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Abstract. RSSI-based localization technique in Wireless Sensor Network is aimed at building a 

mapping between signal and physical spaces. The mapping could be overfitting when the 

number of paired RSSI and location data is small, and the collection of paired data is difficult, so 

unpaired data could be useful in improving the performance. This paper proposes the Locality 

Preserving Semi-Supervised Canonical Correlation Analysis (LPSemiCCA) algorithm for 

localization in Wireless Sensor Network, which combines PCA and CCA smoothly using a 

tradeoff parameter to overcome problems like sensitivity to data scale of PCA and incapability 

of utilizing unpaired data of CCA. The algorithm introduces similarity matrices of paired data 

and whole data to fit the structure of network and employs unpaired data efficiently. Locality 

Preserving Projection is also applied to construct the objective function in each domain, so the 

mapping can be calculated in condition of preserving the inner local structure of data. 

Experimental results in both simulated and realistic data show a higher localization accuracy of 

the proposed algorithm compared with LapLS, PPLCA and LapSVR. 

Keywords:  canonical correlation analysis, locality preserving projection, semi-supervised 

learning, wireless sensor network, localization 

1 Introduction 

Wireless Sensor Network (WSN) is a distributed network, whose terminals are sensors that can transmit 

and receive signals. WSN has been widely applied to real life as to the variety of sensors. In many 

practical applications such as target tracking [1-3], network routing [4-6] and monitoring system [7-8], 

location is the fundamental base of their realization. Currently, the most widely used Global Position 

System (GPS) can achieve better performance in places where satellites could reach, yet its equipment 

cost and energy consumption are relatively high. So, to locate unknown nodes in network using location 

of partial known nodes is of great value. The goal of localization is to locate physical locations of nodes 

according to acquired data like Received Signal Strength Indicator (RSSI) etc. Compared with other 

technologies for localization, RSSI-based technologies consume less power and cost of equipments, so 

RSSI-based localization algorithms [9-11] gain more attention. The main purpose of these algorithms is 

to establish a mapping between signal and physical spaces leveraging collected RSSI and corresponding 

location data, then the mapping can be employed as a prediction model for calculating the coordinates of 

unknown nodes. 

Machine learning methods such as SVR learning [12-13], manifold learning [14-15] and neural 

network [16] have been applied to WSN node localization. However, to achieve high accuracy, these 

methods require a large amount of labeled data, whose collection consumes plenty of human effort and 

hardware equipment. Semi-Supervised learning [17] can take advantage of a small number of labeled 

data whose collection is relatively difficult and a large number of unlabeled data that is often more 
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available. Semi-Supervised learning related localization algorithms [18-21] have appeared in recent years. 

Partially Paired Locality Correlation Analysis (PPLCA) algorithm in [18] introduces local similarity 

information into Canonical Correlation Analysis (CCA) to learn a mapping that maximizes correlation 

between signal and physical spaces; it can fit WSN structure and utilize unlabeled data. The Semi-

Supervised Laplacian least square (LapLS) algorithm [19] employs Manifold Regularization [22] 

learning method to address the localization problem with absent physical locations. The Laplacian 

Support Vector Regression (LapSVR) algorithm [20] extends standard SVR to the Semi-Supervised SVR 

by using Manifold Regularization [22] to realize the usage of unlabeled data. Semi-Supervised 

Colocalization [21] combines collaborative filtering with graph-based Semi-Supervised learning to locate 

unknown nodes. It aims at employing a few labeled data and a large number of unlabeled data to train 

localization model and improve accuracy while reducing difficulty of data collection and computation 

complexity. CCA is a classical method to build the mapping between two datasets, but it can only utilize 

paired data whose number is limited, which could bring about overfitting problem, and is unable to use 

unpaired data to reduce the workload of data collection. Semi-Supervised CCA (SemiCCA) method 

proposed in [23] inherits the characters of both CCA and PCA so that the structure in each domain and 

the co-occurrence information of paired data are smoothly controlled. SemiCCA for automatic image 

annotation can achieve better effect with less image information. 

This paper proposes LPSemiCCA algorithm in the prototype of SemiCCA in [23]; the algorithm 

introduces similarity matrices of the paired data and the whole data to preserve inner structure of data, 

and applies Locality Preserving Projection (LPP) [24] to construct the objective function in each domain 

as its characteristic of being able to transform global nonlinear problem into several local linear problems, 

so the mapping that maximizes correlation between signal and physical spaces can be calculated in 

circumstance of preserving the inner local structure of data. The main contributions of this paper are: (1) 

Construct an LPSemiCCA model combined with inner local structure information of data by introducing 

similarity matrices of the labeled data and the whole data into SemiCCA; (2) The LPSemiCCA model for 

WSN localization can fit the topology structure of the network to ensure the localization accuracy as its 

property of locality preserving, and employ unpaired data efficiently to reduce the localization cost and 

avoid overfitting for its character of Semi-Supervised. 

