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Abstract. The article deals with a class of state vector estimation problems of nonlinear systems, 

which is derived from single node localization in wireless sensor networks. And a new strong 

adaptive Kalman filter mechanism is implemented by combining the original nonlinear filtering 

algorithm such as Square-root Cubature Kalman Filter (SCKF) with Kalman filter. Firstly, the 

mechanism utilizes the state estimation algorithm based on SCKF to estimate and correct the 

state vector in state-space model. Kalman filter is then performed for further processing due to 

the linear changes of state equation. Furthermore, the strong adaptive filter mechanism with 

Extended Kalman Filter (EKF) is established for comparative purposes, and the Cramer-Rao 

Bound (CRB) based on the nonlinear model is also derived. Finally, to verify the effectiveness 

of the mechanism, numerical simulation is made. Results analysis illustrates that the proposed 

mechanism has high location accuracy and is better than that of the original filtering algorithm 

without strong adaptive recursion.  

Keywords:  node localization, state vector estimation, strong adaptive filter mechanism, wireless 

sensor networks  

1 Introduction 

Wireless sensor networks (WSNs) are self-organizing networks within which a large number of 

distributed autonomous nodes are arbitrarily deployed. Recent advancements in the wireless 

communications have facilitated the development of WSNs for a wide variety of real-world applications, 

including traffic control, environmental monitoring, object tracking, and so on [1]. Many applications of 

WSNs require location information of the randomly deployed nodes.  

Existing localization systems basically consists of three distinct components [2-3]: The first 

component known as ranging, distance measurement may be completed by using received signal strength 

indication (RSSI), time of arrival/time difference of arrival (TOA/TDOA). Second, position estimation of 

the unknown node is carried out using the ranging information and positions of reference nodes, which is 

done by solving a set of simultaneous equations. Such methods include trilateration, multilateration and 

triangulation. The third is localization algorithm, which determines how the available information will be 

manipulated in order to allow most or all of the nodes of a WSN to estimate their positions.  

For range-free localization algorithms omitting ranging, such as centroid localization and DV-Hop 

localization [4-5], have already caused much attention. However, these advantages make them only 

suitable for the coarse localization. Conversely, range-based localization has higher location accuracy. 

Sometimes these two kinds of techniques are applied by using an optimization algorithm that minimizes 

the localization error to locate most or all of the nodes [6]. 

The case of location estimation of a single node is considered here. In [7], it formulates a dynamical 

system that encodes both the target moving manners and coarse sensor locations in an augmented state by 

integrating augmented transition and observation models. Ho et al. [8] reviews simultaneous localization 
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and mapping problem based on different filtering techniques used to do the state estimation of the mobile 

robot.  

In this article, we will transform the single node localization problem in WSNs into the state vector 

estimation problem of nonlinear system, where nonlinear filtering estimation is performed by using the 

parameters of the node location as the state vector, and the real-time correction is made with the increase 

of the number of sampling points. 

In recent years, nonlinear state estimation has played an important role, which has important 

applications in target tracking, information processing, parameter estimation and localization. Kalman 

filter [9] is computationally efficient due to its recursive nature and its optimality for linear systems. Here 

we will adopt the derived Kalman filter [10-11] to address the nonlinearity issue aroused in the 

considered problem. Extended Kalman Filter (EKF) and Cubature Kalman Filter (CKF), and other 

nonlinear filtering methods are developed. However, these derived Kalman filters are not the optimal 

filter for non-Gaussian model [12]. Particle filter is also a class of nonlinear filtering method [13]. When 

the nonlinearity of the system is stronger, the effect of particle filter is more obvious than that of Kalman 

filter and its improved method. In particular, the CKF algorithm proposed by Arasaratnam et al. [14], 

which described nonlinear transfer of system state by using the integral rule of the spherical radial 

volume criterion. It not only overcomes the application limitation of EKF in strongly nonlinear system, 

but also has higher filtering accuracy than the particle filter.  

In order to improve the performance of CKF, the square root of the error covariance matrix is added in 

its filtering process, which is used to guarantee the symmetry of the error covariance matrix. Thus, the 

Square-root Cubature Kalman Filter (SCKF) algorithm is formed [15].  

In [15], the RSSI state estimation algorithm based on SCKF converts the RSSI localization problem 

into the state vector estimation problem of nonlinear system, which utilizes the SCKF to estimate the 

target’s position and the channel attenuation parameter, and uses dynamic channel parameter to correct 

the node’s position in real time in order to improve accuracy. 

