets of a workflow is:

 _ () (_ () ())
d D

total Cost W G Cost d CostT d

∈

= +∑ (8)

Based on the concepts and formulas mentioned above, the problem of dataset storage can be described

as follows:

Input: A given workflow W; the storage cost per unit size per unit time; computation cost per time of

each intermediate dataset of D; the size of each dataset and the storing time; the computing time of each

dataset; the transfer_cost[i][j] for all possible i and j; the usage frequency of each dataset; the delay

tolerance of each user for each dataset.

Output: The set of storage dataset S and the set of computation dataset C.

Objective: the total cost of W is minimized.

A Greedy Approach with New Cost Model for Intermediate Datasets Storage Problem in General Workflows

170

3 Algorithms Description

As we know, the greedy algorithm is a kind of simple and efficient procedure for searching feasible

solutions, sometimes it even finds an optimal solution for given problem. In this section, we propose a

greedy algorithm for the IDSP problem with above cost model on multiple clouds, the algorithm is called

IDS_Greedy.

Algorithm: IDS_Greedy(D, L, F, U)

Input: a workflow W(D, L), D is a set of intermediate datasets {d0, d1, d2, ..., dn} and L is a set of 0-1

adjacency matrix where 1 means pairs {di, dj} exists and di is the direct predecessor of dj; the storage cost

per size per min of the intermediate dataset {x1, x2, ..., xn} and the size of each intermediate dataset {s1,

s2, ..., sn} and the time of storing the dataset {t2(d1), t2(d2), ..., t2(dn)}; the computing cost per time of the

intermediate dataset {y1, y2, ..., yn} and the time of each intermediate dataset {t1(d1), t1(d2), ..., t1(dn)}; the

usage frequency of each intermediate dataset {f(d1), f(d2), ..., f(dn)}; the delay tolerance of each user for

each intermediate dataset {u11, u12, ..., u1m, ..., u21, u22, ..., u2m, ..., un1, un2, ..., unm}; the transfer_cost[i][j].

Output: the direct acyclic graph with each node is colored by either of gray, white and black

indicating the status of each intermediate datasets and the total cost is minimum. (gray: the start node,

white: the computing node, black the storing node)

Begin
 create the DAG(V,E) according to the W(D,L);
 Initialize DAG,V={v

0
,v

1
,v

2
,...,v

n
} corresponding to {d

0
,d

1
,d

2
,...,d

n
};

 E:={e
1
,e

2
,...,e

|L|
} corresponding to the adjacency pairs in L;

 d
0
.flag:=’S’;

 v
0
.color:=’gray’;

 G_Cost(d
0
):=0;

 CostT(d
0
):=0;

 total_cost(W):=G_Cost(d
0
)+CostT(d

0
);

 visited(v
0
):=1;

for i:=1 to n then
 d

i
.falg:=’S’;

 v
i
.color=’black’;

 G_Cost(d
i
):=CostS(d

i
);

 visited(v
i
)=0；

for i:=0 to n
 if L[0][i]:=1
 T:={d

i
};

 While T!=NULL
 for j:=0 to T.length
 if visited(T[j])==0 then
 g(T[j]) min{u←

T[j]1
,...,u

T[j]m
};

 if t
1
(T[j])>g(T[j]) then

 d
T[j]

.flag:=’S’;
 v

T[j]
.color:=’gray’;

 G_cost(d
T[j]

):=CostS;
 CostT(d

T[j]
):=transfer_cost[d

T[j]
.present]

 [d
T[j]

.next];
 total_cost(W):=G_cost(d

T[j]
)+CostT(d

T[j]
);

 visited(v
T[j]

):=1;
 else if CostC(T[j])<G_Cost(T[j]) then
 d

T[j]
.flag:=’C’;

 v
T[j]

.color:=’white’;
 G_Cost(d

T[j]
):=CostC;

 CostT(d
T[j]

):=

 [][]() ()

[][].nextd.presentdosttransfer_c

d.nextd.presentosttransfer_c

jj

dSPdAPα ddα,inisdj j

+

∑ ∑
∈ ≠∪j j

 total_cost(W):=G_cost(d
T[j]

)+CostT(d
T[j]

);
 visited(v

T[j]
):=1;

 For every dataset d
k
 in AP(T[j]) or SP(T[j])

 except T[j]

Journal of Computers Vol. 29, No. 1, 2018

171

 d
k
.present:=T[j].present;

 T[j].present:=T[j].next;
 else
 d

T[j]
.flag:=’S’;

 v
T[j]

.color:=’gray’;
 G_Cost(d

T[j]
):=CostS;

 CostT(d
T[j]

):= transfer_cost[d
T[j]