2 Related Work 

Under the same node power and similar transmission mode, if two nodes are neighbors in the sensor 

network, their RSSI receiving from the same anchor node should be similar, so there exists a bijection 

between signal and physical spaces [25]. Machine learning methods for WSN localization can be treated 

as learning a appropriate mapping between signal space consisting of RSSI and physical space comprised 

of location, then the location of unknown node can be obtained by the mapping. Assume that there exist 

p  access points (APs) in an area 2
C R⊆  that we are interested in. APs periodically send out signals to 

other non-APs. To establish the mapping, location data 
1 2

[ , ,..., ]
q n

n
Y y y y R

×

= ∈  of n  known nodes and 

corresponding RSSI data 
1 2

[ , ,..., ]
n

X x x x=  p n
R

×

∈  receiving from p  APs should be collected. When 

RSSI data and corresponding location data exist at the same time, the data is called paired data, also 

called labeled data, that is to say, RSSI and location are mutual label for each other. When only one of 

RSSI and location data exists, the data is called unpaired data, also called unlabeled data. In some 

realistic scenarios, to reduce the collection difficulty of data or influenced by environment, unpaired 

data ( )

1[ ,..., ]
U p ps

n n ps
X x x R

×

+ +
= ∈  and (or) ( )

1[ ,..., ]
U q pl

n n plY y y R
×

+ +
= ∈  are acquired. 

The localization process should achieve higher accuracy by low manpower and hardware consumption, 

i.e., reducing the data collection workload and guaranteeing that the data collected under harsh 

surroundings (bad weather, signal jamming, etc.) still contributes to improving the localization accuracy. 

Supervised localization methods could be overfitting when the number of paired data is small. Thus, this 

paper focuses on localization algorithm that can employ unpaired data efficiently to reduce the 

localization cost and avoid the overfitting problem. 
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2.1 CCA 

In machine learning field, CCA [26] is a classical method to build the mapping between two datasets. 

Here, a group of paired and centered datasets are given, where, 
1 2

[ , ,..., ] ,
p n

n
X x x x R

×

= ∈  

1 2
[ , ,..., ]

n
Y y y y=  q n

R
×

∈ , p and
 
q

 
denote different dataset dimension, n  denotes dataset number. The 

purpose of CCA is to find basis vectors 
x

w  and 
y

w for two groups of datasets X  and Y  such that the 

correlation between the projections of the datasets to these bases vectors T

x
w x  and T

y
w y  are mutually 

maximized. Specifically, CCA can be formulated as the issue of computing maximum value of 

correlation coefficient ρ  [26]. When the function ρ  is irrelative to scale, CCA can be represented as 

computing solution of optimization problem in Eq. (1). Where 
xx

C  and 
yy

C  denote the within-set 

covariance matrices, and T

xy yx
C C= denotes the between-set covariance matrix. 

 

,

max  

. .    =1

        =1

x y

T

x xy y
w w

T

x xx x

T

y yy y

w C w

s t w C w

w C w

⎧
⎪
⎪
⎨
⎪
⎪
⎩

 (1) 

To solve the optimization problem, Hardoon et al. provide a detailed solution [26]. Usually, a group of 

basis vectors ( , )( 1,.., )
i i
x y

w w i d=  and corresponding eigenvalues 
i

λ  can be obtained, then combine the 

basis vectors into two projection matrices 
1 2

[ , ,..., ]
x x x xd

W w w w=  and
1 2

[ , ,..., ]y y y ydW w w w= . CCA is the 

fundamental method to compute the mapping between signal and physical spaces. 

2.2 PPLCA 

PPLCA in [18] aims at solving problems of incapablity of collecting location data or signal loss due to 

geographical condition or bad weather such that data acquired cannot be guaranteed in pairs. It introduces 

local similarity information between the paired data and the whole data into CCA to obtain the mapping 

between signal and physical spaces. Given two unpaired datasets ( )

1 1[ , ] [ ,..., , ,..., ]
U

n n n ps
X X X x x x x

+ +
= =

�  

( )p n ps
R

× +

∈  and ( ) ( )

1 1[ , ] [ ,..., , ,..., ]
U q n pl

n n n plY Y Y y y y y R
× +

+ +
= = ∈

� , similarity matrices between the paired 

data and the whole data are defined as , ,

, 1 , 1
{ } , { }X n n ps Y n n pl

X ij i j Y ij i jS S S S
+ +

= =
= =

� � � � . The similarity matrices above can 

be computed by imitating Eq. (2) [27], which can reveal local structure of datasets X� andY� . 