The SCKF algorithm does not have the adaptability to the change of measurement condition and 

model uncertainty of system. Measurement malfunctions or system model changes will affect the filter 

performance and even lead to filter failure. The robustness of the measurement malfunctions can be 

improved by building adaptive filter with innovation covariance matching techniques, and the influence 

of the model uncertainty can be solved by viewing Strong Tracking Filter (STF) as the basic theory 

framework [16]. However, STF has theoretical limitations of low precision and calculation of Jacobian 

matrix etc. Considering the influence of noise, especially in the case of low signal to noise ratio, the 

SCKF filter will result in divergence, its performance will be restricted. 

Motivated by these, we propose a strong adaptive Kalman filter mechanism which combines the 

ordinary nonlinear filtering algorithm with Kalman filter for improved estimation results. The mechanism 

performs Kalman filter for further processing on the basis of SCKF or EKF state vector estimation. The 

key technical problems that need to be solved are how to establish the correlation between common 

filtering location algorithm and Kalman filtering recursion, and how to apply the two specific algorithms 

such as SCKF and EKF to the solution process of the state estimation problems of nonlinear systems 

derived from single node localization. 

The technical achievements of this work are as follows: (1) Compared with single Kalman filter only 

adapted to the linear system model, the hybrid filter method does not depend on the inappropriate initial 

conditions and can be well applicable to highly non-linear system; (2) The strong adaptive filtering 

algorithm can obtain lower root mean square error lower bound than that of the original filtering 

algorithm without strong adaptive recursion; (3) The stability of the strong adaptive Kalman filter 

mechanism is good and divergent failure will not easily happen. 

The article is organized as follows. In the next section, related work has been presented. Section 3 

presents the formulation of the proposed mechanism. Numerical simulation and results analysis is 

illustrated in section 4. In Section 5, conclusions are given. 
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2 Related Work 

2.1 Wireless Channel Propagation Model 

In range-based schemes, RSSI technique [17] has been widely used for distance measurement. 

As depicted in Fig. 1, a sender node sends a signal with a determined strength that fades as the signal 

propagates, and a known wireless channel propagation model can be used to convert the signal strength 

received by various known nodes into distance.  
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Fig. 1. Variation of RSSI for different distances 

The propagation model at a given transmission distance can be described as:  

 ( )[ ] ( )0
0

10 lg
r r

d
P d dBm P d v

d
α

η
⎛ ⎞

= − +⎜ ⎟
⎝ ⎠

, (1) 

where d is the transmission distance, ( )0r
P d  is the received signal power at reference distance 

0
d (

0
1d m= ), ( )

r
P d  is the received signal power from the sender. η  is the channel attenuation parameter, 

and v
α
 is a zero-mean Gaussian noise with standard deviation α . 

The relationship between RSSI values and the received signal power from the receiving node is 

expressed by: 

 ( )[ ] ( )
r
P d dBm RSSI d OFFSET= + , (2) 

where OFFSET  is a constant value. ( )RSSI d  is the received signal strength from the sender.  

It follows from (1) and (2) that there exists  

 ( )[ ] ( ) ( )1 10 lgRSSI d dBm RSSI d v
α

η= − + . (3) 

The RSSI can be estimated when the unknown nodes receive the signal from the beacon nodes, and the 

distance can be calculated via (3). 

2.2 State-Space Model 

It is assumed that wireless communication can be formed between two nodes if and only if they are 

within their communication range [18]. We assume that all nodes have the same communication range. 

The relationship about the distance 
i

d  and RSSI value between the unknown node and the th
i  beacon 

node can be written as
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 ( ) ( )
2 2

i i i
d x x y y= − + − , (4) 

 ( )[ ] ( )
0

10 lg ,1
i d i i

RSSI dBm RSSI d v i nγ η= − + ≤ ≤ ,  (5) 

where 
0

, , ,

T

d
x y RSSIγ η⎡ ⎤= ⎣ ⎦  is the state vector to be estimated, ( )i

RSSI γ  received by the unknown node is 

the signal strength from the 
th
i  beacon node, 

0
d

RSSI  is the received signal strength at reference distance 

0
d , 

i
v  denotes the value obtained from the noisy range measurements corresponding to the th

i  beacon 

node. 