.present]
 [d

T[j]
.next];

 total_cost(W):=G_Cost(d
T[j]

)+CostT(d
T[j]

);
 visited(v

T[j]
):=1;

 T[j].present:=T[j].next;
 Remove T[j] from T;
 for l=0 to n do
 for r=0 to n do
 if L[r][l]==1 && visited(d

r
)==0 then

 Break;
 if r==n
 T:={d

l
};

 print DAG and the total_cost(W);

In this algorithm, we utilized the greedy algorithm to solve IDSP. In the loop of the while, the max

loop times are n. And when we traversal L to update T, the loop times are n. Also, we must deal with all

the datasets. To addition, we should take the delay tolerance and the tansfer_cost related to m clouds into

consideration. So, the complex time is O(n4m2).

4 Simulation and results of Algorithm

To evaluate the performance of the algorithm that we proposed, we take the simple workflow in Fig. 1 as

the example of workflow structure and then conduct the simulating experiment with eight strategies

together to compare the total cost of the system. The strategies are: (1) store all the intermediate datasets;

(2) store none; (3) Store top 20% often used datasets; (4) Store top 40% often used datasets; (5) Store top

60% often used datasets; (6) Store top 20% generation datasets; (7) Store top 40% generation datasets; (8)

Store top 60% generation datasets.

The number of the intermediate datasets is 5. The dataset size varies from 1GB to 100GB. The

generation time is random from 1 min to 60 mins. The storage time is random from 1 time to 10 times per

month. The users’ delay tolerance is also random from 1 min to 60 mins. The usage rate is random

ranging from 0 to 1. We follow the cost model presented in Section 3. And according to the Amazon’s

cost model, $0.1 per CPU hour for computation equals to $1/600 per CPU min and $0.15 per gigabyte

per month equals to $1/288000 per gigabyte per min for storage.

As indicated in Table 1, the Table 1 shows how the nine strategies, which take the transfer cost into

consideration, store the intermediate datasets in detail and the final results based on each strategy.

Table 1. The workflow’s intermediate dataset storage status in the nine strategies

The dataset 0 1 2 3 4 5 The total cost

IDS_Greedy S S S S S C 20.07192901

Store all S S S S S S 20.87331789

Store none S C C C C C 20.24333329

Store top 20% often used datasets S C C S C C 20.14692897

Store top 40% often used datasets S S C S C C 20.11156440

Store top 60% often used datasets S S S S C C 20.08699845

Store top 20% generation datasets S C C C C S 20.97472219

Store top 40% generation datasets S C C S C S 20.92331790

Store top 60% generation datasets S C C S S S 20.89831784

For the 1th dataset, although its size is quite high, comparing to high computing time and the low

tolerance delay, it should be stored. However, in the strategy of “store top 20% generation datasets”, it is

chosen to be computed. For the 2th dataset, it is not often used, but comparing to the high generation time

and the small size, it should be stored. However, in the strategy of “store top 60% generation datasets”, it

A Greedy Approach with New Cost Model for Intermediate Datasets Storage Problem in General Workflows

172

is chosen to be deleted. For the 5th dataset, although its generation cost is quite high, comparing to its

usage frequency, it is not worth to store it. However, in the strategy of “store top 40% generation

datasets”, it is chosen to be stored. Generally speaking, our strategy is the most appropriate strategy for

IDSP.

As indicated in Fig. 2, we can draw the conclusions that (1) neither storing all the intermediate datasets

nor storing top 60% generation intermediate datasets is a cost-effective method of intermediate datasets

storage problem; (2) storing top 20% generation datasets is the worst method of IDSP; (3) the strategy of

“store none” is in the middle band; (4) our strategy performs as the most cost effective method in

comparison with the others.

Fig. 2. Cost effectiveness evaluation of the “store high generation cost datasets”

As indicated in Fig. 3, we can draw the conclusions that (1) in the strategy of “store all”, sometimes

the intermediate results are optimal, but the final result is the worst, which shows this strategy is feasible

but not optimal; (2) the strategy of “store none” and the strategy of “store top 20% often used datasets”

and the strategy of “store top 40% often used datasets” are in the middle band; (3) the cost of the strategy

of “store none” is a most smooth line because in this strategy all the costs are computation costs of

regenerating intermediate datasets; (4) the strategy of “store top 60% often used datasets” is closest to our

strategy during all the process, but our strategy still performs the most cost effective strategy in

comparison with it.

Fig. 3. Cost effectiveness evaluation of the “store often used datasets” strategy

Journal of Computers Vol. 29, No. 1, 2018

173

5 Conclusions and future work

In this paper, we combine the three parameters into the cost model to design the new cost model, where

they are usage frequencies and delaying tolerance and the transfer-cost. Then we apply the greedy

approach to the new cost model, Experimental results demonstrated the cost-effective of the proposed

approach in comparison with the other methods.