 

2

2

exp( / ),   
,  

0                              

exp( / ),
 

0                               

X i j x

ij

Y i j y

ij

x x t if i and j are neighbors in X
S

otherwise

y y t if i and j are neighbors in Y
S

otherwise

⎧ − −⎪
= ⎨
⎪⎩

⎧ − −⎪
= ⎨
⎪⎩

，

，

 (2) 

x
t and 

y
t  denote the average distance of signal space and physical space respectively, which can fit the 

structure of WSN better. Here, 
2

1 1
/ ( 1)n n

x i i i j
t x x n n

= =

= − −∑ ∑ , 
2

1 1
/ ( 1)n n

y i i i j
t y y n n

= =

= − −∑ ∑ . 

Centralize the training data collected, and list the objective function and constraints of localization in 

Eq. (3). 

 

,

max

. . 1

1

x y

T T

x XY y
w w

T T

x XX x

T T

y YY y

w XG Y w

s t w XG X w

w YG Y w

⎧
⎪
⎪

    =⎨
⎪

         =⎪
⎩

� �

�� �

� �

�� �

� �

�� �
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 (3) 
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Where, ( )[ ,0] ,
T

n n ps n
A I

+ ×
= ( )[ ,0] ,

T

n n pl nB I
+ ×

= ,

T T T T

XY Y X X Y
G AB AS S B S S= − − +
� � � � �

,

T T T T

XX X X X X
G AA AS S A S S= − − +
� � � � �  

.

T T T T

YY Y Y Y Y
G BB BS S B S S= −  − +
� � � � �  

Optimize the objective function to obtain projection matrices 
X

W�  and 
Y

W� along with generalized 

eigenvalues λ . Project paired data { , }X Y to the new two-dimensional space { , }X Y
P P  

using { : , : }T T

X X Y Y
W W X W W Y× ×
� � � � , also project unknown data 

1 2

1( , ,..., )
p

T p

g g g g
x x x x R

×

= ∈  to the new 

space g
P  using :

T

X X g
W W x×
� � . Compute the weighted Euclidean distance of unknown node to all known 

nodes after transformation by Eq. (4) [25]. 

 

2

2

1

( ) , 1,...,X g

i j ji j

j

d P P i nλ

=

= − =∑  (4) 

Where, 
i

d  denotes the distance of i th known node to unknown node g ; 
j

λ  represents the j th value 

of i th eigenvalue; X

ji
P expresses the j th value of i th known node after transformation; g

j
P indicates the 

j th value of node g  after transformation. 

Finally, compute K  nearest known nodes of unknown node g , that is, K minimum values of 

( 1,..., )
i

d i n=  and physical coordinates 
1 2

{ , ,..., }
K

y y y  of corresponding known nodes. Then, the centroid 

of K  known nodes is the estimated physical coordinate of node g . The innovation idea of this paper is 

mainly inspired by PPLCA. 

2.3 SemiCCA 

SemiCCA model proposed in [23] inherits the characteristics of both CCA and PCA so that the global 

structure in each domain and the co-occurrence information of paired data are smoothly controlled. 

SemiCCA for automatic image annotation can overcome problems like sensitivity to data scale of PCA 

and incapability of utilizing unpaired data of CCA. The main idea of SemiCCA is to solve the following 

objective function. 

 

,

max  ((1 ) ) +2 + ((1 ) )

. .    ( (1 ) ) =1

         ( (1 ) ) =1

x y

T T T

x B xx x x B xy y y B yy y
w w

T

x C xx C Dx x

T

y C yy C Dy y

w S w w S w w S w

s t w S I w

w S I w

β β β

β β

β β

⎧ − −
⎪
⎪

+ −⎨
⎪

+ −⎪
⎩

� �

� �
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� �
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 (5) 

Where 
1 2

[ , ,..., ]
p n

n
X x x x R

×

= ∈  and 
1 2

[ , ,..., ]
q n

n
Y y y y R

×

= ∈  are paired data, ( )

1[ ,..., ,0,...,0]
U

n n ps
X x x

+ +
=  

( )p ps pl
R

× +

∈  and ( ) ( )

1[0,...,0, ,..., ]
U q ps pl

n ps n ps plY y y R
× +

+ + + +
= ∈  are unpaired data. 

1
/

n T T

xy i i yxi
S x y n S

=

= =∑  

is the between-set covariance matrix,
1

/ ,
n T

xx i ii
S x x n

=

= ∑ 1
/ ,

n T

yy i ii
S y y n

=

=∑  
1

/( ),
n ps pl T

xx i ii
S x x n ps pl

+ +

=

= + +∑�  

1
/( )

n ps pl T

yy i ii
S y y n ps pl

+ +

=

= + +∑�  are within-set covariance matrices. The covariance matrices are 

computed after all the data are centered. 
Dx
I  and 

Dy
I  are identity matrices; 

B
β  and 

C
β  are tradeoff 

parameters taking a value in [0,1]. SemiCCA method model is regarded as the prototype of our proposed 

algorithm. 