Noise-free received signal strength ( )
i

H γ  derived from Eq. (4) and (5) is given as 

 ( ) ( ) ( )
0

2 2

10 lg ,1
i d i i

H RSSI x x y y i nγ η= − − + − ≤ ≤ . (6) 

Eq. (5) is represented as a vector form: ( )RSSI H vγ= + , where [ ]1 2
, ,

T

n
RSSI RSSI RSSI RSSI= �

, 

( ) ( ) ( ) ( )1 2
, ,

T

n
H H H Hγ γ γ γ= ⎡ ⎤⎣ ⎦�

, [ ]1 2
, ,

T

n
v v v v= �

.  

Let the state vector of blind node at time th
k  be

0
,

, , ,

T

k k k k d k
x y RSSIγ η⎡ ⎤= ⎣ ⎦ , we can obtain a nonlinear 

system with additive noise, whose state-space model is defined as: 

 Process equation: 
1 1k k k

A wγ γ
− −

= + , (7) 

 Measurement equation: ( )RSSI
k kk

H vγ= + , (8) 

where 
4 4

A
×
 is the unit state transition matrix; { }1k

w
−

 and { }kv  are respectively independent process and 

measurement gaussian noise sequences with zero means and covariance matrices 

( ) ( )
0

2 2 2 2

1 1
cov , , ,

d
k k x y RSSIQ w diag

η
σ σ σ σ

− −

= =
 and ( ) ( )2 2 2

,1 ,2 ,
cov , , ,

k k v v v n
R v diag σ σ σ= = � , respectively. 

2.3 RSSI State Estimation Based on SCKF 

For the state-space model depicted in Eq. (8) and (9), it is ready to apply SCKF which consists of two 

consequent stages at step ( )1,2,k k N= �
. 

Time update 

(1 )Evaluate the cubature points ( )1,2,i m= �
: 

, 1 1 1 1 1 1
ˆ

ii k k k k k k
S ε γ

− − − − − −

Γ = + , where 2m n
γ

= . 

(2 )Evaluate the propagated cubature points ( )1,2,i m= �
: *

, 1 , 1 1i k k i k k
A

− − −

Γ = Γ . 

(3 )Estimate the predicted state:

 

*

1 , 1

1

1
ˆ

m

k k i k k

i m

γ
− −

=

= Γ∑ . 

(4) Estimate the square-root factor of the predicted error covariance: ( )*

,k 11 1 Qk k k k
S tria Sγ

−

− −

= , where 

,k 1Q
S

−

 denotes a square-root factor of 
1k

Q
−

 such that 
1 ,k 1 ,k 1

T

k Q QQ S S
− − −

=  and the weighted, centered 

matrix * * *

1 1, 1 1 , 1 1

1
ˆ ˆ, ,

k k k k k k m k k k k

m

γ γ γ
− − − − −

⎡ ⎤= Γ − Γ −⎣ ⎦�
. 

 

Measurement update 

(1) Evaluate the cubature points ( )1,2,i m= �
: 

, 1 1 1
ˆ

ii k k k k k k
S ε γ

− − −

Γ = + . 

(2) Evaluate the propagated cubature points ( )1,2,i m= �
: ( ), 1 , 1i k k i k k
Z H

− −

= Γ . 

(3) Estimate the predicted measurement: 
1 , 1

1

1
ˆ

m

k k i k k

i

z Z
m

− −

=

=∑ . 
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(4) Estimate the square-root of the innovation covariance matrix: ( )*

,k, 1 1 Rzz k k k k
S tria P S

− −

= , where 

,kR
S  denotes a square-root factor of 

k
R  such that 

,k ,k

T

k R R
R S S=  and the weighted, centered matrix 

*

1 1, 1 1 , 1 1

1
ˆ ˆ, ,

k k k k k k m k k k k
P Z z Z z

m
− − − − −

⎡ ⎤= − −⎣ ⎦�
. 

(5) Estimate the cross-covariance matrix: *

, 1 1 1

T

xz k k k k k k
M A P

− − −

= , where the weighted, centered matrix 

1 1, 1 1 , 1 1

1
ˆ ˆ, ,

k k k k k k m k k k k
A

m

γ γ
− − − − −

⎡ ⎤= Γ − Γ −⎣ ⎦�
. 

(6) Estimate the Kalman gain: ( ), 1 , 1 , 1
/ /

T

k xz k k zz k k zz k k
W M S S

− − −

= . 

(7) Estimate the updated state: ( )1 1
ˆ ˆ ˆRSSI

k kk k k k k k
W zγ γ

− −

= + − . 

(8) Estimate the square-root factor of the corresponding error covariance ( )*

,k1 1k k Rk k k k k k
S tria A WP WS

− −

= −
 

3 Proposed Mechanism 

When the system state model and observation model is linear and consistent with the Gaussian 

distribution, Kalman filter is optimal linear filter, assuming that noise is also a Gaussian distribution.  