In our current work, the parameters of the cost model are the storage cost, computation cost, delaying

tolerance, usage frequency and transfer-cost. However, in the real world, the extra cost might be caused

by the limited location and the movement between the different data centres. To addition, in this paper,

we focus the cost-effective results and did not emphasize much on the algorithm’s efficiency, which is

also a future work.

Acknowledgements

The author thanks reviewers for their constructive suggestions.

References

[1] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S. Patil, M.-H. Su, K. Vahi, M. Livny, Pegasus: mapping scientific

workflows onto the grid, Lecture Notes in Computer Science 3165(2004) 11-20.

[2] B. Ludäscher, I. Altintas, C. Berkley, C. Berkley, D. Higgins, E. Jaeger, Scientific workflow management and the Kepler

system, Concurrency & Computation Practice & Experience 18(10)(2005) 1039-1065.

[3] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, Taverna: a tool for the composition and enactment of bioinformatics

workflows, Bioinformatics 20(17)(2004) 3045-3054.

[4] E. Deelman, A. Chervenak, Data management challenges of data-intensive scientific workflows, in: Proc. IEEE International

Symposium on CLUSTER Computing and the Grid. IEEE, 2008.

[5] A. Weiss, Computing in the clouds, Networker 11(4)(2007) 16-25.

[6] D. Yuan, L. Cui, W. Li, X. Liu, An algorithm for finding the minimum cost of storing and regenerating datasets in multiple

clouds, IEEE Transactions on Cloud Computing 99(2015) 1-1.

[7] I. Foster, Y. Zhao, I. Raicu, S. Lu, Cloud computing and grid computing 360-degree compared, in: Proc. Grid Computing

Environments Workshop, IEEE, 2008.

[8] E. Deelman, G. Singh, M. Livny, B. Berriman, J.Good, The cost of doing science on the cloud: the Montage example, in:

Proc. ACM/IEEE Conference on High PERFORMANCE Computing, SC, 2008.

[9] D. Yuan, Y. Yang, X. Liu, J. Chen, On-demand minimum cost benchmarking for intermediate data storage in scientific

cloud workflow systems, Journal of Parallel & Distributed Computing 71(2)(2011) 316-332.

[10] L. Moreau, J. Freire, J. Futrelle, The open provenance model: an overview, in: Proc. the 2nd International Provenance and

Annotation Workshop, 2008.

[11] M.I.M. Saad, K.A. Jalil, M. Manaf, Data provenance trusted model in cloud computing, in: Proc. International Conference

on Research and Innovation in Information Systems, 2013.

[12] D. Yuan, Y. Yang, X. Liu, G. Zhang, J. Chen, A data dependency based strategy for intermediate data storage in scientific

cloud workflow systems, Concurrency & Computation Practice & Experience 24(9)(2012) 956-976.

[13] D. Yuan, Y. Yang, X. Liu, J. Chen, A cost-effective strategy for intermediate data storage in scientific cloud workflow

systems, in: Proc. IEEE International Symposium on Parallel & Distributed Processing, IEEE, 2010.

A Greedy Approach with New Cost Model for Intermediate Datasets Storage Problem in General Workflows

174

[14] W. Xu, J. Chen, An approach to intermediate dataset storage in scientific workflows, Journal of Computational Information

Systems 11(7)(2015) 2377-2384.

[15] J. Cheng, D. Zhu, B. Zhu, Improved algorithms for intermediate dataset storage in a cloud-based dataflow, Theoretical

Computer Science 657(A)(2017) 48-53.

[16] G.B. Berriman, E. Deelman, G. Juve, M. Rynge, J.S. Vockler, The application of cloud computing to scientific workflows:

a study of cost and performance, Philos Trans A Math Phys Eng Sci 371(1983)(2010) 20120066.

[17] F.M. Madani, S. Mokhtari, Virtual optical network embedding over elastic optical networks with set-up delay tolerance, in:

Proc. Electrical Engineering, IEEE, 2015.

[18] A. Chervenak, E. Deelman, M. Livny, M.H. Su, Data placement for scientific applications in distributed environments, in:

Proc. Ieee/acm International Conference on Grid Computing, IEEE, 2007.

[19] A. Chervenak, E. Deelman, I. Foster, L. Guy, W. Hoschec, Giggle: a framework for constructing scalable replica location

services, in: Supercomputing, in: Proc. ACM/IEEE 2002 Conference, IEEE, 2002.

[20] D. Yuan, Y. Yang, X. Liu, J. Chen, A data placement strategy in scientific cloud workflows, Future Generation Computer

Systems 26(8)(2010) 1200-1214.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