3 The Proposed LPSemiCCA Algorithm 

This paper presents the LPSemiCCA algorithm in the prototype of SemiCCA. First, similarity matrices of 

the paired data and the whole data are introduced to fit the network topology structure and meanwhile 

unpaired data are efficiently employed; Second, the characteristic of LPP which can transform global 

nonlinear problem into several local linear problems is utilized, and then the objective function in each 

domain is constructed to calculate the mapping that maximizes correlation between signal and physical 
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spaces in condition of preserving the inner local structure of data; Third, the merits of PCA and CCA are 

combined using a tradeoff parameter to overcome problems like sensitivity to data scale of PCA and 

incapability of utilizing unpaired data of CCA. The LPSemiCCA algorithm can employ unpaired data 

efficiently to reduce the localization cost and avoid the overfitting problem. 

3.1 LPSemiCCA Model 

Given two groups of unpaired data X�  andY� , where ( )

1 2 1[ , ,..., , ,..., ,0,...,0] ,
p n ps pl

n n n psX x x x x x R
× + +

+ +
= ∈

�  

( )

1 2 1[ , ,..., ,0,...,0, ,..., ]
q n ps pl

n n ps n ps plY y y y y y R
× + +

+ + + +
= ∈

� . The first n  values in X�  andY�  are paired data 

X  and Y  respectively; the ps  values from ( 1)n + to ( )n ps+  in X� and pl  values from ( 1)n ps+ +  to 

( )n ps pl+ +  in Y�  are unpaired data. The similarity matrices of the paired data
, 1

{ }X n

X ij i j
S S

=

=  and 

, 1
{ }Y n

Y ij i j
S S

=

= can be computed according to Eq. (2), and the similarity matrices of the whole data 

, 1
{ }X n ps pl

X ij i jS S
+ +

=
=

� �  and 
, 1

{ }Y n ps pl

Y ij i jS S
+ +

=
=

� � can also be obtained by imitating Eq. (2). The purpose of 

calculating similarity matrices is to learn the inner manifold structure of data, and then a mapping that 

maximizes correlation of two datasets and maintains inner structure of dataset can be established. For 

simplification, this paper uses one tradeoff parameter [0,1]β ∈  to combine PCA and CCA that 

introduced into local structure information. In conclusion, the objective function and constraints of 

computing the mapping is shown as follows:  

 

,

max  ((1 ) ) +2 + ((1 ) )
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         ( (1 ) ) =1
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⎪
⎪
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⎪
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⎩
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 (6) 

The corresponding Lagrangian is(where 
x

λ  and 
y

λ  are Lagrangian coefficients): 

 

( , , ) ((1 ) ) +2 + ((1 ) )

( ( (1 ) ) 1)

( ( (1 ) ) 1)

T T T T T T

x y x XX x x XY y y YY y

T T T

x x XX Dx x

T T T

y y YY Dy y
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� � � � � � � �

� �

� �

� �
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 (7) 

Taking derivatives with respect to 
x

w�  and 
y

w�  we obtain: 

 

((1 ) )

( (1 ) ) 0, (8.1)

((1 ) )

( (1 ) ) 0. (8.2)

T T

XX x XY y

x
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y
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w
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w
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⎪
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 (8) 

Subtracting T

y
w�  times the second equation from T

x
w�  times the first equation in (8) we have: 

 0.
T T T T

y y YX x x x XY y
w YS X w w XS Y wλ β λ β− =� � � �

 (9) 

Then we can get that 
x y

λ λ= , let 
x y

λ λ λ= = . 

So, the eigenvalue equations below are obtained. 

 

((1 ) ) +( ) = ( (1 ) )

( ) ((1 ) ) ( (1 ) )

T T T T

XX x XY y XX Dx x

T T T T
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To simplify the eigenvalue equations, the following definitions are given: 

 

0 0
(1 ) ,

0 0

00
(1 ) .

00
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YX YY
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DxXX
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DyYY

XS Y XS X
B

YS X YS Y

XI XXS X
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where , , , , ,

T

XY X Y YX XX X X YY Y Y XX X X YY Y Y
S S S S S S S S S S S S S S S S= = = = = =
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� � � � �  the operator ‘ � ’ is 

element-by-element product in two matrices, 
Dx
I  and 

Dy
I  are identity matrices.  

So, the solution of the mapping is converted to solve the following generalized eigenvalue problem. 

 ,

x x

y y

w w
B C

w w
λ

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟
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Obviously, the solution in (14) can be solved by eigenvalue decomposition. When C  is invertible, Eq. 

(12) can be transformed into (13.1), otherwise into (13.2). 