Considering the defects of low precision and divergence of the RSSI state estimation results, in this 

section, a strong adaptive Kalman filter mechanism which combines the original nonlinear filtering 

algorithm such as SCKF and EKF with Kalman filter is proposed. The mechanism firstly utilizes the 

RSSI state estimation algorithm based on SCKF to estimate and correct the state vector as depicted in 

state-space model, and then the Kalman filter is performed for further processing due to the linear 

changes of state equation. For application and comparison, the strong adaptive filter mechanism with 

EKF is established, and the Cramer-Rao Bound (CRB) is also derived. 

3.1 Strong Adaptive SCKF Design  

See from Eq. (7), the state vector of the unknown node at time 
th

k  satisfies order estimation 

1 1
ˆ ˆ

k k k
A wγ γ

− −

= + , then error between ˆ
k

γ
 
and the estimated value ˆ

SCKF

k
γ

 
determined by SCKF should be 

in accordance with the relationship of an additive noise such as ˆ ˆ

SCKF

k k k
eγ γ= + , where measurement 

noise 
k
e  submitting Gaussian distribution with zero means and covariance matrix 

( ) ( )cov 5,5,5,5
k k

e diagΦ = = . 

Therefore, we obtain the following linear system whose state-space model can be expressed by: 

 Process equation: 1 1
ˆ ˆ

k k k
A wγ γ

− −

= + , (9) 

 Measurement equation: ˆ ˆ

SCKF

k k k
eγ γ= + .  (10) 

For the linear Gauss model, Kalman filter is considered to be the optimal filter, so the optimal 

estimation ˆ
k

γ
 
can be deduced by Kalman filter based on 

1
ˆ

SCKF

k
γ

−

. 

 11 1 1

T

kk k k k
P AP A Q

−

− − −

= + , (11) 

 ( )
1

1 1k kk k k k
G P P

−

− −

= Φ + , (12) 

 ( )1 1 1
ˆ ˆ ˆ ˆ

SCKF

k k k k k
Gγ γ γ γ

− − −

= + − , (13) 

 ( )
1kk k k k

P I G P
−

= − , (14) 
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where 
1 1k k

P
− −

 is covariance matrix of the optimal estimation 1
ˆ

k
γ

−

 at time 1
th

k − , 
1k

Q
−  
is process noise’s 

covariance matrix which is the same as ( )
0

2 2 2 2

1
, , ,

d
k x y RSSIQ diag

η
σ σ σ σ

−

=

 
mentioned in section 2, 

1k k
P

−

 is 

covariance matrix of the predicted state 1
ˆ

k
γ

−

 at time 
th

k , 
k k
P  is covariance matrix of the optimal 

estimation  ˆkγ  at time th
k , 

k
G

 
is the Kalman gain. About the initial value setting, let 

0
γ̂  and 

0 0
P

 
be the 

initial value of state vector and its covariance matrix (not square root) before SCKF estimation. This 

strong adaptive Kalman filter design for SCKF algorithm is summarized in the following way: 

 

Algorithm 1 [Strong Adaptive SCKF]: 

(1) Initialize the filter: Denote 
0

γ̂  and 
0 0
P , the square root 

0 0
S

 
of 

0 0
P  obtained by QR decomposition, 

simulate RSSI values received by the unknown node at n  beacon nodes which is within communication 

range. 

(2) 1,2,For k N= � , N  is sampling times. 

(3) Execute SCKF: Estimate the state estimation 
1

ˆ

SCKF

k
γ

−  
and the related square root 

k k
S

 
of the error 

covariance matrix determined by time update and measurement update in accordance with section 2.3. 

(4) Execute the Kalman filter update: covariance matrix 
1k k

P
−  
of 

1
ˆ

k
γ

−

, Kalman gain 
k

G , optimal 

estimation ˆ
k

γ
 
of the state vector and covariance matrix 

k k
P

 
of ˆ

k
γ

 
are obtained as Eq. (11-14), 

respectively. 

(5) ˆ
k

γ
 
derived from (4) and 

k k
S  derived from (3) are needed as input to circulation. Steps 3 to 4 are 

repeated until the smooth completion of N  sampling. 

3.2 Strong Adaptive EKF Design 

Similarly, we also perform strong adaptive filter design with EKF algorithm. 

For the state vector 
0
,

, , ,

T

k k k k d k
x y RSSIγ η⎡ ⎤= ⎣ ⎦

 at time 
th

k  in the state-space model, there’s no need to 

take the derivative of process equation 
1 1k k k

A wγ γ
− −

= +  because A  is the unit state transition matrix. 

So we just take into consideration how nonlinear function ( ) ( ) ( ) ( )1 2
, ,

T

k k k n k
h h h hγ γ γ γ= ⎡ ⎤⎣ ⎦�

 at 

measurement equation where ( ) ( ) ( )
0

2 2

,
10 lg ,1

i k d k k i k i k
h RSSI x x y y i nγ η= − − + − ≤ ≤

 
works in EKF. The 

related Jacobian matrix 
k

H
 
[19] describes the partial derivatives of ( )kh γ  with respect to 

k
γ  as: 

( )

( ) ( )( )
( )

( ) ( )( )
( ) ( )

( )

( ) ( )( )
( )

( ) ( )( )
( ) ( )

( )

( ) ( )( )
( )

( ) ( )

2 21 1

1 12 2 2 2

1 1 1 1

2 22 2

2 22 2 2 2

2 2 2 2

1

2 2 2

10 10
10lg 1

10 10

10 10
10lg 1

10 10

10 10

10 10

k k

k k

k k k k

k k

k k

k k k kk

k

n k k

k n k n k n k n

x x y y
x x y y

ln x x y y ln x x y y

x x y y
x x y yh

ln x x y y ln x x y yH

x x y y

ln x x y y ln x x y y

η η

η η

γ

η η

− −
− − + −

− + − − + −

− −
− − + −∂

− + − − + −= =
∂

− −

− + − − + −

� � � �

( )
( ) ( )

2 2

2
10lg 1

k n k n
x x y y

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

− − + −⎢ ⎥
⎢ ⎥
⎣ ⎦

. (15) 

Therefore, this strong adaptive Kalman filter design for EKF algorithm is summarized in the following 

way: 
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Algorithm 2 [Strong Adaptive EKF]: 

(1) Initialize the filter: Denote 
0

γ̂  and 
0 0

C , the initial value 
0 0
P

 
of covariance matrix of state vector in 

Kalman filter, simulate RSSI values. 

(2) 1,2,For k N= � , N  is sampling times. 

(3) Execute EKF: Estimate the state estimation 
1

ˆ

EKF

k
γ

−  
and the error covariance matrix 

k k
C  according 

to the following series of formulas. 

 11 1 1

T

kk k k k
C AC A Q

−

− − −

= +

, (16)

 
-1

| 1 | 1[ + ]
T T

k k k k k k k k k
W C H H C H R

− −

=

, (17)

 
( )( )1 1 1

ˆ ˆ ˆ

EKF

k k k k k
W RSSI hγ γ γ

− − −

= + −
, (18)

 
( )

1k kk k k k
C I W H C

−

= −

. (19)

(4) Execute the Kalman filter update: 
1k k

P
−

of 
1

ˆ

k
γ

−

, 
k

G , ˆ
k

γ
 
of 

k k
P of ˆ

k
γ

 
are obtained as Eq. (11-14) 

where 
1

ˆ

SCKF

k
γ

−

 needs to be replaced with 
1

ˆ

EKF

k
γ

−

, respectively. 

(5) ˆ
k

γ  from (4) and 
k k

C  from (3) are needed as input to circulation. Steps 3 to 4 are repeated. 

3.3 CRB Analysis 

For the strong adaptive Kalman filter localization algorithm, the estimate ˆ
k

γ of the state vector 
k

γ
 

converges to the optimal estimation. In order to analyze the performance of the algorithm, we compare 

the estimation variance of ˆ
k

γ
 
and the variance lower bound. For the fixed state estimation problem 

which is converted by the system model, the lower bound of variance can be obtained by CRB. CRB is 

derived as follows: 

For [ ] ( )21 2
, , 0,

T

n v
v v v v N σ= � ∼

, 
i
v  denotes the random measurement noise corresponding to 

i
RSSI  

received by the unknown node from the th
i  beacon node, and ( ) ( )2 2 2 2

,1 ,2 ,
cov , , ,

v v v v n
v diagσ σ σ σ= = �

, so 

( )( )2,
i i v

RSSI N H γ σ∼

 
and its conditional probability density function exists [20] as follows: 

 
( )

( )( )
2

22

1
,1

22

i i

i

vv

RSSI H
f RSSI exp i n

γ
γ

σπσ

⎧ ⎫−⎪ ⎪
= − ≤ ≤⎨ ⎬

⎪ ⎪⎩ ⎭
.