 

1 , (13.1)
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where 1( )T T
C C CC

+ −

=  is the Moore-Penrose pseudo-inverse of C . Then the correlation vectors 

( , )
x y

w w� �  and generalized eigenvalues λ  are obtained. The projection matrices 
X

W�  and 
Y

W�  of data X�  

andY�  after the same transformation can also be achieved by combining correlation vectors ( , )
x y

w w� �  into 

matrices. 

LPSemiCCA model focuses on obtaining a mapping that maximizes correlation between two datasets, 

i.e. getting parameters of projection matrices 
X

W� ,
Y

W�  and eigenvalues λ . 

3.2 LPSemiCCA Localization Algorithm 

The goal of LPSemiCCA model for WSN node localization is to build a mapping that maximizes the 

correlation between signal space and physical spaces on the premise of fitting network topology structure 

as possible. The inputs of computing the physical location coordinates of unknown node are 

1 2 1
[ , ,..., , ,..., ,

n n n ps
X x x x x x

+ +
=

�

( )
0,...,0] ,

p n ps pl
R

× + +

∈
( )

1 2 1[ , ,..., ,0,...,0, ,..., ] ,
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n n ps n ps plY y y y y y R
× + +

+ + + +
= ∈

�

1 2

1( , ,..., )
p

T p

g g g g
x x x x R

×

= ∈ . X�  and Y�  are datasets consisting of RSSI and physical location 

respectively, in which the first n  RSSI vectors in X�  have corresponding location coordinates in Y� , the 

ps  RSSI vectors in X�  from ( 1)n +  to ( )n ps+  do not have corresponding location coordinates in Y� , 

and the pl  location coordinates in Y�  from ( 1)n ps+ +  to ( )n ps pl+ +  do not have corresponding RSSI 

vectors in X� , and 
g
x  is the RSSI vector of unknown node g  in a certain moment. Solve eigen equation 

in Eq. (12), and then eigenvalues λ  and projection vectors ( , )
x y

w w� �  are obtained. After that, combine the 

projection vectors into two projection matrices ( , )
x y

W W� � . 

Project paired data 
1 2 1 2

{ [ , ,..., ], [ , ,..., ]}
n n

X x x x Y y y y= =  and RSSI vector of unknown node 

1 2

( , ,..., )
p

T

g g g g
x x x x=  into new two-dimensional spaces { , , }X Y g

P P P  { , , }T T T

X Y X g
W X W Y W x= × × ×
� � � . 

Compute the weighted Euclidean distance of unknown node to all known nodes after transformation 

using Eq. (4) [25].  
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Lastly, compute K  nearest known nodes of unknown node g , that is, K minimum values of 

( 1,..., )
i

d i n=  and physical coordinates 
1 2

{ , ,..., }
K

y y y  of corresponding known nodes. Then, the centroid 

of K  known nodes is the estimated physical coordinate of node g . 

To sum up, node localization algorithm based on LPSemiCCA model includes two phrases, (1) 

training phrase: establish localization model by collected data, that is, learn the mapping between signal 

space and physical spaces; (2) localization phrase: estimate location of unknown node by the mapping 

learned from training phrase and the RSSI vector of unknown node in a certain moment. The localization 

algorithm is concluded as follows. 

 

Algorithm 1. LPSemiCCA Localization Algorithm. 

Input: RSSI matrix ( ) ( )
[ , ]

U p n ps pl
X X X R

× + +

= ∈
� , location matrix ( )

[ , ]
U

Y Y Y=
�  ( )q n ps pl

R
× + +

∈ , RSSI 

matrix 
1 2

( , ,..., )
g g g gm

X x x x=  of m  unknown nodes and change interval βΔ  of tradeoff 

parameter β .  

Output: Location coordinates matrix glY  of m  unknown nodes. 

Step1: Compute space similarity matrices , , ,
X Y X Y

S S S S� � by Eq. (2). 

for 1;  [0 : :1];  (1/ 1);j jβ β β= ∈ Δ <= Δ +  do 

(1) Train the collected data to obtain projection matrices ( , )
X Y

W W� �  and two eigenvalues 
1
λ  and 

2
λ  

according to Eq. (12); 

(2) Project RSSI matrix X  into new two-dimensional space using X T

X
P W X= ×

� ; 

for 1;  ;i i m= <=  do 

(1) Project RSSI vector 
gi
x  of unknown node gi  into two-dimensional space using 

gi T

X gi
P W x= ×

� , and calculate the weighted Euclidean distance of unknown node to all known 

nodes after transformation by Eq. (4); 

(2) Compute K  nearest known nodes of unknown node gi  and corresponding physical 

coordinates, the centroid of K  known nodes is the estimated location 
gi
l  of node gi ; 

(3) Obtain the location matrix 
1 2

( , ,..., )
g g g gm

L l l l=  of all the unknown nodes; 

end for 

(3)  Achieve (1/ 1)βΔ +  estimated location coordinates matrix 
g

Y ; 

end for 

Step 2: Output one coordinates matrix glY with the least average localization error and corresponding 

optimal parameters
1 2

, , ,
X

W λ λ β . 