 

(20) 

i
RSSI (1 i n≤ ≤ ) are assumed to be independent and identically distribute, the joint PDF of RSSI  is  

 
( ) ( )

1

n

i

i

f RSSI f RSSIγ γ

=

=∏
.

 

(21) 

After logarithm fetch on joint PDF, which get log-likelihood function: 

 ( ) ( ) ( )( )
2

2

1

1

2

n

i i

iv

l RSSI ln f RSSI RSSI Hγ γ γ
σ

=

⎡ ⎤= = − −⎣ ⎦ ∑ .

 

(22) 

By the CRB inequality, it meets ( ) 1
ˆcov Fγ

−

≥
 
where 

( )2

2

l RSSI
F E

γ

γ

⎡ ⎤∂
= − ⎢ ⎥

∂⎢ ⎥⎣ ⎦

, F can be calculated as: 
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 [ ]
( )

( )

( ) ( )

2

22

1

2

2

1

1
,

1
,

n
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iv k

kj kj
n

i i

iv k j

H
k j

l RSSI
F F E

H H
k j

γ

σ γγ

γ γ γ

σ γ γ

=

=

⎧ ∂⎛ ⎞
⎪ =⎜ ⎟

⎡ ⎤ ∂∂ ⎪ ⎝ ⎠
= = − =⎢ ⎥ ⎨

∂ ⎛ ⎞∂ ∂⎢ ⎥ ⎪⎣ ⎦
≠⎜ ⎟⎪ ⎜ ⎟∂ ∂⎝ ⎠⎩

∑

∑

.

 

(23) 

Above all, minimum mean square error lower bound ofγ  can be expressed by: 

 ( )2 1ˆ , 1,2,3,4
k k k kk

Var F kσ γ γ
−

= − ≥ =
.

 

(24) 

4 Numerical Simulation and Results Analysis 

The algorithms described above are implemented in MATLAB to evaluate their performance by 

measuring the accumulative root mean square error over the state vector. All experiments were 

performed at a PC with CPU of 2.40 GHz and RAM of 8.00 GB. 

4.1 Description of the Simulation Environment 

To ease our illustration, each sensor node has a transmission radius of r = 10m. Assuming that the node’s 

position is changeless, let the related data of the node be sampled 100 times according to the time interval 

of 0.01s. 

For comparison, the root mean square of localization error of the unknown node at time th
k  is defined 

as  

 
( ) ( )

2 2

ˆ ˆ

k k k k
RMSE x x y y= − + −

, (25) 

where
 
( ),

k k
x y

 
is the actual position of the unknown node, ( )ˆ ˆ,

k k
x y

 
is the estimated value. 

Similarly, the accumulative root mean square of localization error is as follows: 

 ( ) ( )
2 2

1

1
ˆ ˆ

N

k k k k

k

ARMSE x x y y
N

=

⎡ ⎤= − + −
⎣ ⎦∑ .

 

(26) 

As for the state vector 
0
,

, , ,

T

k k k k d k
x y RSSIγ η⎡ ⎤= ⎣ ⎦ , the accumulative root mean square error of each 

component of which is expressed by 

 ( )
2

, ,

1

1
ˆ_ , 1,2,3,4

N

k i k i

k

ARMSE each i
N

γ γ

=

⎡ ⎤= − =
⎣ ⎦∑ .

 

(27) 

The accumulative root mean square error of all the components of which is also calculated as : 

 ( )
4

2

, ,

1 1

1
ˆ_

N

k i k i

k i

ARMSE all
N

γ γ

= =

⎡ ⎤⎡ ⎤= −⎢ ⎥⎣ ⎦⎣ ⎦
∑ ∑ .

 

(28) 

4.2 Performance Evaluation of SCKF 

In the case of single-node’s localization without strong adaptive recursion, we set initial value 

[ ]
0 0
ˆ = 0.2,2,3, 20

T

γ −

, ( )
0 0

0,0,0,0S diag= , the actual position of the unknown node is ( )1,4 . RSSI values 

collected at four known nodes are simulated as Eq. (5) where ( ) ( )
2 2

1 4
i i i

d x y= − + − , 
i
v  is 0.8 times of 

random noise, 1,2,3,4i =  [21]. 

The experimental results shown in Fig. 2 to Fig. 5 demonstrate that the RSSI state estimation 

algorithm based on SCKF is efficient. From the Fig. 5, we can find that estimated parameter tends to be 
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the true value with the increase in the number of samples. 
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Fig. 2. RSSI distribution generated by simulation Fig. 3. Location estimation of a single node 
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Fig. 4. Variation of RMSE with time Fig. 5. Comparison of estimated state and actual 

value 

4.3 Analysis of Strong Adaptive Mechanism 

Let the geographical region be marked by a 6m×6m area. Now consider the case where the unknown 

node and 5 beacon nodes are deployed randomly in the region.  

Let the actual value of [ ], , ,

T

x y RSSIγ η=

 
be [ ]1,4,3.5 37.5

T

−, , initialize 
0

γ̂ , its covariance matrix 

( )
0 0

0,0,0,0P diag=

 
(this is the same as what in Kalman filter), covariance matrix ( )5,5,5,5

k
diagΦ =

 
of 

measurement noise in Kalman filter update.  

We execute the SCKF, Strong Adaptive SCKF, EKF and Strong Adaptive EKF algorithms in 50 

independent runs and compare them according to ARMSE , _ARMSE each  and _ARMSE all  as following 

Table 1. 

Table 1. Comparison of four algorithms for ARMSE 

Algorithms ARMSE  _ARMSE each  _ARMSE all  

EKF 0.3279 (0.2716, 0.1838, 0.3014, 2.0909) 2.1378 

Strong Adaptive EKF 0.1886 (0.1509, 0.1131, 0.2261, 1.6196) 1.6461 

SCKF 0.1572 (0.1109, 0.1114, 0.1162, 0.6843) 0.7116 

Strong Adaptive SCKF 0.0901 (0.0620, 0.0654, 0.0704, 0.4047) 0.4206 
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It can be seen from Table 1 that the lower root mean square error and higher estimation accuracy are 

obtained for the state vector estimation of nonlinear systems, when the strong adaptive filter mechanism 

is applied to original nonlinear filtering algorithm such as SCKF and EKF. This shows that the 

mechanism is feasible and efficient. 

When 
0

γ̂  is initialized to [ ]0
1.4777,4.6001,3.6596, 37.6 73ˆ 6

T

γ = − , the actual coordinate of the unknown 

node and the location estimation process determined by four different approaches in a trial run is shown 

in Fig. 6. We aim to find how the accuracy of the estimation relies on the strong adaptive filter 

mechanism. The location estimation results of SCKF and strongly adaptive SCKF, EKF and strongly 

adaptive EKF are respectively compared. It can be seen that the convergence of the estimated coordinates 

of the strong adaptive algorithm is better than that of the ordinary algorithm without strong adaptive 

recursion. 
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Fig. 6. Filtering location estimation for the unknown node  

The reason that led to the conclusion is that the effect of additive noise is considered. Firstly, the SCKF 

based on RSSI state estimation algorithm is used to estimate the node location information and the 

channel attenuation parameter in WSNs, and the continuous correction of the node position estimation is 

obtained in successive iterations. Then, then error between the state vector of the unknown node at time k 

and the estimated value determined by SCKF should be in accordance with the relationship of an additive 

noise such as
 
ˆ ˆ

SCKF

k k k
eγ γ= + , according to the linear change of the state equation such as 

1 1
ˆ ˆ

k k k
A wγ γ

− −

= + , a new state-space model such as Eq. (9) and (10) is established. Next, the recursive 

estimation is carried out on the basis of the Kalman filtering algorithm, so that the optimal estimation can 

be obtained. 

In the process of N  data samplings of Kalman filter (that is 1s time length), Fig. 7 shows the root 

mean square error curve of four different filtering algorithms. For the estimation of the position 

coordinates of the unknown node, the strong adaptive filtering design has achieved a lower error and has 

better stability. 
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Fig. 7. Comparison of four algorithms for RMSE  

As shown in Fig. 8, these four algorithms can asymptotically converge to the actual value of node state 

vector components. We can see that estimation result of the SCKF and EKF is not stable enough, will 

fluctuate in actual value, and the strong adaptation of the SCKF and EKF are more accurate and reliable 

because of the further filtering of the original algorithm. In addition, the strong adaptive filtering 

algorithm is more accurate for the estimation of the horizontal and vertical coordinates of the nodes, and 

the channel attenuation coefficient and the RSSI value at reference distance 1m is not ideal. 
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Fig. 8. Comparison of node state estimation 
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In the simulation results shown in Fig. 9, we describe an implementation of the root mean square error 

curve corresponding to node state estimation in Fig. 8. And the lower bound on the variance theory called 

CRB is compared, additionally.  
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Fig. 9. Comparison of root mean square error of node state estimation 

As can be seen from the results, four algorithms are almost all close to the lower bound of the error 

with the increase of the number of samples, but the strong adaptive filtering algorithm can obtain lower 

error lower bound. This is due to the CRB, whose derivation is based on the nonlinear model, can only be 

the lower bound of error for SCKF and EKF. The strong adaptive filtering algorithm is the linear 

recursive estimation based on SCKF and EKF, which can be used to eliminate the influence of noise, and 

the vector estimation error can be compared with CRB. 