 

To demonstrate the LPSemiCCA localization algorithm more clearly, Fig. 1. gives an explicit 

description. Fig. 1. is the schematic diagram of LPSemiCCA localization algorithm, in which the gray 

part (rounded rectangles) is the training phrase and the blue part (rectangles) is the localization phrase. 

The gray part aims at finding appropriate projection matrices between signal and physical spaces; the 

blue part uses the projection to obtain two-dimensional space representation of paired data and unknown 

data, and the weighted Euclidean distance of unknown node to all known nodes after projection can be 

calculated, then the centroid of K nearest known nodes of unknown node is its estimated location. 

4 Experiments Analysis 

To verify the effectiveness of our algorithm, experiments on simulated data and realistic data are 

conducted. We also carry out PPLCA [18], LapLS [19] and LapSVR [20] as comparative algorithms. 

PPLCA can be applied to the scenario of loss of both RSSI data and location data; LapLS and LapSVR 

only use in such a case that the number of RSSI data is greater than or equal to the number of location 

data. To perform the experiments more elaborately, the change interval βΔ  used is 0.001, so the iteration 

is 1001 times. 
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unknown nodes: g
X
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node to all known nodes:
i

d
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X
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  Projection matrices ( , )
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Two-dimensional space 

representation of X: X
P
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representation of     :
g
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P

The estimated Location 

of m unknown node:
g

L

 

Fig. 1 The schematic diagram of LPSemiCCA localization algorithm 

4.1 Experimental Setting 

Simulated data. The simulated data is to simulate the random WSN in a square areaC ; the radio 

propagation model is regular network model; the radio range is circle; and the communication radius is 

200m. Compared with log-normal shadowing model (Eq. (14)) [28], the regular network model do not 

have shadowing effect. The parameters 
0

( ), ( ), , ,
r r
P dist P d dist X

σ
η in Eq. (14) denote the received power 

at the distance dist  to the transmitter, the received power at the reference distance 
0

d  to the transmitter, 

the distance attenuation factor, the distance between receiver and transmitter, and the shadowing effect, 

respectively. The received power of node in the simulated network can be represented by Eq. (15). 

Where 
0

, ( )
t l
P P d  are the transmitted power (0), path loss power (55) at the distance 

0
d  (1m), and the 

value of η is 4. The number of APs and all the nodes in the simulated network are 9 and 900 respectively. 

The network deployment graph is illustrated in Fig. 2, where red triangles represent APs and blue circles 

indicate non-APs. 

 

0

0

( ) ( ) 10 log +
r r

dist
P dist P d X

d
σ

η= −  (14) 

 

0

0

( ) ( ) 10 log
r t l

dist
P dist P P d

d
η= − −  (15) 
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Fig. 2 The random network deployment graph in a square area C  of simulated data, where red triangles 

represent APs and blue circles indicate non-APs 

Realistic data. The realistic data [29] comes from School of Computer Science and Communication of 

the Royal Institute of Technology (KTH). An office environment (400m2), including a hallway and a set 

of rooms, is the experimental place. A commercial Wi-Fi AP with a detachable external antenna is used 

as the radio signal source (transmitter). Five small USB wireless adapters of the same model (TP-Link 

TL-WN722N) with detachable external antennas are attached to the robot. These wireless adapters (Wi-

Fi stations) act as the radio receivers and are connected to the AP using the IEEE 802.11n 2.4GHz 

channels. The communication radius of wireless adapters is 50m. When collecting data, the robot is 

teleoperated (at a velocity≤ 0.2 m/s) to record physical coordinates in some locations and corresponding 

RSSI (dBm) [30]. 

The average location error of all the unknown nodes is adopted as error criterion to verify the 

performance of our algorithm. The smaller the average location error (ALE) is, the better the 

performance of the algorithm is. To ensure the veracity of experimental results, every group of 

experiments has been conducted at least twenty times. 

4.2 Experimental Results 

The experiments are divided into two parts, that is, to verify the influence of unlabeled data and labeled 

data to ALE (average location error) respectively. 

No matter in simulated data or realistic data, the neighbor value k  related to computing similarity 

matrices in PPLCA, LapLS, LapSVR and LPSemiCCA, and the value K  related to the number of the 

nearest known nodes to unknown nodes gi  in PPLCA and LPSemiCCA are determined by the optimal 

values of double iteration in PPLCA. The specific allocation is described in Table 1 to Table 4. The 

regularization coefficients in LapLS and LapSVR are defined as 0.0001 and 5. For simplification, 

average error value is abbreviated as AEV. 