4.4 Comparison with Other Related Work 

Now we provide a comparative table to indicate the contribution of this paper. We compare them with 

the Particle Swarm Optimization (PSO) [22], Bacterial Foraging Algorithm (BFA) [22], Maximum 

Likelihood Estimation (MLE) [23], Unscented Kalman Filter (UKF) and Centroid Localization in the 

numerical experiments. It can be seen from Table 2 that the Strong Adaptive SCKF outperforms all other 

methods. 

Table 2. Comparison of all related algorithms for ARMSE 

Algorithms ARMSE  

Particle Swarm Optimization (PSO) [22] 0.7218 

Bacterial Foraging Algorithm (BFA) [22] 0.5167 

Maximum Likelihood Estimation (MLE) [23] 0.4581 

EKF 0.3279 

Unscented Kalman Filter (UKF) 0.1265 

Centroid Localization 0.2046 

SCKF 0.1572 

Strong Adaptive EKF 0.1886 

Strong Adaptive SCKF 0.0901 
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Let the geographical region be marked by a 100m×100m area. Now consider the case where 100 

sensor nodes are randomly placed while the number of unknown nodes is fixed as 50. We present an 

implementation of the iterative SCKF localization, and compare it with PSO, BFA, MLE and derivative 

iterative SCKF (That is Taylor Feedback Kalman Filter (TFKF) [24]) in the numerical experiments. The 

values in Table 3 denote average value over 50 runs.  

As shown in Table 3, we can observe a slight reduction in the entire criterions so as to distinguish ours 

and others in more detail. It’s also worth mentioning that TFKF is a new distributed iterative kalman 

filter localization technique, which is implemented by controlling the error with taylor expansion, to 

improve the deficiency of the Iterative SCKF and MLE methods. The article about TFKF [24] has been 

accepted and waiting to be published. 

Table 3. A summary of results of 50 trial runs five algorithms for 50 unknown nodes 

Average results of 50 trials 
Algorithms number of 

nonlocalized nodes

number of 

iterations 

localization 

error 

Elapsed time 

(s) 

Particle Swarm Optimization (PSO) 0.3210 49 0.3511 288.4117 

Bacterial Foraging Algorithm (BFA) 0.1956 49.4 0.2137 902.1132 

Maximum Likelihood Estimation (MLE) / / 0.2624 0.8534 

Iterative SCKF 0 3 0.1727 3.6271 

Taylor Feedback Kalman Filter (TFKF) [24] 1 8 0.0857 9.1518 

5 Conclusion 

In this article we have developed a strong adaptive Kalman filter mechanism, which is implemented by 

combining the original nonlinear filtering algorithm with Kalman filter state estimation. A comparison of 

the performances in terms of the convergence of the estimated coordinates, node state vector components 

and the accumulative root mean square error is presented. 

Although the study of Kalman filtering method in this paper can solve the locating problem under 

some specific circumstances, there are still many deficiencies that need further study. (1) When the range 

of the location area remains unchanged, the positioning accuracy achieved by SCKF can not be greatly 

improved by increasing the number of beacon nodes, this is because the beacon node can only bring more 

measurement information for more nodes remains to be positioned, which improves the measurement 

accuracy to some extent, but the effect on the positioning accuracy is limited, so the maximum number of 

reference nodes is limited to 6, and the nearest 6 from the target; (2) The strong adaptation mechanism 

proposed by this paper is based on the assumption that the system state model, the observation model and 

the noise are consistent with the Gauss distribution hypothesis, so the future work can be extended to the 

nonlinear state estimation research under the non Gauss background; (3) When a strong adaptation 

mechanism is established, then error between the state vector of the unknown node at time k and the 

estimated value determined by SCKF is assumed to be in accordance with the relationship of an additive 

noise such as ˆ ˆ

SCKF

k k k
eγ γ= + , and this correlation can also be represented by a mathematical model that 

affects its change, in which parameters can be used for channel attenuation parameters. Therefore, it is 

appropriate to carry out the following work with modeling and parameter adjustment. 
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