Table 1. Parameter setting and error comparison table in simulated data when labeled data remains 

unchanged 

The neighbor value  

k  
The value 

K  

The smallest 

AEV 

Iteration time of the 

smallest AEV 

β  value of the 

smallest AEV 

3 6 0.3053 608 0.607 

6 3 0.2865 625 0.624 

5 3 0.2628 607 0.606 

6 3 0.2673 679 0.678 

6 4 0.2639 727 0.726 

18 3 0.2346 85 0.084 

6 3 0.2260 988 0.987 
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Table 2. Parameter setting and error comparison table in realistic data when labeled data remains 

unchanged 

The neighbor value  

k  

The value 

K  

The smallest  

AEV 

Iteration time of the 

smallest AEV 

β  value of the 

smallest AEV 

29 4 0.4495 13 0.012 

27 38 0.4460 111 0.110 

32 4 0.4380 78 0.077 

28 4 0.4350 938 0.937 

27 45 0.4205 941 0.940 

26 46 0.4180 943 0.942 

25 41 0.3935 100 0.099 

26 51 0.3535 178 0.177 

Table 3. Parameter setting and error comparison table in simulated data when unlabeled data remains 

unchanged 

The neighbor value  

k  

The value 

K  

The smallest  

AEV 

Iteration time of the 

smallest AEV 

β  value of the 

smallest AEV 

22 3 0.3776 319 0.318 

8 3 0.3299 723 0.722 

9 3 0.2622 962 0.961 

3 4 0.2338 954 0.953 

3 3 0.2129 985 0.984 

3 3 0.2157 851 0.850 

3 3 0.2107 813 0.812 

Table 4. Parameter setting and error comparison table in realistic data when unlabeled data remains 

unchanged 

The neighbor value  

k  

The value 

K  

The smallest  

AEV 

Iteration time of the 

smallest AEV 

β  value of the 

smallest AEV 

8 4 0.2282 3 0.002 

3 3 0.2217 2 0.001 

25 3 0.2248 494 0.493 

25 3 0.2137 875 0.874 

3 3 0.2093 4 0.003 

20 3 0.2010 970 0.969 

9 3 0.2050 994 0.993 

48 4 0.1648 844 0.843 
 
The influence of unlabeled data to ALE. To test the influence of unlabeled data to ALE, simulated data 

are split into 7 groups, where the number of labeled data 200 remains unchanged, the number of 

unlabeled RSSI and location increase at interval 50 from 50 to 350 respectively, and the data of unknown 

nodes number 50 maintains unchanged. Realistic data are split into 8 groups, where the labeled data 

number 489 remains unchanged, unlabeled RSSI number increases at interval 50 from 300 to 650, 

unlabeled location number increases at interval 50 from 200 to 550, and data of unknown nodes number 

300 maintains unchanged. Table 1 and Table 2 are parameter setting and error comparison tables when 

labeled data remains unchanged in simulated data and realistic data respectively. 

Fig. 3(a) and Fig. 3(b) illustrate average location error comparison of four algorithms in simulated data 

and realistic data when labeled data number 200 and 489 remain unchanged respectively, where x-axis 

denotes unlabeled data number (increase at a certain interval), and y-axis denotes ALE.  

The blue, black, green and red curve represent the change tends of PPLCA, LapSVR, LapLS and 

LPSemiCCA respectively when unlabeled data number increases. In Fig. 3(a), the ALE change ranges of 

PPLCA, LapSVR, LapLS and LPSemiCCA when unlabeled data number increases from 100 to 700 are 

[0.3652~0.2737], [0.3927~0.3471], [0.4492~0.4168] and [0.3053~0.2260]; In Fig. 3(b), the ALE change 

ranges of PPLCA, LapSVR, LapLS and LPSemiCCA when unlabeled data number increases from 500 to 

1200 are [0.5015~0.4904], [0.5309~0.5053], [0.5605~0.5306], and [0.4495~0.3535].  
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(a) the number of labeled data (200) remains 

unchanged and unlabeled data number increases 

from 100 to 700 at interval 100 in simulated data
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(b) the number of labeled data (489) remains 

unchanged and unlabeled data number increases 

from 500 to 1200 at interval 100 in realistic data 

Fig. 3 The average localization error comparison graph of four algorithms 

Through analyzing the change of ALE, we find that the four curves all decreases as the increasing of 

unlabeled data number, which means that the ALE of four algorithms are all gradually decreasing. It can 

be seen that unlabeled data has a positive influence on the training accuracy of localization model, and 

the usage of it can improve localization accuracy and meanwhile reduce workload of data collection. 

Moreover, the blue, black and green curves are always above red curve under the same parameter setting 

in Fig. 3(a) and Fig. 3(b), which indicates that the ALE of LPSemiCCA is lower than PPLCA, LapSVR 

and LapLS. It can be observed that the decrease trends of black and green curve are relatively gentle 

compared with other two curves in Fig. 3(a), which means the positive influence of unlabeled data to 

LapSVR and LapLS is not as strong as to PPLCA and LPSemiCCA. That is because LapSVR and LapLS 

can only utilize unlabeled RSSI rather than both unlabeled RSSI and location data, so data used for 

model training is relatively less. The decrease trend of red curve in Fig. 3(b) is the steepest, which means 

the positive influence of unlabeled data to LPSemiCCA is the most obvious. 

The influence of labeled data to ALE. To test the influence of labeled data to ALE, simulated data are 

split into 7 groups, where unlabeled RSSI number 100 and unlabeled location number 100 remain 

unchanged, labeled data number increases at interval 100 from 100 to 700, and data of unknown nodes 

number 100 maintains unchanged. Realistic data are split into 8 groups, where unlabeled RSSI number 

400 and unlabeled location number 189 remain unchanged, labeled data number increases at interval 100 

from 400 to 1100, data of unknown nodes number 400 maintains unchanged. Table 3 and Table 4 are 

parameter setting and error comparison tables when unlabeled data remains unchanged in simulated data 

and realistic data respectively. 

Fig. 4(a) is the ALE comparison graph of four algorithms in simulated data when unlabeled data 

number 200 maintains unchanged, and Fig. 4(b) is the ALE comparison graph of four algorithms in 

realistic data when unlabeled data number 589 remains unchanged, where x-axis denotes labeled data 

number (increase at a certain interval), and y-axis denotes ALE.  

The blue, black, green and red curve represent the change tends of PPLCA, LapSVR, LapLS and 

LPSemiCCA respectively when labeled data number increases. In Fig. 4(a), the ALE change ranges of 

PPLCA, LapSVR, LapLS and LPSemiCCA when labeled data number increases from 100 to 700 are 

[0.4899~0.2230], [0.4601~0.3411], [0.4759~0.3936] and [0.3776~0.2107]; In Fig. 4(b), the ALE change 

ranges of PPLCA, LapSVR, LapLS and LPSemiCCA when labeled data number increases from 400 to 

1100 are [0.2387~0.1762], [0.2395~0.1768], [0.2404~0.1832], and [0.2282~0.1648].  
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(b) the number of unlabeled data (589) remains 

unchanged and labeled data number increases from 

400 to 1100 at interval 100 in realistic data 

Fig. 4 The average localization error comparison graph of four algorithms 

The change tendencies of four curves all declines as the growing of labeled data number in Fig. 4(a) 

and Fig. 4(b), which denotes that the ALE of four algorithms are gradually dropping. Training data for 

learning projection matrices is becoming more adequate as the growing number of labeled data, so the 

mapping between signal and physical spaces can be built more precise. Moreover, the red curve is always 

below the other three curves in the same parameter setting in Fig. 4(a) and Fig. 4(b), which means the 

ALE of LPSemiCCA is lower than PPLCA, LapSVR and LapLS. The growing number of labeled data 

indeed has a positive influence to improve the localization accuracy, but the workload of labeled data 

collection is rather difficult, so the labeled data number should be controlled considering application in 

realistic scenario. The best situation is to employ less labeled data and more unlabeled data to achieve 

higher localization accuracy.  

To sum up, the average localization error (ALE) is an intuitive and reliable indicator to evaluate the 

performance of a localization algorithm. The smaller the ALE is, the better the performance of the 

algorithm is. The localization results are effective, if the error distance is within 1.5, i.e., the estimated 

coordinates of unknown nodes can relatively represent their absolute location [35]. The ALE of four 

algorithms including our algorithm and three comparative algorithms in every experiment is less than 1.5, 

and the ALE of our algorithm is basically smaller than the comparative algorithms’, so the proposed 

algorithm is of great value. 

5 Conclusion 

This paper proposes the LPSemiCCA algorithm in prototype of SemiCCA model. It inherits merits of 

both PCA and CCA flexibly, and overcomes disadvantages of sensitivity to data scale of PCA and 

incapability of utilizing unpaired data of CCA. The algorithm also introduces similarity matrices of 

paired data and whole data to fit the structure of network and employs unpaired data efficiently. 

Moreover, LPP is applied to construct the objective function in each domain, so the mapping can be 

computed in condition of preserving the inner local structure of data. Experiments on simulated and 

realistic data are conducted, and experimental results indicate that unlabeled data has a positive influence 

on improving localization accuracy. Furthermore, the performance of our algorithm is better than other 

four comparison algorithms in the same parameter setting. Our algorithm can achieve a better 

performance, but the tradeoff parameter could not be calculated in a robust way, and the algorithm is 

only suitable for two-dimensional space localization, which is not extended to three-dimensional space. 

These aspects will be the subject of our future work. 
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